Run time structure and slice data building

Konstantin Gritsay on behalf of SPD DAQ team
Joint Institute for Nuclear Research

03.10.2022

K. Gritsay Run time structure and slice data building 03.10.2022 1/24

Introduction

@ SPD is expected to use a trigger less DAQ system. Another name for
this is the free-running DAQ system. The front-end electronics must
operate in self-trigger mode.

@ A clock called the global clock is used for synchronization in the SPD
DAQ system. A global clock frequency is 125 MHz (a period of 8 ns).
The required jitter for the global clock is < 50 ps.

@ Data in the DAQ system is grouped by time into parts called slices. A
slice length is 10-100 us. A sequence of slices forms a frame. The
frame length is 0.1-10 s.

@ Time in the SPD detector is measured from the beginning of the
frame and makes sense only inside that frame. No correlation is
assumed between the time in two frames. Thus, one frame is the
maximum possible time interval in SPD between time-correlated
events.

K. Gritsay Run time structure and slice data building 03.10.2022

The time measurement must provide a continuous and uniform time
inside one frame, in particular, there must be no breaks in the
calculation of time within the frame. Each hit processed by the
front-end electronics must have a time stamp that allows the time of
the hit from the start of the frame to be calculated.

Different electronics can use different time measurement techniques,
while ensuring that the above requirements are met.

Electronics can use internal clocks derived from global clocks to
measure time. Two obvious ways to measure time are:

o resetting the internal clock counter at the beginning of the frame;

e measurement of the beginning of each slice by internal clock.
In both cases, the slice number will give the rough time and the
internal clock will give the fine time.
In both cases, the required bit depth of the internal clock counter is

determined by the length of the slice: the counter must at least
overlap the length of the slice.

K. Gritsay Run time structure and slice data building 03.10.2022 3 /24

Readout control

@ Two types of commands are used to control the readout process:
synchronous with a global clock and asynchronous.

@ The following synchronous commands are used:

o Set Next Frame,
o Start of Frame,
e Start of Slice.

@ Synchronous commands together with the global clock are sent to the
L1 concentrator from a special system called Time Synchronization
System (TSS). All synchronous commands are broadcast commands.

@ The following asynchronous commands are used:

o Disarm,
o Arm,
e other commands specific for various front-end electronics.

@ Asynchronous commands are sent to the L1 concentrator from the L2
concentrator.

K. Gritsay Run time structure and slice data building 03.10.2022 4 /24

Synchronous commands

Each slice is addressed by two numbers: the frame number in the run
and the slice number in the frame.

The Set Next Frame command loads the number for the next frame
into the front-end electronics and may require more than one clock
cycle to implement.

The Start of Frame command terminates the current frame (if there
was one) and simultaneously starts a new frame if before that a new
number for the frame was loaded using the Set Next Frame
command. The command starts the first slice of the frame
simultaneously with the start of the frame, and simultaneously with
the stop of the frame, the command stops the last slice in the frame.

The Start Slice command completes the current slice and starts a new
one inside the frame. The front-end electronics automatically
numbers the slices, the slice number is reset to 0 by the Start of
Frame command.

K. Gritsay Run time structure and slice data building 03.10.2022 5/ 24

Asynchronous commands

Two standard asynchronous commands Disarm and Arm are used to
control the reset signal line that comes from the L1 concentrator to
the front-end electronics.

These commands are executed by the L1 concentrator and are not
directly visible to the front-end modules.

The Disarm command sets the active level of the reset signal, in
response to which the front-end module enters the reset process.

The Arm command removes the active level of the reset signal.

All the time when the reset signal is active, the front-end module
must ignore any synchronous commands. Thus, the Arm command
enables and Disarm disables synchronous commands for the front-end
electronics.

The Disarm and Arm commands can be addressed to a single
front-end module or to all modules connected to a single L1
concentrator.

K. Gritsay Run time structure and slice data building 03.10.2022 6 /24

Asynchronous commands

In addition to the standard asynchronous commands, various
front-end electronics may have different sets of specific asynchronous
commands for their initialization and monitoring.

Monitoring commands that do not change the state of the front-end
electronics can be used at any time, even in parallel with the
synchronous commands.

These asynchronous commands are transmitted to the front-end
module from L1 concentrator in the form of I2C commands, and are
address commands.

In addition to commands transmitted over the T12C bus, front-end
electronics can use fast buses connecting modules and the L1
concentrator and normally used for data and synchronous commands
transmission for transmitting large amounts of data at the moment
when the response to synchronous commands is disabled.

This function can be used, for example, to update the firmware in
front-end electronics.

K. Gritsay Run time structure and slice data building 03.10.2022 7/ 24

Start of the run procedure

@ The TSS is controlled using the appropriate commands, two of which
are the most important:

e Start of Sequence,
e Stop of Sequence.
@ Start of Sequence — upon receiving this command, TSS starts
generating a sequence of synchronous commands according to the
specified parameters;

@ Stop of Sequence — upon receipt of this command, TSS stops the
generation of synchronous commands.

