
The Gaudi framework for SPD

Valeriy Onuchin
JINR/DNLP/SPD

Introduction to Gaudi

• Adapted by :
• LHCb (CERN)
• ATLAS (CERN)
• FCC (CERN)
• EIC (BNL, USA)
• SCTau (BINP, Novosibirsk)
• BES III (IHEP, China)

The Gaudi framework runs over a list of events, providing ways to process them and store data in a new
format. It creates and manages Data Objects, which can hold a variety of data. A Transient Event Store
(TES) stores data objects in a way to make them accessible to the rest of the framework, and parts of it can
be made persistent in a ROOT format file. The data in the TES is created and accessed by Algorithms,
which produce data objects and process data objects. Gaudi also provides Services, which provide access
to other parts of the framework, such as histograms. Tools are lightweight routines that are also available.
The Application Manager manages these components.

What is the Gaudi framework?

Algorithms

This is the most important component of the framework for an user to know. Algorithms are called once per physics
event, and (traditionally) implement three methods beyond constructor/destructor: initialize, execute, and finalize.
Also, beginRun and endRun are available, though be careful not to misuse state.
A set of Gaudi Algorithm Examples can be found at https://gitlab.cern.ch/gaudi/Gaudi/-/tree/master/GaudiExamples

Very useful Gaudi Algorithms templates were developed by LHCb guys https://gitlab.cern.ch/lhcb/LHCbSkeleton
They include Python scripts to create Gaudi Functional Algorithm C++ classes.
Must be adapted to SPD!

The Gaudi framework runs over a list of events, providing ways to process them and store data in a new
format. It creates and manages Data Objects, which can hold a variety of data. A Transient Event Store
(TES) stores data objects in a way to make them accessible to the rest of the framework, and parts of it can
be made persistent in a ROOT format file. The data in the TES is created and accessed by Algorithms,
which produce data objects and process data objects. Gaudi also provides Services, which provide access
to other parts of the framework, such as histograms. Tools are lightweight routines that are also available.
The Application Manager manages these components.

https://gitlab.cern.ch/gaudi/Gaudi/-/tree/master/GaudiExamples
https://gitlab.cern.ch/lhcb/LHCbSkeleton

Gaudi Functional Algorithm

Properties

Algorithms are a Configurable, which means they can be accessed in Python and Properties can
be manipulated there. In the classic API, a property is declared in the constructor, using:

declareProperty("PropertyName", f_value, "Description of property");

Here, f_value is a reference to a variable for an int, string, etc. It is almost always a member variable
for the class so that you can access it in the other methods.

To use a property, you can simply access it on the configurable in Python:

my_algorithm.PropertyName = 42

Another way to declare property is to define a member variable of type Gaudi::Property<>:

Gaudi::Property<int> m_some_int{this, "SomeInt", 0, "Description of some int"};

Transient Event Store (TES)

To place an item in the event store, create a pointer to a new object, and then put it in the event store
in an execute method:

auto data = new DataObject();
put(data, "/Event/SomeData");

The event store will take ownership of the object, so do not delete it.
To retrieve it, also in an execute method:

auto data = get<DataObject>("/Event/SomeData");

The TES is a place where you can store items on a per-event basis. It should be viewed as non-mutable;
meaning that once you place an item in it, it should never change. Persistence is optional. The path to
an event should always start with "/Event", though Gaudi is smart enough to assume that a path that
does not start with a slash is a relative path, and will get "/Event/" prepended to it. In the classic
framework, you used get and put functions to access the TES. For this you must use GaudiAlgorithm
instead of Algorithm, which is a specialization to add access to the TES. You will need to add
GaudiAlgLib to the linked library list for the GaudiAlgorithm.

Gaudi Services

The basic modules of the GAUDI framework and the connections between them are shown in the picture

The Application manager (in code denoted as ApplicationMgr)
controls the execution of the jobs within the framework. It creates
and initializes the required modules in the system, and retrieves
input data. The input data is a collection of highly-structured
information that describe particle collisions (also called events)
recorded inside the detectors or created in simulations. The
Application manager loops over the input data events and executes
the algorithms.
The GAUDI services provide various utilities and services for the Algorithms in the system, which are also initialized by the
Application manager at the beginning of a job. Normally, only one instance of a service is required in the job. There are a
number of different services within the framework that can be used by the Algorithms but some of the main ones are:

• Event Data service (EventDataSvc) and Histogram service (HistogramDataSvc) that read and process individual events,
• Detector Data service (DetDataSvc) for capturing detector data,
• Message service (MessageSvc) logs progress or errors in the Algorithms and
• Tool Service (ToolSvc) manages Algorithm tools, which are required during the Algorithm execution.

The Persistency services allow writing the output data on the disk. There are many other services in the framework that provide
specialized functions that can be enabled and disabled by the users.

