Inclusive π^0 production for online polarimetry in SPD

Katherin Shtejer Díaz

SPD Collaboration Meeting 06.10.2022

SPD Collab. Meeting, 06.10.2022

Katherin Shtejer

Schematic view of the SPD

Inclusive π^0 for local polarimetry

$$A_{\rm N} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \qquad \qquad \begin{array}{c} A_{\rm N} \text{ is a measure of the} \\ \text{beam polarization} \end{array}$$

In the early 70's was believed that SSA (A_N) was nearly vanishing in the framework of pQCD.

In 1991 the E704 experiment, with p^{\uparrow} at higher p_{\uparrow} values, extended the results on large $A_{\rm N}$.

$$p + p \rightarrow \pi^0 + X$$

SpdRoot version 4.1.3

- **Two energies**: $pp @ \sqrt{s} = 10$ GeV and $pp @ \sqrt{s} = 27$ GeV
- □ Particle generator: Pythia 8 (number of events: ~80M)
- □ Minimum Bias: *SoftQCD:inelastic* ↔ inelastic, non diffractive events and diffractive topologies
- **Given Scheme S**
- $\Box E_{min}^{\gamma} = 400 \text{ MeV} (\gamma : \text{reconstructed particle})$
- Reconstructed photons detected in the ECAL Endcaps detId = +1 (endcapZ+) Z = +224.1 cm detId = -1 (endcapZ-) Z = -224.1 cm
- $\Box \pi^0$ are reconstructed from the $M_{\rm inv}$ of γ pairs

General characteristics

General characteristics

 $pp @ \sqrt{s} = 10 \text{ GeV}$

 $pp @ \sqrt{s} = 27 \text{ GeV}$

General characteristics

Extraction of A_N

- The cosine modulation fittings were performed for two cases:
- 1- pure cosine function, 2- adding a free phase
- The spin dependent π^0 yields for each bin are extracted from the invariant mass spectra in different x_F sub-ranges for each φ bin.

Azimuthal cosine modulation of π^0 yields in x_F intervals, $A(1 + cos \varphi)$

Azimuthal cosine modulation of π^0 yields in x_F intervals, $A(1 + cos \varphi)$

Azimuthal cosine modulation of π^0 yields in x_F intervals, $A(1 + B\cos(\varphi + \varphi_0))$

Azimuthal cosine modulation of π^0 yields in x_F intervals, $A(1 + B\cos(\varphi + \varphi_0))$

Relative error for $A_{\rm N}$ ($pp @ \sqrt{s} = 10 \text{ GeV}$, $pp @ \sqrt{s} = 27 \text{ GeV}$)

By using the measured A_N from the E704 experiment at $\sqrt{s} = 19.4 \text{ GeV}$,
we can estimate the relative error of $\frac{\Delta A_N}{A_N}$ vs. x_F $\frac{\Delta A_N}{A_N} \sim \frac{\Delta P}{P}$ ΔA_N scaled to different times of data-taking (SPDRoot) ΔA_N ΔA_N scaled to different times of data-taking (SPDRoot) ΔA_N ΔA_N ΔA_N ΔA_N scaled to different times of data-taking (SPDRoot) ΔA_N $\mathcal{L} = 10^{32} s^{-1} cm^{-2}$ $\sigma_{tot}^{pp}(10 \text{ GeV}) = 37.9 \text{ mb}$ $\sigma_{tot}^{pp}(27 \text{ GeV}) = 40.0 \text{ mb}$ Reaction rate (10 GeV) = 3.79 \cdot 10^6 s^{-1}Reaction rate (27 GeV) = 4 \cdot 10^6 s^{-1}

The determination of the polarization is expected to be more precise at: $0.5 < x_F < 0.6 (\sqrt{s} = 10 \text{ GeV})$ $0.3 < x_F < 0.4 (\sqrt{s} = 27 \text{ GeV}).$

F704

Katherin Shtejer

Relative error for $A_{\rm N}~(pp @ \sqrt{s} = 10 \text{ GeV}, pp @ \sqrt{s} = 27 \text{ GeV})$

