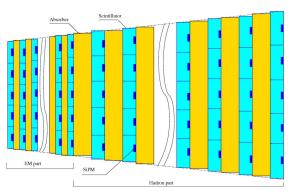

Zero Degree Calorimeter (ZDC) for SPD

Progress report <u>I. Alekseev</u> (ITEP, Moscow)

SPD collaboration meeting (October 4, 2022)

Zero degree calorimeter

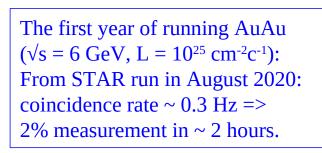

-> Detect neutrons and gammas. All charged particles swept by strong magnetic field.
-> Tasks:

- -> beam alignment and luminosity measurement;
- -> diffraction physics trigger on the rapidity gap;
- -> spectator neutron tagging

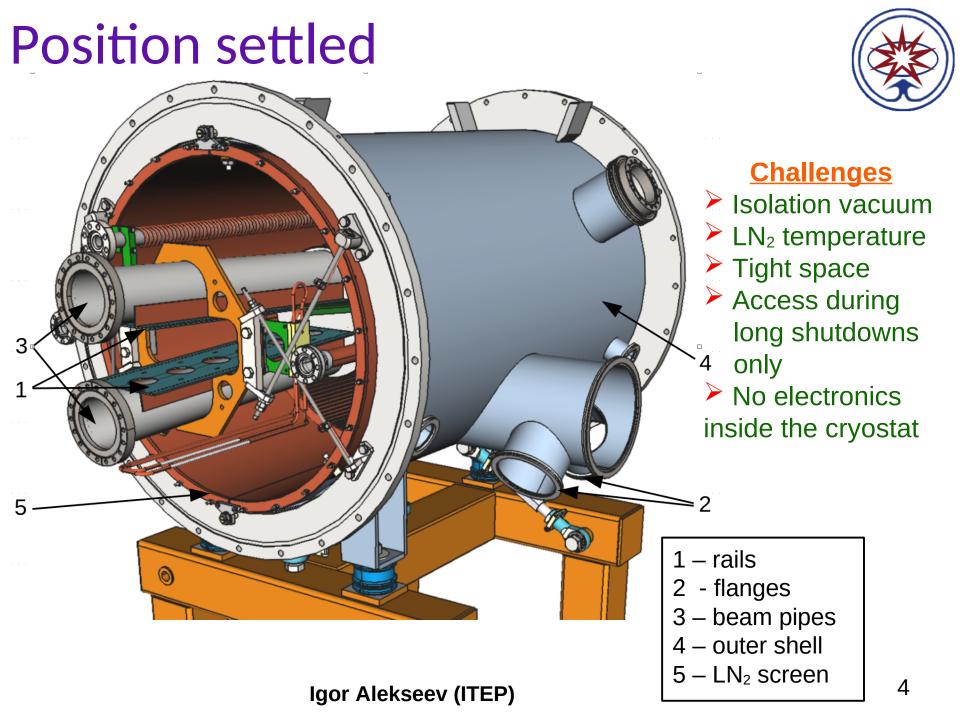
-> Concept:

- -> Sampling calorimeter with fine segmentation, 7x5 matrix.
- -> SiPM 3x3 mm² direct readout
- -> About 1000 channels
- -> Optimization based on MC and measurements with prototype is required

-> Readout system based on electronics designed for the DANSS neutrino experiment at Kalininskaya NPP, modified to 500 MSPS digitization.



Design for the first year of NICA operation Aims

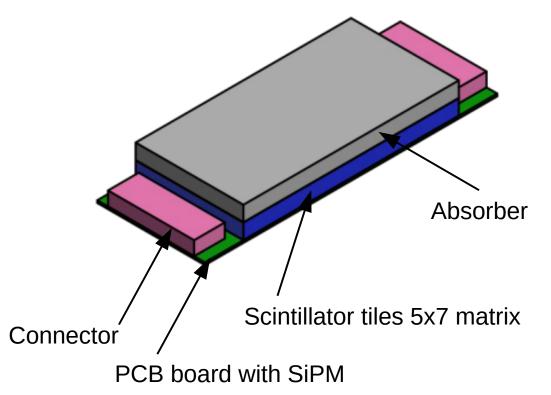

- Test the device concept technology in the real position:
 - Radiation
 - Cryogenic temperature
 - Signal pass out of vacuum
- Simple beam measurements:
 - Beam luminosity
 - Neutron to gamma discrimination
- Check MC simulations:
 - Compare the model results with real data
 - Check if it will be possible several configurations

Hardware

- 2 ZDCs installed around one IP
- 7x5 (140x88 mm²) Matrix uniform for the whole calorimeter depth
- 6 sensitive layers (210 SiPM channels)
- 5-10 mm thick copper or stainless steel absorber plates much cheaper than tungsten
- 10% of the total price

ZDC module

5


Next steps: (fairly straightforward)

- Understanding of exact rails and holes position
- MK simulation and optimization*
- Module design
- Front-end design
- Manufacturing
- Test & Installation

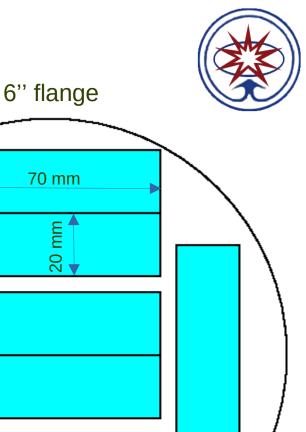
First year configuration: (to be optimized)

- ✓ 6 active layers: 3(EM) + 3(Hard)
- 210 channels
- Copper absorber (tungsten in the full design). 2.2 λ_i only (3.5 λ_i in the full design)
- Possible "0" scintillator layer without segmentation to veto charged tracks

* Dedicated talk by N. Zhigareva October 6, 17:00

Flange layout

61,05


52,81

67,08

11 11 11 11

ц ц ц

뿌

35 SiPM channels => 35*2=70 pins + ground and thermometer Full setup (30 layers), 4 flanges => 8 connectors per layer We need one flange for the first year.

2,41

11

Igor Alekseev (ITEP)

D-sub 78 pins

16,70

11

2

Cost estimate (the first year, 2 devices,USD)

Item	Price	Amount	Cost	Comment
SiPM 3x3 mm ²	30	420	12600	Sensl (Onsemi) ?
Scintillator tiles	5	420	2100	Vladimir
Copper absorber	15	60kg	900	
Front-end electronics and cables			12000	
VME crate and CPU board	15000	2	30000	
SiPM bias power supply	500	2	1000	
Flanges with vacuum connectors	10000	2	20000	
Wave Form Digitizers	7000	8	56000	Postpone ?
Total			134600	

Support for ITEP group ?

Thank you for your attention