Status of Micromegas Central Tracker

Outlines

- Detector layout
- Gas mixture
 - Requirements
 - Simulation
 - Experimental results
- Signal simulation
- Mechanical prototype

MCT Team:

• Koviazina Natalia

- Garfield simulation, data analysis

- Luashko Igor
 - Experimental measurements, prototype assembling
- Gongadze Alexy

- Production, material, general help

• Dedovich Dmitry

Micromegas Central Tracker

• "Temporary" detector, will be replaced by Si tracker in 2-3 years of operation

– Cheap and simple in operation

 Should provide fast results. Years of calibration and reconstruction turning is not acceptable

MCT layout

- 7 layers organized in 3 multilayer
- ~15K electronic channels (118 FE boards)
- Too big..

MCT layout

 Outer multilayers do not improve momentum resolution, but needed as background environment for inner layers is unknown

- Event rate & track multiplicity :
 - E=27GeV , full luminosity : 3MHz event rate
 - MB event : <N=9.9>; N_{5%}=20+
 - Hard QCD events: <N=14>; N_{5%}=22+
 - E=10GeV, 10% of full luminosity: 300 kHz event rate
 - MB event : <N=5.8>; N_{5%}=10+
 - Hard events: <N=7.1>; N_{5%}=11
- Detector occupancy and hit rate are strongly depends on Lorentz angle

Inner layer occupancy & hit rate

No background and noise

$\boldsymbol{\theta}_{L}$	1 event occupancy, %	1 event occupancy, 5% high multiplicity	Strip hit rate, kHz	
45	7,3	12	22	Standard HV settings

Inner layer occupancy & hit rate

$\boldsymbol{\theta}_{L}$	1 event occupancy, %	1 event occupancy, 5% high multiplicity	Strip hit rate, kHz		
45	7,3	12	22	Standard HV settings	
15	3.1	5.1	9.1	L=80cm	
10	1.9	3.1	5.6	L=80cm	

Inner layer occupancy & hit rate

$oldsymbol{ heta}_L$	1 event occupancy, %	1 event occupancy, 5% high multiplicity	Strip hit rate, kHz	
45	7,3	12	12 22	
15	3.1	5.1	9.1	L=80cm
10	1.9	3.1	5.6	L=80cm
10	<1	1.6	2.8	L=2x40cm

Alternative layout

- 3 or 4 layers as close to beam pipe as possible, divided into 2 parts in Z direction (2x40cm)
- gas mix &HV setting providing Lorentz angle within 15°
 - ~10 safety factor for acceptable hit rate
 - 1/2 number of channels (44-60 boards instead of 118).
 - Smaller power dissipation and required space
 - Smaller RO PCB size, no problem with ordering, may be produced with integrated cable
 - Simple and reliable hit reconstruction with charge weighting
 - Slightly better momentum resolution
 - Smaller strip capacity => lower noise
 - 10-12 mm dead area along central line (junction)

What gas characteristics are important to MCT

High stable gas gain	Triggerless operation is vulnerable to noise : no time coincidence suppression	
Lorentz angle	Numbers of active strips in hit cluster N_{cl} . Detector occupancy. Coordinate accuracy. Signal amplitude on strip $A \sim 1/N_{cl}$.	
lon mobility	Single-cluster signal length; main contribution to total signal length. Affect charge collection and event overlap probabilities	
Electron drift speed In conversation gap	Max drift time => event time window; Contribute total signal length. Affect charge collection and event overlap probabilities	

We need

- Stable operation with gas gain G~10⁴ (and expect G~2-5x10⁴ as best results for test chambers)
- Lorents angle θ_L within 10°-15°
 - Higher amplitude on strip
 - Reasonable occupancy
 - Simple hit reconstruction with charge centroid method and better accuracy
- Maximum drift time ~120ns => drift speed above 2.5 cm/ns
- Total signal length good within 300 ns to work with FE shaping time 100-200 ns