Gaudi Hive

 Gaudi Hive: multi-threaded, concurrent extension to Gaudi
 uses Intel TBB for thread management

https://github.com/oneapi-src/oneTBB
 Data Flow driven

 Algorithms declare their data dependencies
• build a directed acyclic graph - can be used for optimal scheduling

 Scheduler automatically executes Algorithms as data becomes available.
 Multi-threaded

 Algorithms process events in their own thread, from a shared Thread Pool.
 Pipelining: multiple algorithms and events can be executed simultaneously

 some Algorithms are long, and produce data that many others
need (eg track fitting). instead of waiting for it to finish, and idling processor,
start a new event

 Algorithm Cloning
 multiple instances of the same Algorithm can exist,

and be executed concurrently, each with different Event Context.
 cloning is not obligatory, balancing memory usage with concurrency.
 support for re-entrant Algorithms

https://github.com/oneapi-src/oneTBB

Gaudi Hive Operation

 Configuration, Initialization, Finalization are performed serially in "master"
thread
 only Algorithm::execute is concurrent

 Algorithms are scheduled when data becomes available
 Algorithms must declare their inputs at initialization or dynamically

with DataHandles
 data only exchanged via whiteboard
 bb::task wraps the pair (Algorithm*, EventContext)

 Algorithms can be non-cloneable (singleton), cloneable, or re-entrant
 more clones = more memory, but greater opportunity for concurrency

• cardinality is tunable at runtime
 re-entrant is best, but hardest to code
 tbb layer is normally hidden from users, but Algorithms can explicitly

use tbb constructs (parallel_for, concurrent_queue, etc) for finer
grained parallelism

• plays well with the Scheduler
 Component model allows Scheduler to be replaced as needed

An example of full G4 simulation p.1
from Gaudi.Configuration import *
from Constants import SystemOfUnits as units

Data service
from Configurables import ScTauDataSvc

decKey = 'gun_geantino'
podioevent = ScTauDataSvc("EventDataSvc")

from Configurables import ParticleGun
from Configurables import GenAlg
from Configurables import HepMCToEDMConverter
from Configurables import HepMCFileWriter
from Configurables import Gaudi__ParticlePropertySvc
from PathResolver import PathResolver

particlePropertySvc = Gaudi__ParticlePropertySvc("ParticlePropertySvc",
ParticlePropertiesFile=PathResolver.FindDataFile('GenParticleData/ParticleTable.txt')

)
from math import pi
Momentum = 1500
Theta = pi / 2.0
Phi = pi / 2.0
dTheta = pi / 3.0
dPhi = pi / 12.0

guntool = ParticleGun("PdgCodes", PdgCodes=[480000000])
guntool.OutputLevel=DEBUG
guntool.MomentumMin = Momentum * units.MeV
guntool.MomentumMax = Momentum * units.MeV
guntool.ThetaMin = (Theta - dTheta) * units.rad
guntool.ThetaMax = (Theta + dTheta) * units.rad
guntool.PhiMin = (Phi - dPhi) * units.rad
guntool.ThetaMin = (Theta - dTheta) * units.rad
guntool.PhiMax = (Phi + dPhi) * units.rad

An example of full G4 simulation p.2
gun = GenAlg("ParticleGun", SignalProvider=guntool)
gun.hepmc.Path = "hepmc"

writer = HepMCFileWriter("HepMCFileWriter")
writer.hepmc.Path="hepmc"

hepmc_converter = HepMCToEDMConverter("Converter")
hepmc_converter.hepmc.Path="hepmc"
hepmc_converter.genparticles.Path="allGenParticles"
hepmc_converter.genvertices.Path="allGenVertices"

DD4hep geometry service
Parses the given xml file
from Configurables import GeoSvc
from DetBase.DetConfigurator import DetConfigurator
detector_conf = DetConfigurator()
detector_conf.activateSubsystems(['ALL'])

detector_geo_input = detector_conf.getGeoConfiguration()

print('detector_geo_input =',detector_geo_input)

geoservice = GeoSvc("GeoSvc", detectors=detector_geo_input, OutputLevel=INFO)

Geant4 service
giving the names of tools will initialize the tools of that type
from Configurables import SimG4UserSteppingActionTool

userStepAction = SimG4UserSteppingActionTool("ScanningAction")
userStepAction.PrintInfo = True;
userStepAction.G4Hits.Path = "trajectory"

from Configurables import SimG4ConstantMagneticFieldTool

An example of full G4 simulation p.3
field = SimG4ConstantMagneticFieldTool("SimG4ConstantMagneticFieldTool", FieldOn=True,

IntegratorStepper="ClassicalRK4", FieldComponentX=0.0*units.tesla, FieldComponentY=0.0*units.tesla,
FieldComponentZ=1.0*units.tesla, FieldRMax=100.0*units.m, FieldZMax=100.0*units.m)

from Configurables import SimG4EmptySDTool, SimG4SensitiveDetectorMasterTool
sd_names = detector_conf.getSensDetName()
SensDetectors = []

for sd_name in sd_names:
EmptySD = SimG4EmptySDTool(sd_name)
SensDetectors.append(EmptySD)

