

High time resolution MRPC of SPD-ToF

Kai Sun

Tsinghua University

SPD collaboration meeting

Outline

- High time resolution MRPC can be used in SPD-ToF
- MRPC for SPD-ToF:

Have both higher counting rate(1kHz/cm²) & high time-resolution prototype(50ps)

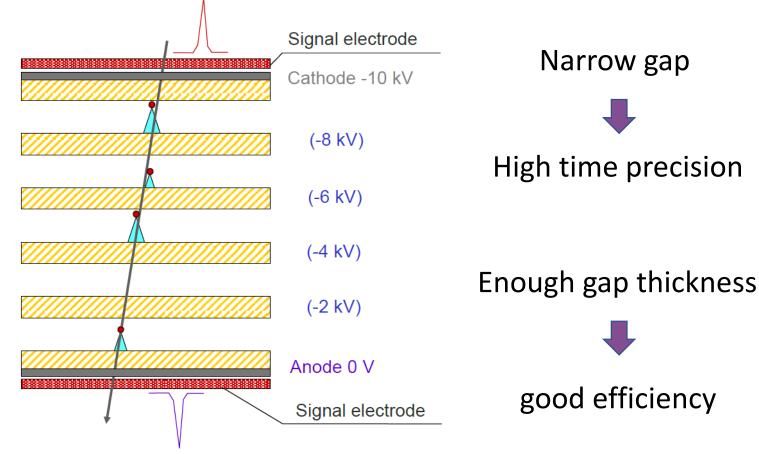
- Use Eco-friendly working gas
- Use sealed MRPC to reduce gas flow

Use FEE readout system for less usage of storage space & network bandwidth

Structure of barrel ToF and end-cap ToF

• Summary

Layout of SPD-ToF system



Multigap Resistive Plate Chamber (MRPC)

First proposed by E. C. Zeballos

Traditional MRPC

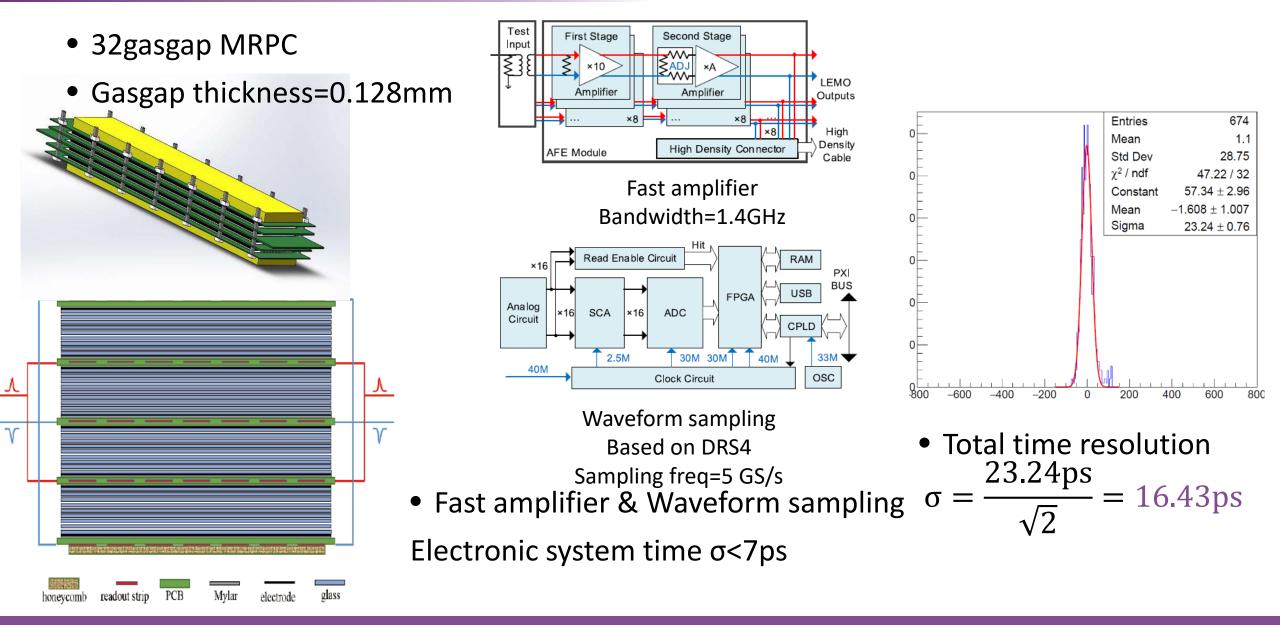
- Electrode: high resistance material (e.g. glass)
- Gasgap thickness: 100µm-300µm
- Electric field strength: >10⁵ V/cm
- Gas mixtures: C2H2F4 (90%) i-C4H10 (5%) SF6 (5%)
- Signal readout: readout strip

MRPC has been widely adopted to construct the Time of Flight (TOF) systems in HEP experiments.

