
The EventIndex

05 Oct 2002SPD Collaboration Meeting2

ATLAS Events

EventIndex is a system designed to be a complete catalog
of ATLAS events, real and simulated data

● Event is the basic unit of ATLAS data
● Each event contains result of a single triggered interactions,

plus eventually piled-up interaction
● Signals from the detector
● Reconstructed particles with their parameters
● Trigger decisions

● Uniquely identified by the run number and the event
number

● Event information is stored in many instances
● Have different data types to fit analyses needs
● Spread among the hundreds of GRID sites

05 Oct 2002SPD Collaboration Meeting3

ATLAS Datasets
ATLAS event data is written in files that are organized in datasets
● Datasets can have different data types depending of the

processing stage
● Detector data is first written in the RAW data type
● AOD datasets are produced after reconstruction.
● Derived datasets (DAOD) for use in the specific analyses

● + Simulated (MC) datasets are produced on the GRID
● EVNT datasets contain particles information
● AOD datasets are produced after reconstruction.
● Derived datasets (DAOD) for use in the specific analyses

● Various versions of the datasets originating from the same
detector or simulated events
● Different reconstruction settings and software version
● Reprocessing roughly yearly

05 Oct 2002SPD Collaboration Meeting4

ATLAS EventIndex
● The ATLAS Experiment produces large amounts of data

● several billion events per year
● a database containing references to the events is necessary in order to

efficiently access them from the distributed data storage
● The ATLAS EventIndex

● provides a way to collect and store event information using modern
technologies
● automatically detects and indexes new data that was produced in this

system from events collected from the detector or simulated
● provides various tools to access this information through command

line, GUI and RESTful API interfaces
● allows fast and efficient selection of events of interest from the billions of

events recorded, based on various criteria
● provides an indexing system that points to these events in millions of files

scattered through a worldwide distributed computing system
● Contains ~300 billion of detector event records and more than 60

billion of the simulated event records

05 Oct 2002SPD Collaboration Meeting5

EventIndex record

EventIndex records contain the following fields:
● Event identifiers

● Run and event number
● Trigger stream
● Luminosity block
● Bunch Crossing ID (BCID)

● Trigger decisions
● Trigger masks for each trigger level
● Decoded trigger chains (trigger condition passed)

● References to the events at each processing stage in
all permanent files generated by central productions
(for event picking)

Event ID
Trigger Decisions

Reference to RAW
Reference to AODReference to AOD

Reference to DAODReference to DAOD

05 Oct 2002SPD Collaboration Meeting6

Use cases
● Event picking

● give me event of specific type and processing version
● Counting and selection events based on trigger decisions
● Production completeness and consistency checks

● Data corruption, missing and/or duplicated events
● Trigger chain overlap counting
● Derivation overlap counting
● Dataset Browsing

● Finding datasets of interest
● Dataset report
● Dataset Inspection

05 Oct 2002SPD Collaboration Meeting7

EventIndex data Storage
● Hadoop was selected the baseline storage technology

● store large numbers (10-s of billions) of simply-structured records
● search/retrieve them in reasonable times

● Hadoop "MapFiles" (indexed sequential files) are used as data format,
one MapFile per dataset

● Internal catalogue in HBase
● keeps track of what is where
● dataset-level metadata (status flags)
● Event Lookup index

● Part of the data are replicated also to Oracle for faster access but mainly to
have a uniform environment between event and dataset metadata

● Simple schema with dataset and event tables
● Filled with all real data, only event identification and pointers to event

locations. Optimized for event picking

Oracle data storage

05 Oct 2002SPD Collaboration Meeting8

EventIndex Architecture

partitioned architecture, following the data flow

Data production
● extract event metadata from files produced at Tier-0 or on the Grid

Data collection
● transfer EI information from jobs to the central servers at CERN

Data storage
● Provide permanent storage for EventIndex data.
● full info in Hadoop; reduced info (only real data, no trigger) in Oracle