K. Gritsay Run time structure and slice data building 03.10.2022 8 /24

Run

start procedure.

The generation of all synchronous commands is disabled by issuing
the Stop of Sequence command to TSS.

The Disarm command is issued for all front-end modules, in response
to which the modules enter the reset process.

After some delay necessary to bring the electronics into a state of
readiness to receive incoming commands, the DAQ system begins
initializing the front-end electronics using specific I°C commands.

The Arm command is issued for all front-end modules. Now the
front-end electronics are ready to receive synchronous commands. It
should be noted that the Arm command, as well as the Disarm
command, is not atomic for the entire installation: it is a sequence of
Arm (Disarm) commands addressed to various front-end modules.

The generation of a synchronous command is started by issuing the
Start of Sequence command to TSS.

K. Gritsay Run time structure and slice data building 03.10.2022 9 /24

Disarm

Arm

: '
] I

L1 commands

I_ Reset signal

«——Reset signal is active———— >

l I— 12C commands

;<—De|ay—>;<-lnitialization of front-end eIectronics-VE

1
|

I-I— TSS commands
Stop ofSéquence

I Start of Sequence

K. Gritsay Run time structure and slice data building

03.10.2022 10 / 24

Time structure of the run

The structural unit of the run is a package of frames, called a frame
batch.

A frame batch contains a continuous sequence of frames following
each other, without time intervals between frames.

On the other hand, there are time intervals between frame batches
that can be used by the front-end electronics to perform the necessary
periodic actions, such as resetting.

In the absence of such a need, one frame batch can be stretched for
the entire run. In addition, the frame batch is interrupted when the
run is put into a suspended state.

Frames in the run have continuous numbering, independent of the
grouping of frames into batches. There is no direct limit on the
number of frame batches per run or on the number of frames per
batch. There is only a general limit on the number of frames per run,
resulting from the size of the corresponding field in the data format.

K. Gritsay Run time structure and slice data building 03.10.2022 11 /24

Time structure of the run

@ Before the first frame in the batch, the Set Next Frame command is
executed, which loads the number for the first frame in the batch into
the front-end electronics.

@ All frames in the batch, excluding the last frame, contain the Set
Next Frame command closer to their end.

@ There is no Set Next Frame command in the last frame of the batch,
and therefore the last Start of Frame command ends the frame
without starting a new one.

@ The frame consists of slices.

@ The Start of Frame command simultaneously with the start of a new
frame starts the first slice of this frame and simultaneously with the
completion of the frame completes the last slice of this frame.

@ Inside the frame, the Start of Slice command has completed one slice
and is starting a new one.

K. Gritsay Run time structure and slice data building 03.10.2022 12 / 24

Time structure of the run

Arm command

Reset signal is not active
Reset signal

Time "0" for frame 0 Time "0" for frame 1

'« Time uniformity interval—

I I I Set Next F:aame
comman

lext:Frame= 0 Next Frame= 1
B Next Frame is defined: frame starts Next Frame is undefined: ffame does not start

xt Frame is defined: frame starts

N
“/ Frame 0 “/ Frame 1 Frame n N
1 1 1

Start of Frame
command

i_slicem Slice 0 __ Slice 1. i Slice m

|-

Slice 0 :_ Slice

Start of Slice
c

ﬂ Header and trailer

generation

Frame batch.

K. Gritsay Run time structure and slice data buildi 10.2022 13 / 24

Slice building

@ The main task of the slice building subsystem is to receive data from
the L2 concentrators, combine them into fragments of sufficient
duration in terms of astronomical time and acceptable size, and write
this data to an intermediate data storage.

@ The natural choice of the length of these data fragments is the frame
length (0.1-10 s). In some cases the volume of data in a frame may
happen to be too large for convenient processing. Therefore, the
frame is divided into parts called chunks.

e With an expected total data flow up 20 GB/s, a reasonable chunk
length is 0.1-1 s, depending on the actual data flow.

@ The splitting of the frame into chunks is performed the slice boundary
and is transparent to the software located below in the data
processing chain. Thus, the chunk is a data processing unit in the
slice-building subsystem.

K. Gritsay Run time structure and slice data building 03.10.2022 14 / 24

Slice building

Readout Readout Readout Readout Readout
computer computer computer computer computer
L2 C | L2 C | L2 C | L2 C | L2 C]
16 GBTX 16 GBTx 16 GBTx 16 GBTx 16 GBTx
channels channels channels channels channels

A
\ 4 Supervisor

Ethernet 20x25/20x2x10 Gbit/s computer

<

Ethernet 40x10 Gbit/s

Builder
computer

Builder
computer

Builder
computer

Builder
computer

Builder
computer

Intermediate data store

ime structure and slice data bui

Slice building

@ The slice building hardware consists of readout computers with L2
concentrator installed, a network switch, a supervisor computer, and
builders computers.