					In construction	Proposed
	ALICE	STAR	FOPI	BESIII	СВМ	SoLID
Active area per detector (cm)	120 x 13	22 x 8.4	90 x 4.6	0.5x(9.2+14.8)x 32.8	33 x 27.6	
Total active area (m ²)	141	50	5	1.33	120	10
Pad size (cm)	3.7 x 2.5	6.3 x 3.1	90 x 0.3	(9.1~14.1) x 2.4	27 x 1.0	(16~28) x 2.5
Gap×thickness(mm)	10 x 0.25	6 x 0.22	6 x 0.3	12 x 0.22	10 x 0.25	10 x 0.25
Gas mixtures ($C_2H_2F_4/C_4H_{10}/SF_6$)	90/5/5	95/5/0	85/5/10	90/5/5	90/5/5	90/5/5
Operating field (kV/cm)	96	107	110	109	110	106
Efficiency	99.9%	95-97%	97±3%	99%	97%	98%
Time resolution(ps)	40	60	73±5	60	60	20 ps
Max rate (Hz/cm ²)	50	10	50	50	30k	20k

higher counting rate and time precision.

High time resolution MRPC for SPD-ToF

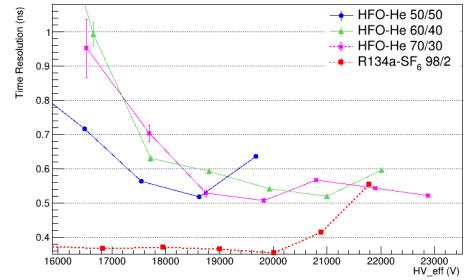

- High time resolution: 50ps
- Counting rate: better than 0.1kHz/cm²
- Lower gas pollution

Self-sealed MRPC test

Eco-friendly working gas

- Front-End-Electronic (FEE) and data acquisition system(DAQ)
- Structure of barrel ToF and end-cap ToF

Higher counting rate & high time-resolution prototype

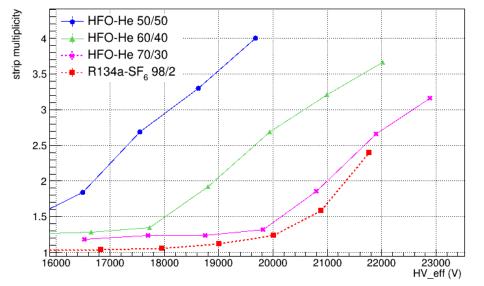

Eco-friendly working gas

• The Global Warming Potential(GWP)

GWP is the heat absorbed by any greenhouse gas in the atmosphere, as a multiple of the heat that would be absorbed by the same mass of CO2.

Gas type	GWP(100 years)		
CO2	1		
HFC-134a	1430		
SF ₆	23900		
HFO-1234ze	4		
Не	<1		

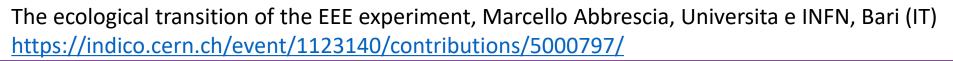
- Use HFO-He instead of HFC-SF₆
- If HFO-1234ze/He 50/50, GWP=2.5


Disadvantage

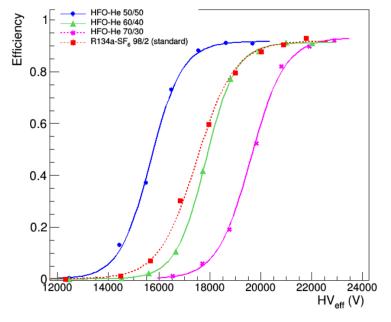
lower electron drift velocity->worse time resolution lower electron drift velocity->bigger cluster size less quenching->larger streamer fraction