● fast access for the most common queries, reasonable time response for complex queries

Monitoring
● keep track of the health of servers and the data flow

05 Oct 2002SPD Collaboration Meeting9

Evolution
● The EventIndex project started in 2012 at the end of LHC Run 1 driven by

the need of having a functional event picking system for ATLAS data
● The data storage and search technology selected in the first phase of the

project (Hadoop MapFiles and HBase, in 2013-2014) was the most advanced
available at that time in the fast-growing field of BigData and indeed after a
couple of initial hiccups it proved reliable and performed satisfactorily
● Several components were updated or replaced in the course of time

● Baseline storage technology started showing scalability issues as the
amount of stored data increases
● Lots of duplicated Mapfiles on HDFS (Hadoop distributed file system): the

same event across each processing step (RAW, ESD,AOD, DAOD, NTUP) is
physically stored at different HADOOP HDFS files

● Significant increase in the data rates expected in future LHC runs
demands transition to a new technology

● A number technologies were explored to improve
● Scalability, Performance, Robustness
● Adherence to modern software standards

05 Oct 2002SPD Collaboration Meeting10

Architecture evolution
● Replaced the Hadoop MapFiles and the Oracle tables with an HBase/Phoenix

implementation
● It joins the features of a BigData store in HBase with the possibility to run SQL

queries through the Phoenix interface
● Adapted, updated or replaced other components at the same time
● Developed a new tool:

the Event Picking Service

EventIndex
for Run 2

EventIndex
for Run 3

05 Oct 2002SPD Collaboration Meeting11

EventIndex components
● Producer: Athena Python transformation, running at Tier-0 and

Grid-sites.
● Indexes dataset data and produces a file with event information

● Tier-0 jobs index merged physics AODs, collecting also references to RAW data
● Grid jobs collect info from datasets as soon as they are produced and marked

"complete" in ATLAS Metadata Interface (AMI)
● EI Information is sent by each job as a file to the ObjectStore at CERN

(CEPH/S3 interface) or to the EOS as intermediary storage.
● A summary message is sent to the Supervisor

● Supervisor: Controls all the process, receives processing information,
validates data by dataset and orchestrates its insertion in the final
back-ends
● Launches Loader to feed event tables
● Feeds other auxiliary tables
● Operated with a web interface

05 Oct 2002SPD Collaboration Meeting12

EventIndex components
● Phoenix Loader: tool that actually write the EventIndex data into

HBASE/Phoenix events table
● Reads data from the object store and write it to the supervisor
● Write summary information to the HDFS to be read back by the Supervisor

● Trigger counter: a web service that provides information about
the trigger of a given dataset

● Event Picking Service: Main scope is to automatise the operations
needed for (massive) event picking
● The GUI takes from the user the event list(s) and additional parameters

(data type to be searched, data type to be retrieved, stream, AMI tag, etc.
● The EPS splits the list(s) by run number, queries the EventIndex Query

CLI, submits the event picking PanDA jobs, retries them if they time out
during tape staging, validates outputs, informs the user when done.

● The user can follow the progress using the GUI.
● Monitoring:

● Information is being collected by python scripts driven by the schedulaer and
then is written to the Influx DB through the HTTP endpoint

● Grafana dashboards are being used for display of this information

05 Oct 2002SPD Collaboration Meeting13

Data structures in HBase/Phoenix
● HBase tables works best for random access – event picking
● A range of data can be accessed by scanning data - analytic use cases

05 Oct 2002SPD Collaboration Meeting14

Data structures in HBase/Phoenix
● Row keys:

● Should include the most needed info
● Have minimal possible size

● Chosen structure:
 dspid.dstypeid.eventno.seq

● Data families:
● A: Event location (and MC info)
● B: Event provenance
● C: Level 1 trigger (L1).
● D: High Level Trigger (EF of HLT) and