Overview of gas mixtures for MM

- Compas : no magnetic field

 Ne-C₂H₆-CF₄ (80%-10%-10%)
- ATLAS : B=0.3T
 - Ar-CO₂ (93%-7%)
 - Ar-CO₂-iC₄H₁₀ (93%-5%-2%)
- CLAS12 : B=5T (!!)
 - $Ar-iC_4H_{10}$ (90-10) +very high drift field
- New gas?
 - $Ar-CO_2-iC_4H_{10}$ with high CO_2 fraction (~70%)

Overview of gas mixtures for MM: Ne-C₂H₆-CF₄ 80-10-10 (COMPASS)

- + Low discharge rate
- Very high θ_L for "standard" working point
- Low primary ionisation

Overview of gas mixtures for MM: $Ar-CO_2(7\%), ArCO_2(5\%)iC_4H_{10}(2\%)$. ATLAS, NA64

- Problem with high-voltage stability for ArCO2(7%)
- High θ_L , $E_{drift} \cong 3 \ kV/cm$ is needed to have reasonable θ_L

Overview of gas mixtures for MM: Ar-iC₄H₁₀ 90-10% (CLAS12)

- 8 kV/cm drift field is used by CLAS12 to reduce θ_L to acceptable value by the cost of ~40% amplitude lost.
- Stable operation at G>10⁴
- For B=1T and E_{drift} =3 kV/cm θ_L ~11°
- Flamable
- Good and reliable candidate

Overview of gas mixtures for MM:

Ar-CO₂ and Ar-CO₂-iC₄H₁₀ with high CO₂ fraction (~70%)

Overview of gas mixtures for MM:

Ar-CO₂ and Ar-CO₂-iC₄H₁₀ with high CO₂ fraction (~70%)

- Very low Lorentz angle
- Slow in weak field. E_{drift} 2-2.5 kV/cm is needed ho have ~100 ns maximum electron drift time
- Was never used for MM. maximum achievable gain must be checked

Experimental study of Ar-CO2 mixtures with high CO2 fraction

- Ar-CO₂ mixtures with CO₂ fraction 30%, 50%, 70 % and Ar-CO2-iC₄H10(91%-7%-2%) was tested
- Gas gain vs amplification voltage and charge collection efficiency vs drift field dependencies were measured
- Signal length was estimated

Experimental setup

- MM prototype with DLC resistive layer
 - 10x10 cm² active area
 - 128um amplification gap , 5 mm drift gap
 - All strips connected to single charge amplifier
- Charge amplifier, 7ns front, 100 us decay time (an ideal integrator for our conditions)
- Output signal was digitized with DOMINO digitizer, sampling rate 0.7 GS/sec , 1024 point/event . Signal shape was analyzed to extract amplitude and time information.

Experimental Setup

- Full amplitude with Fe⁵⁵ source (known primary ionization) was used to measure $G \times \varepsilon$ for set of amplification and drift voltages
- Front of output signal is an integral of raw signal from MM => front length was used to estimate signal length for single primary cluster (Fe55 source) and MIP-like event (with cosmic trigger)

Gas gain and mesh transparency

Gain, x10⁴

Gain, x10⁴

Mesh transparency

Gas gain and mesh transparency

Mesh transparency

U_{drift}, kV/cm

Amplitude measurement

Fe⁵⁵, self-triggering ArCO₂(70) Uampl=900V Edrift= 3 kV/cm Cosmic, external trigger ArCO₂(70) Uampl=925V Edrift= 3 kV/cm

Internal amplifier noise is ~8000 e due to high detector capacitance

Time measurement : calibration

- With chamber connected due to high detector capacity (C~1nf) and nonzero amplifier input impedance system have additional transition time ~100ns
- For measurements averaged detector signal was compared with calibration signal

MM signal length measurement

- Red: averaged signal (~50000 events) for Cosmic run with ArCO2(70%) gas. U=925V, G~1.8x10⁴, Edrift=3kV/cm
- Blue :averaged signal for Fe⁵⁵ run (single cluster signal) U=900V
- Response to 85ns(black) and 237 ns(green) is given for comparisson.
- Estimated signal length is within 200 ns