The ecological transition of the EEE experiment, Marcello Abbrescia, Universita e INFN, Bari (IT)

https://indico.cern.ch/event/1123140/contributions/5000797/


Eco-friendly working gas

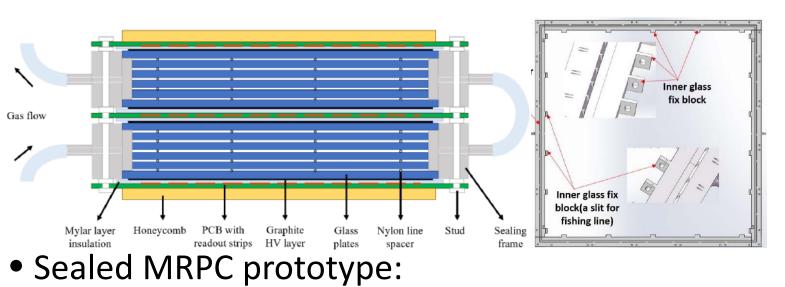
Cluster size of different gas mixture


• Disadvantage

lower electron drift velocity->worse time resolution lower electron drift velocity->bigger cluster size less quenching->larger streamer fraction

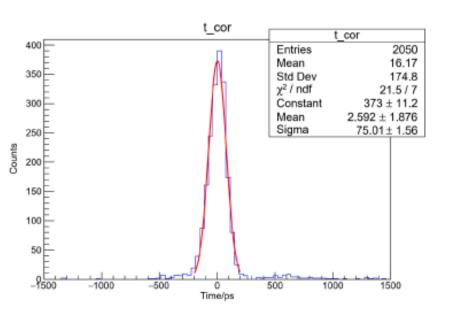
2022/10/4

SPD collaboration meeting

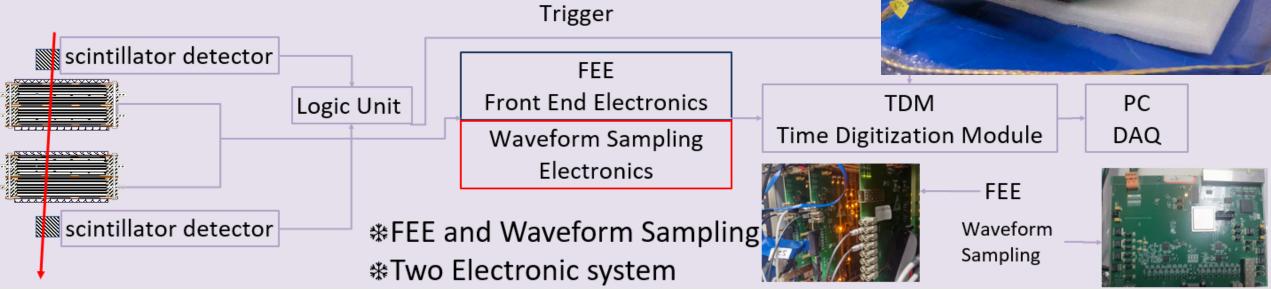

Efficiency of different gas mixture

• Advantage

similar maximum efficiency just 50% worse time resolution


Sealed MRPC prototype cosmic test

• Sealed MRPC aims to reduce gas flow


- 10 gas gaps of 250µm thickness
- 15mm strip width+2mm gap between strips
- gas flow: less than **5sccm** for **1m²** sensitive area
- decreased by a factor of 10 compared with traditional MRPCs

Cosmic test result
Efficiency=97%
ToF σ=75.01ps
Time resolution=53.05ps

FEE readout cosmic test for SPD-ToF

 The Front-End Electronic (FEE)readout system uses much r space and network bandwidth compared with waveform s amount of data is about 1000 times smaller than waveform

- Both FEE and waveform sampling are used for the readout of the signal, testing a new sealed MRPC with 28 gasgap. The gasgap width is 128μm.
- Aiming to demonstrate the feasibility of FEE.