L2 for Run1 data
● Data import can be performed with

Map/Reduce or Spark jobs

an identifier for
the dataset
name dataType

event
number

unique value in
case of dataset
name and
EventNumber
duplication

05 Oct 2002SPD Collaboration Meeting15

Data structures in HBase/Phoenix
Auxiliary tables to keep the dataset generated
identifiers and bookkeeping data
● Datasets table:

● Dataset location
● Generated identifiers (dspid)
● Import status
● Some metadata information: number of all

events, unique events, duplications

● Data types table:
● data types (RAW, EVNT, AOD, DAOD, . . .)
● subtypes for derivations

05 Oct 2002SPD Collaboration Meeting16

SPD Events amount
● The SPD Experiment have to produce large amounts of data

● 20 GB/s => ~or 200 PB/year (RAW data)
● the same order or larger than ATLAS

● ~30 billion events per year
● the same order or larger than ATLAS

● Event information will be reconstructed and processed to be used
for physics analyses

● The result will be stored in few instances, having different data types
to fit analyses needs

● Spread among the number of computing sites
● A database containing references to the event instances is

necessary in order to efficiently access them from the distributed
data storage

● Event data is written in files that are organized in datasets
● Various versions of the datasets originate from the same events

● Different reconstruction settings and software version

05 Oct 2002SPD Collaboration Meeting17

SPD Datasets
 Datasets have different data type for every processing stage
● Real data from the detector:

● Time slices data written in the RAW format (transient ?)
● After Online Filter → filtered RAW format

● Fast reco event data, Unpacked raw hits, Raw data blocks
● AOD and ESD datasets are produced after offline reconstruction.

● AOD: Physics objects: particles, tracks, clusters …
● ESD: + raw hits

● Derived datasets for use in the specific analyses (?)
● Simulated (MC) datasets.

● Event Generator produces EVGEN datasets
● contain MC truth

● After Simulation → RAW MC EVENTS
● MC truth + unpacked raw hits

● AOD and ESD datasets are produced after offline reconstruction.
● The same as for real data + Mc truth

05 Oct 2002SPD Collaboration Meeting18

SPD Events
● Each event contains result of interactions within one

time slice
● Event content

● Event header: Run ID, FrameID, BCID, Event ID
● RAW Hits
● List of Vertices: Vtx,y,z + list of particles
● Particles

● ParticleID, list of tracks, list of ECAL, RS, ZDC clusters, TOF, AEG,
BBC hits + MC truth for MC

● ECAL, ZDC, RS clusters: X,Y,Z, energy, error, cluster shape (?)
● BBC, TOF, AEG hits: X,Y,Z, Amplitude or TOF
● Polarization: Polarization degree ?

● No online trigger information
● “Offline trigger” can be introduced instead

●

For RAW and ESD

Fo
r A

O
D

an
d

ES
D

05 Oct 2002SPD Collaboration Meeting19

EventIndex record for a SPD

EventIndex records may contain the following fields:
● Event identifiers

● Run number
● Can be run start time in a format YYMMDDhhmm: 2803080622

● Event number
● Frame ID
● Bunch Crossing ID (BCID)
● Stream (?)

● References to the events at each processing stage in all
permanent files generated by central productions
(for event picking)

● Selection parameters
● Offline trigger chains
● Event parameters (Polarization, etc...)

05 Oct 2002SPD Collaboration Meeting20

EventIndex record
•EventIndex record example:
very schematic

•‘RunNumber’ UInt32 YYMMDDhhmm 2803080622
•‘EventNumber’ UInt32 [0 : 4 294 967 295] 474 836
•‘BCID’ UInt32 [0 : 4 294 967 295] 33
•‘FrameID’ UInt32 [0 : 4 294 967 295] 500
•‘DatasetNameRaw’ String ’data28.2803080622.RAW.root’
•‘DatasetNameESD’ String ’data28.2803080622.ESD.version_3.root’
•‘DatasetNameAOD1’ String ’data28.2803080622.AOD.software_version_55.root’
•‘DatasetNameAOD2’ String ’data28.2803080622.AOD.software_version_155.root’
...
•‘DatasetNameAOD9’ String ’data28.2803080622.AOD.software_version_6555.root’
•‘EventParameter1’ UInt32 25565
•‘EventParameter2’ Bool (Uint8) true
•‘EventParameter3’ Float64 -3.14
...
•‘OfflineTrigger1’ String ’2mu_20’
•‘OfflineTrigger2’ String ’5tracks_p30’
...