Signal length: calculations and measurements

Gas	U _{ampl}	E _{drift,} V/cm	$ au_{1e}$ Calc., ns	τ _{drift} Calc., ns	τ _{MIP} Meas., ns	Lorentz Angle
Ar-CO ₂ (7%)-iC ₄ H ₁₀ (2%)	550	800(3000)	~160	140	<200	35(13)
Ar-CO ₂ (30%)	740	2400	140	82	<200	18
Ar-CO ₂ (50%)	830	2800	141	83	<200	14
Ar-CO ₂ (70%)	925	3000(2500)	142	113	<200	11(<10)

- Electron drift time is based on GARFIELD v_{drift} data
- Ion mobility is calculated using Blanc's Law and data for pure argon and carbon dioxide
- CO₂ is much slower then argon, but higher working voltage compensate it

Results

- Ar-CO₂ and Ar-CO₂-iC₄H₁₀(2%) gas mixtures with high CO₂ fraction look very promising as MM working gas. It combine good HV stability (in this particular case ⁽²⁾), good timings and very low Lorentz angle
- Clear downback is very high working voltage, what may cause surface discharge
- We believe, operation with low Lorentz angle (special mixture + high drift field) is more realistic then "standard" setting and μ-TPC mode

Gas test: Problems and future plans

- Prototype was damaged during intervention, and can not be used for further tests
- New pre-mixed Ar-CO₂-iC₄H₁₀ gases is delivered, test will be continued with new chamber.

Signal simulation

• Simplified MM description in Garfield is ready (mesh as a row of wires, no resistive layers), signal simulation is available

Ion component provide ~88% of total signal

Signal simulation: Charge collection vs shaping time

- Charge collection efficiency was studied for two cases:
 - 1 cluster(best possible variant)
 - 2 cluster, 1st was placed near cathode, 2d near mesh (worst possible case)

2-custer signal convoluted with amplifier transfer function

Signal simulation: Charge collection vs shaping time

- Charge collection efficiency was studied for two cases:
 - 1 cluster(best possible variant)
 - 2 cluster, 1st was placed near cathode, 2d near mesh (worst possible case)
- 1st order unipolar shaper

Signal simulation: next steps

- Signal simulation with realistic transfer function
- Add resistive layer to simulation for correct charge smearing
- Study space resolution vs strip pitch

Mechanical prototype

- We are forced to develop assembling procedure from scratch, and we plan to glue several simple mechanical prototype to check procedure variants and find hidden traps ...
- 1st mechanical prototype was glued in September (raw FR4, no strips, no mesh, commercial carbon fiber longbeams, 3Dprinter end-face arcs) and tested for geometry

Mechanical prototype Geometry check: "readout" (inner) plane

["Barrel-like"] Deformation due to limited longbeam regidity

Maximum deformation is about 300µ. Acceptable

Mechanical prototype Geometry check: "cathode" (outer) plane

Saddle-like deformation of top line (affect drift gap) $^{\sim}$ 100 μ

Maximum variations of drift gap <200μ, equivalent to 7.5% variation of drift field. Acceptable

Mechanical prototype Next step:

• Several more step 0 prototype with different material (FR4, kapton)

• Prototypes with mesh stretched

 "minimal functionality" prototype with simple but working RO pcb

MCT status : problem

This moment we can't order proper mesh

MCT : Summary

- We are forced to develop detector and assembling procedure almost from scratch
- Test program is started, fist results is obtained
- The main problem is availability of raw material

BACKUP SLIDES

Time measurement : calibration

- Rectangular signal of different length was sent to amplifier input. Input signal length vary from 60 ns to 664 ns; total charge was Q=350fQ in all case
- Single-cluster signal from MM is very close to rectangular shape due to uniform field in amplification gap

MM signal length measurement

• Comparison of MIP-like averaged signal for different gas mixtures