
The SPeeDy framework

Valeriy Onuchin
JINR/DNLP/SPD

3.10.2022

The great features of Gaudi :
• Modularity
• Another programming paradigm
• Easy configuration via Python scripting
• Plug-in architecture
• Flexibility
• Multithreading is out of the box
• It’s mature (24 years old) but still under active development
• Adapted by old and new experiments

• LHCb (CERN)
• ATLAS (CERN)
• BES III (IHEP, China)
• Harp
• FCC (CERN)
• EIC (BNL, USA)
• SCTau (BINP, Novosibirsk)

SPeeDy is based on Gaudy framework

Modularity
Architecture consists in processing of independent modules (algorithms)
Algorithms the most important component of the framework. Algorithms are
called once per physics event.

Minimal Geant4 simulation
Python script to set algorithm’s properties

C++ code of algorithm.
Class inherited from GaudiAlgorithm.
Implements initialize, execute, and finalize
methods

Transient Event Store (TES) - stores data
objects in a way to make them accessible to
the rest of the framework, and parts of it can
be made persistent in a ROOT format file.
Imitates file system in memory, e.g.
/Data/MyData/Event

Algorithm structure

Programming in Gaudi is similar to
to creating figure with LEGO
constructor, connecting blocks
together.

Configuration via Python scripting

Algorithms are a Configurable, which means they can be accessed in Python and Properties can
be manipulated there. In the classic API, a property is declared in the constructor, using:

declareProperty("PropertyName", f_value, "Description of property");

Here, f_value is a reference to a variable for an int, string, etc. It is almost always a member variable
for the class so that you can access it in the other methods.

To use a property, you can simply access it on the configurable in Python:

my_algorithm.PropertyName = 42

Another way to declare property is to define a member variable of type Gaudi::Property<>:

Gaudi::Property<int> m_some_int{this, "SomeInt", 0, "Description of some int"};

Plug-in architecture
from Gaudi.Configuration import *
from Constants import SystemOfUnits as units

Data service
from Configurables import ScTauDataSvc

decKey = 'gun_geantino'
podioevent = ScTauDataSvc("EventDataSvc")

from Configurables import ParticleGun
from Configurables import GenAlg
from Configurables import HepMCToEDMConverter
from Configurables import HepMCFileWriter
from Configurables import Gaudi__ParticlePropertySvc
from PathResolver import PathResolver

Flexibility

Let’s consider the track reconstruction task.

For example we have 2 track finding algorithms:
• Traditional
• Machine Learning based algorithm

We have 3 track fitting algorithms:
• Iterative KalmanFilter
• Global fitting
• HoughTransform

The framework allows to load (import) all of them into Python script which do processing
and by switching a single parameter one can run all 6 combinations without any recompilation.

SPeeDy development

 I pursued 2 goals: minimize initial code and minimize dependencies
 The main code was stolen from SCtau Aurora framework (only G4 Simulation part)
 Build system (Cmake scripts) was stolen from LHCb/Gaudi
 Dependency:

 Gaudi ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/Gaudi/master-4f9ac/x86_64-centos7-gcc10-opt")
 ROOT 6.24
 Geant4 ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/Geant4/11.0.2-b78b7/x86_64-centos7-gcc11-opt")
 DD4hep ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/DD4hep/master-1c0dc/x86_64-centos7-gcc10-opt")
 EDM4hep ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/EDM4hep/00.04.01-d9194/x86_64-centos7-gcc11-opt")
 Podio ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/podio/00.14.01-642d4/x86_64-centos8-gcc10-opt")
 CLHEP ("/cvmfs/sft-nightlies.cern.ch/lcg/latest/clhep/2.4.5.1-ebe73/x86_64-centos9-gcc11-opt")
 HepMC3 (” /cvmfs/sft-nightlies.cern.ch/lcg/latest/hepmc3/HEAD-cfcd1/x86_64-centos7-gcc11-opt”)

 All externals are precompiled. PATH, LD_LIBRARARY_PATH, ROOT_INCLUDE_PATH,PYTHONPATH are hardcoded.
The status of development:
• Finally successfully built
• The repository https://github.com/x2v0/SPeeDy created
• The simple testing is under way:

ParticaleGun shoots electrons into Electromagnetic Calorimeter (primitive geometry)

https://github.com/x2v0/SPeeDy

Gaudi Functional Algorithm

Which way to go ?

Recently I ran examples from FCCW including full Geant4 simulation based on Gaudi/key4hep.
I like it. These examples include calorimeter reconstruction.

Key4HEP is framework which claims to be an universal solution to all problems.
This collaborative effort of international team from many institutes, mostly from CERN.
Their slogan “Key4HEP - Turnkey Software for Future Colliders”.

https://key4hep.github.io/

My question - where to go?
Develop our minimalist framework or join this collaboration?

https://key4hep.github.io/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9

