
Status of 
Micromegas Central Tracker 



Outlines 

• Detector layout 

• Gas mixture 

– Requirements 

– Simulation 

– Experimental results 

• Signal simulation  

• Mechanical prototype 



MCT Team: 

• Koviazina Natalia 

– Garfield simulation, data analysis 

• Luashko Igor 

– Experimental measurements,  prototype 
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Micromegas Central Tracker  

• “Temporary” detector, will  be replaced by Si 
tracker in  2-3 years of operation 

 

– Cheap and simple in operation 

 

– Should provide fast results. Years of calibration 
and reconstruction turning is not acceptable 



MCT layout 

• 7 layers organized in 3 multilayer 

• ~15K electronic channels (118 FE boards) 

• Too big.. 

 



MCT layout 
• Outer multilayers do not 

improve momentum 
resolution, but needed as 
background environment 
for inner layers is unknown 

• Event rate & track multiplicity : 

– E=27GeV , full luminosity : 3MHz event rate 

• MB event : <N=9.9>;   N5%=20+ 

• Hard QCD events: <N=14>; N5%=22+  

– E=10GeV, 10% of full luminosity: 300 kHz event rate 

• MB event : <N=5.8>;   N5%=10+ 

• Hard events: <N=7.1>; N5%=11 

• Detector occupancy and hit rate are strongly depends on Lorentz angle 
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Alternative layout 

• 3 or 4 layers as close to beam pipe as possible, divided 
into 2 parts in Z direction (2x40cm)  

• gas mix &HV setting providing Lorentz angle within 15o 
– ~10 safety factor for acceptable hit rate  

– 1/2 number of  channels (44-60 boards instead of 118). 

– Smaller power dissipation and required space 

–  Smaller RO PCB size, no problem with ordering, may be 
produced with integrated cable 

– Simple and reliable hit reconstruction with charge weighting   

– Slightly better momentum resolution 

– Smaller strip capacity => lower noise 

– 10-12 mm dead area along central line (junction) 

 



What gas characteristics are important  to MCT 

High stable  gas gain  Triggerless operation is vulnerable  to   noise : 
no time coincidence suppression 

Lorentz angle Numbers of active strips in hit cluster  Ncl.   
Detector  occupancy.  
Coordinate accuracy. 
Signal amplitude   on strip  𝐴~1 𝑁𝑐𝑙 .   

Ion mobility Single-cluster signal length; main contribution to 
total signal length.  Affect charge collection and 
event overlap probabilities 

Electron drift speed            
In conversation gap 

Max drift time => event time window; 
 Contribute total signal length.  Affect charge 
collection and event overlap probabilities 



We need  

• Stable operation with gas gain G~104 (and expect G~2-5x104 as 
best results for test chambers) 
 

• Lorents angle 𝜃𝐿  within 10o-15o 

– Higher amplitude on strip 
– Reasonable occupancy 
– Simple hit reconstruction with charge centroid method and better 

accuracy 
 

• Maximum drift time ~120ns => drift speed above 2.5 cm/ns 
 

• Total signal length good within 300 ns to work with FE shaping 
time 100-200 ns   



Overview of gas mixtures for MM 

• Compas : no magnetic field 
– Ne-C2H6-CF4 (80%-10%-10%)   

 

• ATLAS : B=0.3T 
– Ar-CO2 (93%-7%) 
– Ar-CO2-iC4H10 (93%-5%-2%) 

 

• CLAS12 : B=5T (!!) 
– Ar-iC4H10 (90-10) +very high drift field 

 

• New gas? 
– Ar-CO2-iC4H10 with high CO2 fraction (~70%) 

 



Overview of gas mixtures for MM: 
Ne-C2H6-CF4  80-10-10  (COMPASS) 

+ Low discharge rate 

-   Very high 𝜽𝑳 for “standard” working point 

- Low primary ionisation 

Garfiels simulation 



Overview of gas mixtures for MM: 
Ar-CO2(7%), ArCO2(5%)iC4H10(2%).  ATLAS, NA64 

-   Problem with high-voltage stability for ArCO2(7%)  

-   High 𝜽𝑳, 𝑬𝒅𝒓𝒊𝒇𝒕 ≅ 𝟑 𝒌𝑽 𝒄𝒎  is needed to have reasonable 𝜽𝑳 

Garfiels simulation 



Overview of gas mixtures for MM: 
Ar-iC4H10  90-10% (CLAS12)  

• 8 kV/cm drift field is used by CLAS12 to reduce 𝜽𝑳 to acceptable value  by the 
cost of  ~40%  amplitude lost. 