Stored at once

Event parameters

Trigger chains

Added later

05 Oct 2002SPD Collaboration Meeting21

Use cases
● Event picking

● give me event of specific data type and processing version
● Count and select events

● based on event parameters
● based on offline trigger decisions

● Production completeness and consistency checks
● Data corruption, missing and/or duplicated events

● Virtual datasets
● Selection overlap counting
● Derivation overlap counting
● Dataset Browsing

● Finding datasets of interest
● Dataset report
● Dataset Inspection

05 Oct 2002SPD Collaboration Meeting22

Command line tools
● Atlas EventIndex event-lookup client:

● User queries event-lookup service, it sends request to the
EventIndex and returns output to user

● User provide list of events to look for
● The result can be presented in different formats:

● simple list
● verbose list with additional parameters
● JSON (usefull)

● Example:

● Can be used by PanDA (Production and Distributed Analysis
System):
● It calls command line tool to perform event lookup and use result

as an input

05 Oct 2002SPD Collaboration Meeting23

Command line tools
● Trigger tool from the previous EventIndex:

● User can look for the events that satisfy some trigger
conditions (passed some trigger chains)
● User can specify trigger chain list to search for
● List of vetoes can be also provided

● Usually it took some time as the EventIndex had to run
Map/reduce job on the huge amount of data

● The result is the list of events
● The same tool also provide trigger overlaps matrix

● Useful for optimizing trigger chains
● Was running automatically on the new datasets

● Replaced by the trigger counter service in the new
system
● Runs on the new data during import

05 Oct 2002SPD Collaboration Meeting24

 Web interface: event lookup
● Web interface for event lookup query:

05 Oct 2002SPD Collaboration Meeting25

 Web interface: Trigger counter
● Web service able to provide information about the trigger

composition of a given dataset.

05 Oct 2002SPD Collaboration Meeting26

Web interface: Event picking service
● The GUI takes from the user the event list(s) and additional

parameters (data type to be searched, data type to be retrieved,
stream, AMI tag, etc.

● The EPS splits the list(s) by run number, queries the EventIndex
Query CLI, submits the event picking PanDA jobs, retries them if they
time out during tape staging, validates outputs, informs the user
when done.

● The user can follow the progress using the GUI.

05 Oct 2002SPD Collaboration Meeting27

APIs and interfaces
● Event Index can provide API and/or network interface,

depending on the platform that will be used
● Interface or API can be used by client application or by

production or information system
● Currently we consider ClickHouse DBMS as a core platform for

the EventIndex
● It provides some native interfaces that can be used:

● HTTP: lets you use ClickHouse on any platform from any programming
language in a form of REST API.

● gRPC: a cross-platform open source high performance Remote Procedure
Call (RPC) framework.
You can write a client in any of the programming languages supported by
gRPC using the provided specification.

● JDBC driver
● ODBC driver
● C++ client library

05 Oct 2002SPD Collaboration Meeting28

APIs and interfaces
● However it’s a common practice to add application layer between

database and user client (Three Tier Architecture)
● It is responsible for communicating the user’s request to the

DBMS system and send the response from the DBMS to the user
● The application layer also processes functional logic, constraint,

and rules before passing data to the user or down to the DBMS
● Such approach hav a number of advantages:

● It allows separate external presentation of data from the internal
structure of database, so changes in it will be kept under the hood
and will not affect users

● It improves reliability and security of the system, providing workload
management. It makes more difficult for a user to reak something or
overload DBMS

● Application level will provide its own API, it can be REST,
DBMS or for example, custom python API

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28

