dE/dx and TOF performance at SPD

<u>Artem Ivanov</u>, Ruslan Akhunzyanov JINR, Dubna

> SPD Collaboration Meeting 6.10.2022

Particle identification in SPD

Not discussed in this talk: particle identification via RS (muons) and ECAL (electron and photon)

Particle identification in SpdRoot

Particle identification in SpdRoot

Detector	Signal
VD	ionization energy loss (dE/dx)
Straw	ionization energy loss (dE/dx)
TOF	time of flight
Aerogel	Cerenkov radiation

Typical PID approaches

For a detector with a Gaussian response

Separation power

separation =
$$\frac{\mu_i - \mu_j}{\sqrt{\sigma_i^2 + \sigma_j^2}}$$

Particle identification in SPD

Straw Tracker

Analysis for VD is similar

dE/dx [keV/cm]

Each track crosses several straw tubes.

In simplest case, we calculate mean value of dE/dx for each track

Energy loss per unit path length (dE/dx) is described by the Bethe-Bloch formula

29 double layers **Barrel**: **End-Cap**: 8 double layers

Truncated mean method for STRAW

Truncated mean is used to remove fluctuations due to the tail towards higher deposits ("Landau-like")

Example shown here for pions:

- $p_o = 0.312 \text{ GeV}/c$
- truncation parameter 0.35.

Truncated mean dE/dx distribution sigma

How to parametrize pions in STRAW

Parameterization of truncated mean dE/dx distribution

mean =
$$\frac{c_0}{\beta^2} + \frac{c_1}{\beta^2} \ln(\beta \gamma) - (c_0 - c_2) (1 + \frac{\ln(\beta^2)}{\beta^2})$$

 $\beta \gamma = p/m, \ \beta^2 = \frac{(p/m)^2}{(p/m)^2 + 1}$

 $\sigma = R \cdot \text{mean}$

Dependence of $\sigma((dE/dx)_{trunc.mean})$ on number of hits

• Naive expectation: $\sigma \sim 1/\sqrt{N_{hits}}$

Parametrization dEdx vs p for STRAW

End-Cap: pions separable from kaons up to ~ 0.45 GeV/c, from protons up to ~ 0.85 GeV/c

Barrel: pions separable from kaons up to ~ 0.6 GeV/c, from protons up to ~ 1.1 GeV/c

Time of Flight system

 $\sigma_{m^2}^2 = 4 m^4 \left(\frac{\sigma_p}{p}\right)^2 + 4 E^4 \left(\frac{\sigma_t}{t}\right)^2 + 4 E^4 \left(\frac{\sigma_L}{L}\right)^2$ from reconstruction at the moment fixed 13

 $\sigma \sim 150 \,\mu m$ $\sigma_{TOF} = 60 \, ps$

How to parametrize pions in TOF

14

0.300009 - 0.700000

1.100000-1.00000

1.70000 - 1 90000

35830

26900

25800

26800

15800

16800 2.2.4

2

2.5

pice_vm2_bin3 It eldes 111403 Mase 6.01984 Ref Des 6.000011

COMPANY N

usi MGeWert

3.5

3 p (GeV) Robber, 20476 Maser, 6.0220-RailDes, 6.02104

pion_m2_bin5

Britlen BA723 Mean Cristelle

Parametrization m² vs p for TOF

curves with 3 σ

Threshold Aerogel counters

16

Threshold Aerogel counters

pion/kaon separation

n=1.02							
	electron	muon	pion	kaon	proton		
P _{th} (GeV/c)	0.0025	0.52	0.69	2.45	4.66		

$$p_{th} = \frac{m}{\sqrt{n^2 - 1}}$$

1. Define a cut on $n\sigma < k$, k=1,2,3 in single detector analysis

2. Define a multiple-cuts on $n\sigma$ for several detectors

3. Define a cut on a combined-n σ variable

$$n\sigma_{comb} = \sqrt{n\sigma_{VD}^2 + n\sigma_{STRAW}^2 + n\sigma_{TOF}^2} \dots$$

 The Bayesian approach: combine information from different PID detectors, with and without Gaussian responses

Particle identification for STRAW/TOF/Aerogel

Particle identification for STRAW and TOF

Bayes approach

S - a raw signal from a detector S(H_i) - expected average signal for a given species $H_i(\pi, K, p, ...)$

The Bayes theorem

probability that the particle is of species H_i , given \vec{S}

$$P(H_{i}|\vec{S}) = \frac{P(\vec{S}|H_{i})C(H_{i})}{\sum_{k=\pi,K,p} P(\vec{S}|H_{k})C(H_{k})}$$

a posterior probability A priori probability

$$P(S|H_i) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(S-S(H_i))^2}{2\cdot\sigma^2}}$$
One detector

The conditional probability that a particle of species H_i produces a signal *S* (in this case expressed with a Gaussian response)

$$P(\vec{S}|H_i) = \prod_{\alpha = TOF, STAW, \dots} P_{\alpha}(S_{\alpha}|H_i)$$

Many detectors

The conditional probability that a particle of species H_i produces the set of signals

ty for H_i

What is priors

Strategy to calculate

Iterative procedure based on a set of unidentified tracks (raw yield *Y*(*p*))

1) Start with "flat" priors (i.e 1 for all species)

2) Bayesian posterior $P_n(H_i|S)$ at step *n* obtained from unidentified raw yield

3) Obtain identified raw yields at step n+1 using posteriors as weights

4) Obtain a new set of priors from the relative ratios of identified spectra

$$P(H_i|\vec{S}) = \frac{P(\vec{S}|H_i)C(H_i)}{\sum_{k=\pi,K,p} P(\vec{S}|H_k)C(H_k)}$$

externs
$$P(m^2) = \frac{1}{\sqrt{2\pi\sigma(p)}} e^{\frac{-(m_{ror}^2 - m_{fit}^2)^2}{2\cdot\sigma(p)^2}}$$

Priors obtained as a function of p

$$Y_{n+1}(H_i, p) = \sum_{S} P_n(H_i|S)$$
$$C_{n+1}(H_i, p) = \frac{Y_{n+1}(H_i, p)}{Y_{n+1}(H_{\pi}, p)}$$

Separate sets of priors have to be evaluated for each collision system p-p, d-d, p-d and energies

Calculation priors: TOF+STRAW

The extracted K/ π and p/ π ratio of the priors is shown as a function of p at each step of the iteration.

n-sigma and Bayesian approach for STRAW and TOF

n-sigma: fixed cut

Bayesian: the selection on probability allows to maximize(minimize) efficiency(contamination)

Conclusion

 Methodology for particle identification in SPD for STRAW and TOF was developed, and the code is implemented in SpdRoot.

Thank you for your attention