• Stable operation at G>104 

•  For B=1T  and Edrift=3 kV/cm 𝜽𝑳~11o 
• Flamable 

 

• Good and reliable candidate 

 

Garfiels simulation 



Overview of gas mixtures for MM: 
Ar-CO2 and  Ar-CO2-iC4H10 with high CO2 fraction (~70%) 

Garfiels simulation 



Overview of gas mixtures for MM: 
Ar-CO2 and  Ar-CO2-iC4H10 with high CO2 fraction (~70%) 

• Very low Lorentz angle  

• Slow in weak field.   Edrift 2-2.5 kV/cm is needed ho have ~100 ns 
maximum electron  drift time  

• Was never used for MM. maximum achievable gain must be 
checked 



Experimental study of Ar-CO2 mixtures 
with high CO2 fraction 

• Ar-CO2 mixtures with CO2 fraction 30%, 50%, 70 % and 
Ar-CO2-iC4H10(91%-7%-2%) was tested  

 

• Gas gain vs amplification voltage and charge collection 
efficiency vs drift field dependencies were  measured 

 

• Signal length was estimated 



Experimental setup 
• MM prototype with DLC resistive layer  

–  10x10 cm2 active area 
– 128um amplification gap , 5 mm drift gap 
– All strips connected to single charge amplifier 

 

• Charge amplifier, 7ns front, 100 us decay time (an ideal 
integrator for our conditions)  
 

• Output signal was digitized with DOMINO digitizer, 
sampling rate 0.7 GS/sec , 1024 point/event . Signal 
shape was analyzed to extract amplitude and time 
information. 
 



Experimental Setup 

• Full amplitude with Fe55 source (known primary ionization) was used to 
measure 𝐺 × 𝜀 for set of amplification and drift voltages 
 

• Front of output signal is an integral of raw signal from MM => front length 
was used to estimate signal length for single primary cluster  (Fe55 
source) and MIP-like event (with cosmic trigger) 

Chamber 

Calibration 
Generator 

Charge amplifier 

Domino 
digitizer 



Gas gain and mesh transparency 
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Gas gain and mesh transparency 
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Amplitude measurement 
Fe 55 , self-triggering 
ArCO2(70) 
Uampl=900V 
Edrift= 3 kV/cm 

Cosmic, external trigger  
ArCO2(70) 
Uampl=925V 
Edrift= 3 kV/cm 

5.9 KeV 
225 primary e 

Internal amplifier noise is  ~8000 e due to high detector capacitance  



Time measurement : calibration 

• With chamber connected due to high detector capacity (C~1nf) and non-
zero amplifier input impedance system have additional transition time 
~100ns 

• For measurements averaged detector signal was compared with calibration 
signal 



MM signal length measurement 

• Red: averaged signal (~50000 events) for Cosmic run with ArCO2(70%) gas. 
U=925V, G~1.8x104, Edrift=3kV/cm 

• Blue :averaged signal for Fe55 run (single cluster signal) U=900V 
• Response to 85ns(black ) and 237 ns(green) is given for comparisson. 
• Estimated signal length is within 200 ns    



Signal length: calculations and 
measurements 

Gas Uampl Edrift, 

V/cm 
𝝉𝟏𝒆 

Calc., ns 
𝝉𝒅𝒓𝒊𝒇𝒕 

Calc., 
ns 

𝝉𝑴𝑰𝑷 
Meas., 

ns 

Lorentz 
Angle 

Ar-CO2(7%)-iC4H10(2%) 550 800(3000) ~160 140 <200 35(13) 