SDMasterTool = SimG4SensitiveDetectorMasterTool("SDMasterTool", sensDetectors = SensDetectors)

from Configurables import SimG4Alg, SimG4GeantinosFromEdmTool
next, create the G4 algorithm, giving the list of names of tools ("XX/YY")
particle_converter = SimG4GeantinosFromEdmTool("EdmConverter")
particle_converter.genParticles.Path = "allGenParticles"
geantsim = SimG4Alg("SimG4Alg", eventProvider=particle_converter, detector='SimG4DD4hepDetector’,

physicslist="SimG4GeantinoDeposits", actions=[userStepAction], magneticField=field, SDMaster=SDMasterTool)

PODIO output algorithm
from Configurables import PodioOutput
out = PodioOutput("out", OutputLevel=INFO, filename = './'+ decKey + '_g4sim.root')
out.outputCommands = ["drop allGenParticles"]

ApplicationMgr
from Configurables import ApplicationMgr
ApplicationMgr(TopAlg = [gun, writer, hepmc_converter, geantsim, out],

EvtSel = 'NONE', EvtMax = 10,
order is important, as GeoSvc is needed by SimG4Svc
ExtSvc = [particlePropertySvc, podioevent, geoservice],
OutputLevel = INFO, AuditAlgorithms = True, AuditTools = True, AuditServices = True)

The Status of SPeeD developmnet

 The project is at the stage of prototyping and testing.
Hopefully to be ready for public testing ASAP (before collaboration week) .

 The main code was stolen from SCtau Aurora framework (G4 Simulation part)
 Build system was stolen from LHCb
 Dependency:

 Gaudi ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/Gaudi/master-4f9ac/x86_64-centos7-gcc10-opt")
 ROOT 6.24
 Geant4 ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/Geant4/11.0.2-b78b7/x86_64-centos7-gcc11-opt")
 DD4hep ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/DD4hep/master-1c0dc/x86_64-centos7-gcc10-opt")
 EDM4hep ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/EDM4hep/00.04.01-d9194/x86_64-centos7-gcc11-opt")
 Podio ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/podio/00.14.01-642d4/x86_64-centos8-gcc10-opt")
 CLHEP ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/clhep/2.4.5.1-ebe73/x86_64-centos9-gcc11-opt")
 HepMC3 (” /cvmfs/sft-nightlies.cern.ch/lcg/latest/hepmc3/HEAD-cfcd1/x86_64-centos7-gcc11-opt”)

 All externals are precompiled. PATH, LD_LIBRARARY_PATH, ROOT_INCLUDE_PATH, PYTHONPATH are hardcoded.
 Pythia8 generator from https://github.com/HEP-FCC/k4Gen will be added ASAP

https://github.com/HEP-FCC/k4Gen

References
Repos & Docs:

 https://gitlab.cern.ch/gaudi/Gaudi https://gitlab.cern.ch/lhcb/Gaudi
 https://gitlab.cern.ch/gaudi/Gaudi/tree/master/GaudiExamples
 https://github.com/HEP-FCC/FCCSW
 https://gaudi-framework.readthedocs.io/en/latest/index.html
 Gaudi Workshop 2016 (https://indico.cern.ch/event/556551/)
 LHCb Gaudi docs (https://lhcb.github.io/developkit-lessons/first-development-steps/02b-gaudi-intro.html)
 Code template for the gaudi functional algorithm (https://gitlab.cern.ch/lhcb/LHCbSkeleton)

SCtau Wiki:
 https://ctd.inp.nsk.su/wiki/index.php/Simple_SCT_parametric_simulation
 https://ctd.inp.nsk.su/wiki/index.php/Use_Analysis_package

https://spack.io/
https://gitlab.cern.ch/gaudi/Gaudi
https://gitlab.cern.ch/lhcb/Gaudi
https://gitlab.cern.ch/gaudi/Gaudi/tree/master/GaudiExamples
https://github.com/HEP-FCC/FCCSW
https://gaudi-framework.readthedocs.io/en/latest/index.html
https://indico.cern.ch/event/556551/
https://indico.cern.ch/event/556551/
https://lhcb.github.io/developkit-lessons/first-development-steps/02b-gaudi-intro.html
https://lhcb.github.io/developkit-lessons/first-development-steps/02b-gaudi-intro.html
https://gitlab.cern.ch/lhcb/LHCbSkeleton
https://gitlab.cern.ch/lhcb/LHCbSkeleton
https://ctd.inp.nsk.su/wiki/index.php/Simple_SCT_parametric_simulation
https://ctd.inp.nsk.su/wiki/index.php/Use_Analysis_package

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