@ From the software point of view, slice building includes readout
processes, supervisor process, and builder processes.

@ The slice building works under control of readiness messages from the
builder processes, in response to which the supervisor process assigns
chunks for processing to particular builder processes. Each builder
process works with one chunk at a time.

@ Data buffering in the readout computer provides a transition from the
synchronous part of the DAQ chain, working on commands from TSS,
to the asynchronous part of the DAQ chain, working on readiness
messages from builder computers.

K. Gritsay Run time structure and slice data building 03.10.2022 16 / 24

Readout process

@ A separate readout computer is used for each L2 concentrator. The
expected data flow through one readout computer is about 1 GB/s,
which gives a number of readout computers of about 20. The readout
computer has 2 x 10 Gbit/s or 25 Gbit/s network interface(s).

@ The readout processes are performed on the readout computers, one
process for each L2 concentrator.

@ Depending on the actual implementation of the L2 concentrator, the
data coming from the L2 concentrator may already be formed as
sub-slices or may be independent streams from each front-end card.
In the latter case, the readout process must first reorganize data in
the form of sub-slices.

@ The data organized into sub-slices is buffered in RAM of the readout
computer. The buffering depth should be sufficient, taking into
account the architecture of the slice building subsystem and possible
emergencies, such as delays in data transmission and recording. A
reasonable buffering time is 30-60 s, which requires 64-128 GB of
RAM.

K. Gritsay Run time structure and slice data building 03.10.2022 17 / 24

Builder process

@ The builder process is responsible for building the complete chunk
data block. The builder process extracts all sub-slices of a single
chunk from all readout processes, composes a complete chunk and
stores it in an intermediate data store.

@ The builder processes run on the dedicated computers that are part of
the builder pool. The computer running the builder process can be
attached to or detached from the builder pool at any time, including
runtime. The number of computers in the builder pool must be
sufficient to operate without data loss, but if there are no builder
processes available, the data of one chunk is dropped by a command
from the supervisor process.

@ The builder computers have a 10 Gbit/s network interface for
communication with the readout computers and a separate
connection to the intermediate data store. Assuming that there are
20 readout computers, around 40 builder computers must run
simultaneously to ensure operations with data flows from each

readout computer at 1 GB/s.
K. Gritsay Run time structure and slice data building 03.10.2022 18 / 24

Supervisor process

@ The supervisor process collects information about the received chunks
from the readout processes and data processing requests from the
builder processes, and basing on this decides which builder process
will handle a particular chunk.

@ The supervisor process informs the selected builder process, it
connects to all readout processes, and starts receiving the chunk data.
When chunk data transfer is complete, the builder process closes the
connections to the readout processes. The builder process informs the
supervisor process when data transfer from the readout computers has
finished and when it is ready to process the next chunk.

@ The supervisor process and readout processes form the critical core of
the DAQ system. A problem with this part of the DAQ system will
abort the current run. At the same time, any problem with one of the
builder processes can lead to data loss for one chunk, but should not
stop data taking.

K. Gritsay Run time structure and slice data building 03.10.2022 19 / 24

Data format

@ The result of the slice building process is data files stored in an
intermediate data storage.

@ One chunk data is usually stored in a single data file, but can be split
into multiple data files if necessary.

@ The data file consists of slice data blocks.

@ The data files do not have a header or other metadata — a database
will be used to save the metadata.

@ The total size of the data and all its logical units must be aligned to
the size of a 32-bits words.

K. Gritsay Run time structure and slice data building 03.10.2022 20 / 24

Slice data block

31 24 23 0

Data size in 32-bits word

Run number

Frame number

Reserved Slice number

L2 concentrator data block #1

L2 concentrator data block #2

L2 concentrator data block #n

Error code

Data size in 32-bits word

K. Gritsay Run time structure and slice data building 03.10.2022

L2 concentrator data block

31 24 23 0
Block size in 32-bits word

Run number

Frame number
L2 ID Slice number

Front-end data block #1
Front-end data block #2

Front-end data block #256

Block size in 32-bits word

K. Gritsay Run time structure and slice data building 03.10.2022

Front-end data block

31 28 27 24 23 20 19 16 15 0
L1 port | L2 port [Error CodeFormat ID Block Size in 32-bits word

Front-end data word

Front-end data word

Front-end data word

K. Gritsay Run time structure and slice data building 03.10.2022 23 /24

@ This data file format is preliminary.

@ Data files of this format will have a limited ‘lifetime’: they will be
processed by an online filter, and then deleted.

o A different data format will be used to record the result of processing
the online filter.

Thanks for attention

K. Gritsay Run time structure and slice data building 03.10.2022 24 / 24

	Introduction
	Measuring time
	Readout control
	Synchronous commands
	Asynchronous commands
	Start of the run procedure
	Time structure of the run
	Slice building
	Readout process
	Builder process
	Supervisor process
	Data format
	Slice data block
	L2 concentrator data block
	Front-end data block
	Data file