Ar-CO2(30%) 740 2400 140 82 <200 18 

Ar-CO2(50%) 830 2800 141 83 <200 14 

Ar-CO2(70%) 925 3000(2500) 142 113 <200 11(<10) 

• Electron drift time is based on GARFIELD vdrift data 
• Ion mobility is calculated using Blanc’s Law and data for pure argon 

and carbon dioxide 
• CO2 is much slower then argon, but higher working voltage 

compensate it  



Results 

• Ar-CO2 and Ar-CO2-iC4H10(2%) gas mixtures with high CO2 
fraction look very promising as MM working gas. It 
combine good HV stability (in this particular case ) , 
good timings and very low Lorentz angle 

 
• Clear downback is very  high working voltage, what may 

cause surface discharge 

 

• We believe,  operation with low Lorentz angle (special 
mixture + high drift field ) is more realistic then 
“standard” setting and  µ-TPC mode  



Gas test: 
Problems and future plans 

 

• Prototype was damaged during intervention, and can 
not be used for further tests 

 

• New pre-mixed Ar-CO2-iC4H10 gases is delivered,  test 
will be continued with new chamber.  

 

  



Signal simulation 

• Simplified MM description in Garfield is ready (mesh as a row 
of wires, no resistive layers), signal simulation is available 

single cluster signal MIP signal 

Ion component provide ~88% of total signal 



Signal simulation: 
Charge collection vs shaping time 

• Charge collection efficiency was studied for two cases:   
– 1 cluster(best possible variant)  

– 2 cluster, 1st was placed near cathode,  2d  near mesh (worst possible 
case) 

Raw 2-custer 
signal 

2-custer signal convoluted with 
amplifier transfer function 



Signal simulation: 
Charge collection vs shaping time 

• Charge collection efficiency was studied for two cases:   
– 1 cluster(best possible variant)  

– 2 cluster, 1st was placed near cathode,  2d  near mesh (worst possible case) 

• 1st order unipolar shaper 
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Signal simulation: 
next steps 

• Signal simulation with realistic transfer 
function 

• Add resistive layer to simulation for correct 
charge smearing  

• Study space resolution vs strip pitch 



Mechanical prototype 

• We are forced to develop assembling 
procedure from scratch, and we plan to glue 
several simple mechanical prototype to check 
procedure variants and  find hidden traps … 

 

• 1st mechanical prototype was glued in 
September (raw FR4, no strips, no mesh, 
commercial carbon fiber longbeams,  3D-
printer end-face arcs) and tested for geometry 

 



Mechanical prototype 
Geometry check: “readout”(inner) plane 

[“Barrel-like”] Deformation due to 
limited longbeam regidity 

Maximum deformation is 
about 300µ. Acceptable 



Mechanical prototype 
Geometry check: “cathode”(outer) plane 

Saddle-like deformation of top line 
(affect drift gap ) ~ 100 μ 

Maximum variations of drift 
gap <200µ, equivalent to 
7.5% variation of drift field.  
Acceptable 



Mechanical prototype 
Next step: 

• Several more step 0 prototype with different 
material  (FR4, kapton) 

 

• Prototypes with mesh stretched 

 

• “minimal functionality” prototype with simple 
but working RO pcb 



MCT status : problem 

 

• This moment we can’t order proper mesh 



MCT : Summary 

• We are forced to develop detector and 
assembling procedure almost from scratch 

• Test program is started, fist results is obtained 

• The main problem is availability of raw 
material 

 



BACKUP SLIDES 





Time measurement : calibration 

• Rectangular signal  of different length was sent to amplifier input. Input 
signal length vary from 60 ns to 664 ns; total charge was Q=350fQ in all 
case 

• Single-cluster signal from MM is very close to rectangular shape due to 
uniform field in amplification gap 



MM signal length measurement 

• Comparison of MIP-like averaged signal for different gas mixtures 