Relative	of A _N erro	r estimated (10 GeV)	Relative of A _N error estimated 27 GeV				
x _F	$\frac{\Delta A_N}{A_N}$ (%)				XE	$\frac{\Delta A_N}{A_N}$ (%)		
	SpdRoot (10min)	SpdRoot (5min)	SpdRoot (2min)			SpdRoot (10min)	SpdRoot (5min)	SpdRoot (2min)
0.0 -0.1	-	-	-		0.0 -0.1	31.69	44.82	70.87
0.1 -0.2	13.64	19.29	30.50	cosine	0.1 -0.2	2.69	3.81	6.03
0.2 -0.3	6.79	9.60	15.18	function	0.2 -0.3	3.11	4.40	6.96
0.3 -0.4	1.03	1.45	2.30		0.3 -0.4	1.78	2.52	3.98
0.4 -0.5	0.74	1.04	1.65		0.4 -0.5	3.50	4.95	7.83
0.5 -0.6	0.39	0.55	0.86		0.5 -0.6	5.67	8.02	12.68
0.6 -0.7	0.50	0.71	1.12		0.6 -0.7	17.23	24.37	38.53
Relative of A _N error estimated (10 GeV)					of A _N error estimated 27 GeV			
Relative	of A _N errol	r estimated	10 GeV)		Relative	of A _N error	estimated 2	2/GeV
Relative	of A _N errol	$\frac{\Delta A_N}{A_N}$ (%)	10 GeV)		Relative	of A _N error	$\frac{\Delta A_N}{A_N}$ (%)	27 GeV
$x_{\rm F}$	SpdRoot (10min)	$\frac{\Delta A_N}{A_N}$ (%) SpdRoot (5min)	10 GeV) SpdRoot (2min)		Relative $x_{\rm F}$	of A _N error SpdRoot (10min)	$\frac{\Delta A_N}{A_N}$ (%) SpdRoot (5min)	27 GeV SpdRoot (2min)
<i>x</i> _F 0.0 -0.1	SpdRoot (10min)	$\frac{\Delta A_N}{A_N}$ (%) SpdRoot (5min)	10 GeV) SpdRoot (2min)	With a free	Relative x _F 0.0 -0.1	SpdRoot (10min) 30.33	estimated 2 $\frac{\Delta A_N}{A_N}$ (%) SpdRoot (5min) 42.89	SpdRoot (2min) 67.81
x _F 0.0 - 0.1 0.1 - 0.2	SpdRoot (10min) - 10.43	restimated $\frac{\Delta A_N}{A_N}$ (%) SpdRoot (5min) - 14.75	SpdRoot (2min) - 23.32	With a free phase	x _F 0.0 - 0.1 0.1 - 0.2	SpdRoot (10min) 30.33 31.89	estimated 2 ΔA_N A_N (%) SpdRoot (5min) 42.89 45.10	27 GeV SpdRoot (2min) 67.81 71.32
x _F 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3	SpdRoot (10min) - 10.43 6.76	restimated ($\frac{\Delta A_N}{A_N}$ (%) SpdRoot (5min) - 14.75 9.55	SpdRoot (2min) - 23.32 15.11	With a free phase included	x _F 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3	Of A _N error SpdRoot (10min) 30.33 31.89 3.41	estimated 2 ΔA _N Λ Λ SpdRoot (5min) 42.89 45.10 4.82	27 GeV SpdRoot (2min) 67.81 71.32 7.62
x _F 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4	SpdRoot (10min) - 10.43 6.76 1.08	r estimated $\frac{\Delta A_N}{A_N}$ (%) SpdRoot (5min) - 14.75 9.55 1.52	SpdRoot (2min) - 23.32 15.11 2.41	With a free phase included	x _F 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4	of A _N error SpdRoot (10min) 30.33 31.89 3.41 1.93	estimated 2 ΔA _N Λ _N (%) SpdRoot (5min) 42.89 45.10 4.82 2.74	SpdRoot (2min) 67.81 71.32 7.62 4.33
x _F 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5	SpdRoot (10min) - 10.43 6.76 1.08 0.57	restimated ($\frac{\Delta A_N}{A_N}$ (%) SpdRoot (5min) - 14.75 9.55 1.52 0.80	SpdRoot (2min) - 23.32 15.11 2.41 1.27	With a free phase included	x _F 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5	Of A _N error SpdRoot (10min) 30.33 31.89 3.41 1.93 3.36	estimated 2 ΔA _N Λ Λ SpdRoot (5min) 42.89 45.10 4.82 2.74 4.75	SpdRoot (2min) 67.81 71.32 7.62 4.33 7.50
x _F	SpdRoot (10min) - 10.43 6.76 1.08 0.57 0.41	r estimated ($\frac{\Delta A_N}{A_N}$ (%) SpdRoot (5min) - 14.75 9.55 1.52 0.80 0.57	SpdRoot (2min) - 23.32 15.11 2.41 1.27 0.91	With a free phase included	x _F 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6	SpdRoot (10min)	estimated 2 ΔA _N A _N SpdRoot (5min) 42.89 45.10 4.82 2.74 4.75 8.73	SpdRoot (2min) 67.81 71.32 7.62 4.33 7.50 13.82
x _F 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7	SpdRoot (10min) - 10.43 6.76 1.08 0.57 0.41 0.52	restimated ($\frac{\Delta A_N}{A_N}$ (%) SpdRoot (5min) - 14.75 9.55 1.52 0.80 0.57 0.74	SpdRoot (2min) - 23.32 15.11 2.41 1.27 0.91 1.17	With a free phase included	x _F 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7	Of A _N error SpdRoot (10min) 30.33 31.89 3.41 1.93 3.36 6.18 18.69	estimated 2 ΔA _N (%) SpdRoot (5min) 42.89 45.10 45.10 4.82 2.74 4.75 8.73 26.43	SpdRoot (2min) 67.81 71.32 7.62 4.33 7.50 13.82 41.79

