SPD DAQ, current view

Leonid Afanasyev on behalf of DAQ group

Estimation of raw data flow

Bunch crossing each 80 ns; crossing rate 12.5 MHz, Collision rate ~3—4 MHz → Triggerless DAQ to avoid any hardware biases

Data flux was estimated for the maximum luminosity $L = 10^{32}$ cm⁻²c⁻¹ and maximum energy $\sqrt{s} = 27$ GeV.

Within simplified simulation and some safety margin the data flux is estimated as 20 GBytes/s.

Front-end electronics for the free-running DAQ-SPD

Front-end electronics of the detectors has to meet the requirements of a free-running DAQ

General FEE requirements from the DAQ system:

- Self-triggered (trigger-less) FEE operation
- Digitizing on-board
- Timestamp included in the output format
- Large memory to store the data accumulated in a time slice
- Zero suppression

CDR version of DAQ have been based on ideas and hardware developed by Igor Konorov group from the Technische Universität of München (TUM) for COMPASS/AMBER experiment

Thanks to colleagues for the big help at our start.

Current idea of DAQ

Frontend computer

E-link signals for Range System via the displayport cable

FrontEnd DisplayPort Connector		
Signal Type	Pin Name	Pin
GND	GND	2
Out	ML_Lane 0 (p)	1
Out	ML_Lane 0 (n)	3
GND	GND	5
In	ML_Lane 1 (p)	4
In	ML_Lane 1 (n)	6
GND	GND	8
In	ML_Lane 2 (p)	7
In	ML_Lane 2 (n)	9
GND	GND	19
In	Hot Plug Detect	18
IO	CONFIG1	13
In	CONFIG2	14
GND	GND	11
In	ML_Lane 3 (p)	10
In	ML_Lane 3 (n)	12
GND	GND	16
In	AUX_CH (p)	15
In	AUX_CH (n)	17
uma	DP_PWR	20

Data e-link

Start of slice

Start of frame

Reset I2C SDA SCL

Set Next Frame

Global clock spare signal

- Cable/connector DisplayPort (20 pins)
- 5 differential signals (link 1(2), clock, slice, frame)
- I2C bus
- 3 control signals (reset, hotplug, spare)

Time Synchronization System with TCS-based delivery

Time Synchronization System with WR-based delivery

Open questions

- Front Electronics cards exists for RS only. Development of dedicated ASICs is started.
- Development of L1 Concentrator: Which FPGA circuit ???
- Where L1 Concentrator will be installed: inside or outsides the Range system?
 (e-link <10m)
- Radiation hardness of FPGA, in the case of installation of L1 Concentrator inside the Range system
- Which Time Synchronization: White Rabbit or TCS. A working bench for development of the White Rabbit node now is under production.

R&D is required

Thank you for your attentions.