Structure of barrel ToF

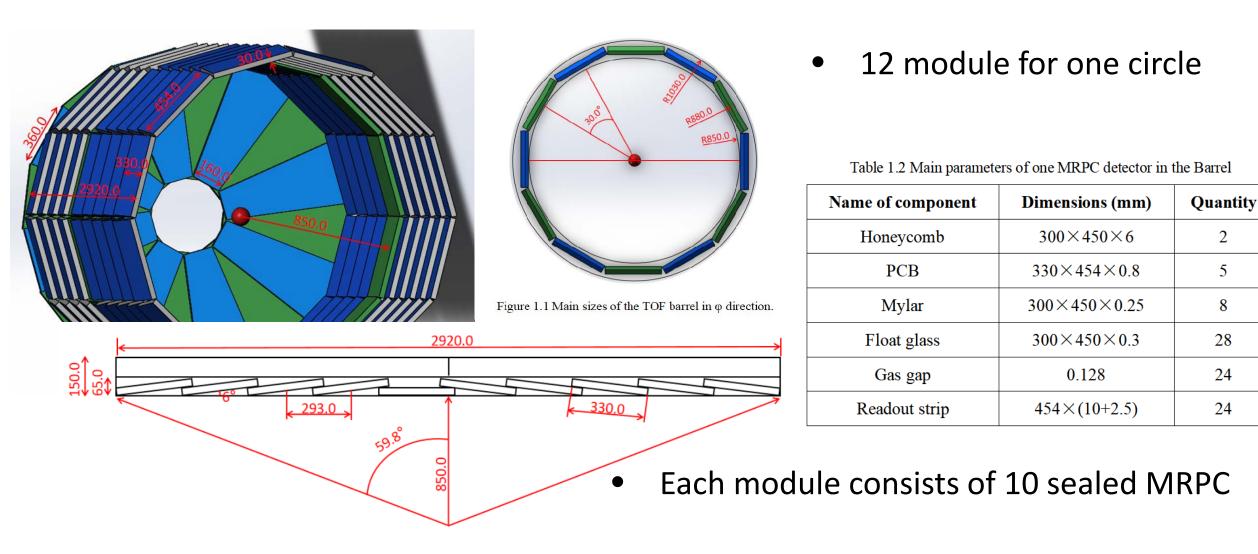


Figure 1.2 Arrangement of MRPCs inside the box along the beam direction.

Structure of end-cap TOF

Table 1.3 Main parameters of one MRPC detector in the End-cap

Name of component	Dimensions (mm)	Quantity
Honeycomb	216×(336~136)×6	2
РСВ	246×(340~140)×0.8	5
Mylar	216×(336~136)×0.25	8
Float glass	216×(336~136)×0.3	28
Gas gap	0.128	24
Readout strip	(340~140)×(10+3.5)	16

Table 1.1 Main parameters of the TOF system.

		Number of	Number of	Sensitive area,	Number of	Number of
		detectors	readout strips	m^2	FEE cards	FEE channels
Barrel	MRPC _B	1	24	0.14	3	48
	Module _B	10	240	1.4	30	480
	Total _B	120	2880	16.8	360	5760
End-cap	MRPC _E	1	16	0.06	2	32
	Module _E	3	48	0.18	6	96
	Total _E	96	1536	5.8	192	3072
Total		216	4416	22.6	552	8832

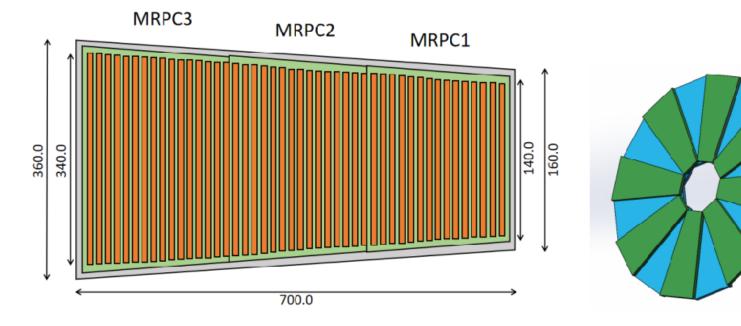


Figure 1.3 Arrangement of MRPCs inside the box in the End-cap.

• eTOF consists of 16 modules and each module consists of 3 sealed MRPC.

High time resolution MRPC can be used in SPD-ToF

For SPD-ToF, MRPC system should:

- Have both higher counting rate& high time-resolution prototype(50ps).
 - -Prototype has been examined its 96% efficiency and 20 ps resolution at 20 kHz/cm² rate condition.
- Use Eco-friendly working gas.
 - -Need further experiment.
- Use sealed MRPC to reduce gas flow.
 - —Sealed MRPC with a gas flow <5sccm/m² sensitive area reach a 53ps time resolution in cosmic test.
- Use FEE readout system for less usage of storage space & network bandwidth.

-Testing.

• Structure of barrel ToF and end-cap ToF.