Estimated relative error of the polarization

SpdRoot estimation of the statistical accuracy of the beam polarization measurement, with $pp \rightarrow \pi^0 X @ \sqrt{s} = 10 \text{ GeV}$ and $\sqrt{s} = 27 \text{ GeV}$, in SPD ECAL endcaps.

Pu	ire cosine function	on		Free phase included			
Estimated	$\frac{\Delta P}{P}$			Estimated	$\frac{\Delta P}{P}$		
time	\sqrt{s} = 10 GeV	\sqrt{s} = 27 GeV		time	\sqrt{s} = 10 GeV	\sqrt{s} = 27 GeV	
2 min	0.61 %	3.41 %		2 min	0.62 %	4.59 %	
5 min	0.39 %	2.15 %		5 min	0.39 %	2.90 %	
10 min	0.27 %	1.52 %		10 min	0.28 %	2.05 %	

Summary

- The inclusive $pp \rightarrow \pi^0 X$ reaction, detected in the ECAL Endcaps, is proposed to participate in the local polarimetry at SPD, by measuring and monitoring the transverse single spin asymmetry.
- The accuracy of the beam polarization have been estimated at two different pp collision energies: 10 GeV and 27 GeV
- The determination of the polarization is expected to be more precise in the range $0.3 < x_F < 0.4$ at 27 GeV, while at 10 GeV is better for $0.5 < x_F < 0.6$.
- From the asymmetry determination, based on SPDRoot simulations, the statistical accuracy of the beam polarization is estimated in:

$$\sqrt{s} = 10 \text{ GeV} \qquad \sqrt{s} = 27 \text{ GeV}$$

$$2 \text{ minutes: } \frac{\Delta P}{P} \sim 0.60\% \qquad 2 \text{ minutes: } \frac{\Delta P}{P} \sim 4.59\%$$

$$5 \text{ minutes: } \frac{\Delta P}{P} \sim 0.38\% \qquad 5 \text{ minutes: } \frac{\Delta P}{P} \sim 2.90\%$$

$$10 \text{ minutes: } \frac{\Delta P}{P} \sim 0.27\% \qquad 10 \text{ minutes: } \frac{\Delta P}{P} \sim 2.05\%$$