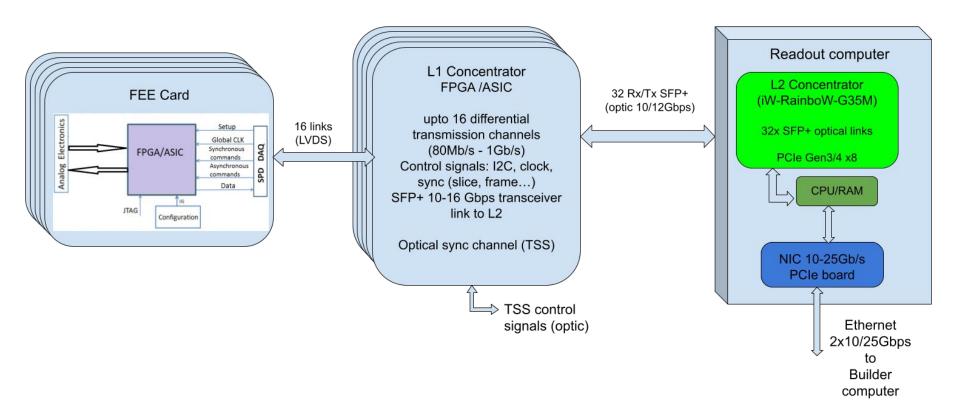
DAQ hardware

Exploring the possibilities of L1, L2 concentrators' design

Tereshchenko Viacheslav on behalf of SPD DAQ team

Joint Institute for Nuclear Research

03.10.2022


SPD detectors' outputs (at the first stage)

Sub-detector	Information type	Number of channels	Channels per FE card	Number of e-links
Micromegas	T + A	~15000 (25600)	128	118 (200)
Straw tracker	T + A	30208	128	236
BBC (inner+outer)	T + (T + A)	256 + 500	32	8 + 12
Range System	Т	130200	192	679
ZDC	T + A	1050	64	17
Total (max)		177214 (179598)		1070 (1152)

Hardware requirements at the first stage

- number of channels is over ~180000
- e-link quantity ~1100
- If we assume that one link is supposed to read one FEE board, then we need ~70 L1 concentrator boards (each with 16 links)
- In this case, we need 3 L2 concentrator boards (each with 32 links)
- The data rate estimation for the full scale experiment does not exceed 20 GB/s (for the full scale experiment)
- The total bandwidth of 70 L1 concentrator boards (with 10Gb/s transceivers) is about 700 Gb/s
- If we use the PCIe 3.0 x16 bus for L2 concentrator boards , the total bandwidth will be about 36GB/s

SPD readout chain

L1 concentrator board

Unfortunately, today we do not have a clear solution for the L1 concentrator board. Today we have no possibility to purchase the appropriate chips for an FPGA-based solution, and on the other hand, we have not necessary amount of chips for an ASIC-based solution. Besides, ASIC-based solution seems to be very expensive.

iW-RainboW-G35M module as possible base for L2 concentrator board

• SoC

- Xilinx Zynq UltraScale+ MPSoC
- Quad Cortex A53@1.5GHz

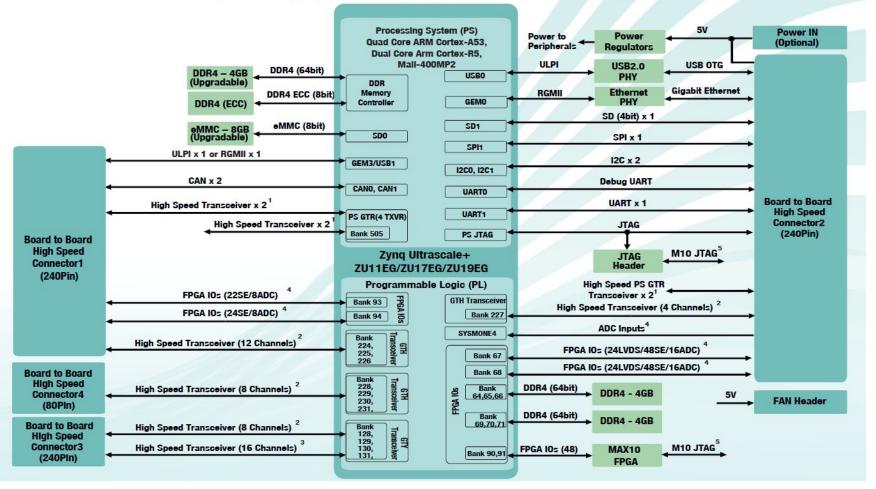
• Memory:

- 4GB DDR4 for PS with ECC
- 8GB eMMC Flash
- On SOM Features
 - o 10/100/1000 Ethernet

• Interfaces:

- PL GTY Transceivers x 16 @ 32.7Gbps
- PL GTY Transceivers x 32 @16.3Gbps
- 48 LVDS/96 SE/32

Form Factor: 110mm x 75mm



Conclusions

- Today, we do not have a feasible solution for L1 concentrator board.
- If the situation goes not worse, then the option of creating an L2 concentrator board based on the iW-RainboW-G35M module looks quite reasonable.

Backup

ZU19/17/11 Zynq Ultrascale+ MPSoC SOM Block Diagram

Test with 10Gb ethernet (over UDP)

A trial version of the firmware for the Cyclone 10GX chip has been made and it allows us to transfer data to a computer at a data rate of 10Gb/s.

					Cik 312 MHz	
Туре	Alias	Тар 🍸	Name	449		. 6/4 6β 72 7β 8β 8β 92 9β 1Q0 1Q4 1Q8 112
		Pre-Syn	st_tx_startofpacket .			
5		Pre-Syn	+)	000000000000	
-		Pre-Syn	_n_st_tx_endofpacket			
5		Pre-Syn	E _i_tx_control[3.0]	Fh)	OX on X	Ph
2		Pre-Syn	⊕ii_tx_data[31.0]	07070707h	000000000000000000000000000000000000000	07070707h
2			.i_rx_control[3.0]		Fh	() oh) Fh
2		Pre-Syn	🗄 _ii_rx_data[310]		07070707h	00000000000000000000000000000000000000
2		Pre-Syn	pause_data[1_0]		oh	
in		Pre-Syn	fpga_resetn			
					198,4 ns	