SPD COLLABORATION MEETING 3-6 ОКТЯБРЯ 2022 JINR, DUBNA

Development of an ASIC for straw and micromegas detectors of the NICA-SPD project

ALEXANDRE SOLIN, ALIAKSANDR SOLIN, INSTITUTE FOR NUCLEAR PROBLEMS, MINSK

A front-end ASIC for CBM and NA64 straw detectors

A front-end called AST-1-1 ASIC was developed for the straw detectors of the CBM experiment.

This chip is currently used in the straw detectors of the NA64 experiment and one of the silicon detectors of the BM@N experiment.

The main features of the AST-1-1 ASIC: eight channels, control of input resistance preamplifier, adjustment of the ion signal tail, BLR, two modes of discriminator operation: time over threshold and control of the output signal width, LVDS driver, the ninth channel for monitoring and shaping signal from the straw.

AST-1-1 ASIC block diagrams

The main parameters of the AST-1-1

Package	LQFP64
Channels per chip	9
Main channels per chip	8
Main channel chain	CSP+Shaper+BLR+MS+LVDS
Ninth channel chain	CSP+Shaper+BLR
Chip technology	Bi-CMOS (0.6µm), X-FAB
Power supply	$+(2.5\div3.3)V$
Power consumption per channel	(12.2÷33.7) mW
Preamplifier input impedance, set by external resistor	(50÷560) Ohm
Differential gain	(25÷40.5) mV/fC *
Shaper (BLR) peaking time	(6÷8) ns*
Shaper (BLR) base-to-base	(11÷15) ns*
Threshold control	one for all channels
Minimum threshold	1 fC
Threshold range	(1÷23) fC
Threshold spread	<10%
Noise frequency at the minimum threshold	<20 kHz
Output levels	LVDS
Minimum width of the output signal	5 ns
Output delay	6 ns
Test input	one for all channels
Internal test capacitor	0.2 pF

The readout PCB based on AST chips for NA64 experiment and B@NM experiments

NA 64

B@NM

The need for a new chip development is due to:

- 1) dE/dx measurements;
- 2) triggerless operation mode.
- Measurements of dE/dx require measurement of the signal amplitude from the straw detector.
- In the triggerless mode of operation, it is necessary to synchronize the data flow of the detector electronics with the time, according to which the SPD project will live, with external frequencies.

NICA-SPD Straw Tracker

Links: https://disk.jinr.ru/index.php/s/MBwYDfCFAcQjdQt http://spd.jinr.ru/wp-content/uploads/2021/04/SPD_Korzenev_DIS2021.pdf

- Main tracker system of SPD
- Maximum drift time of 120 ns for \emptyset =10mm straw
- Spatial resolution of 150 µm
- Expected DAQ rate up to half MHz (electronics is limiting factor)
- Number of readout channels ~50k
- Can be used for PID if energy deposition if detected
- Extensive experience in straw production in JINR for various experiments (NA58, NA62, NA64...)

Detector type	barrel	end-cap
Detector tasks	dE/dx	xy coordinates, dE/dx
Working mode	triggerless	triggerless
Detector inner diameter, mm	540	
Detector outer diameter, mm	1700	
Number of layers	30 (double layer)	2x, 2y, 2u, 2v
Number of stations, sections	8 sections	12 stations
Number of channels	32288	8192
Tube diameter, mm	10	10
Maximum tube length, mm	2400	1700
Central core diameter, mm	0.03	0.03
Maximum detector capacitance, pF	26	18,5
Gas detector	70 Argon, 30 CO ₂	70 Argon, 30 CO ₂
Operating voltage, V	+1650	+1650
Multiplication factor, HV=1750	4.5E4	4.5E4
Charge from the first electron, fC	7.7	7.7
Electron drift velocity, µm/ns	65	65
Electron drift time, ns	120	120
Ion drift time, µs	100	100
Spectral resolution, µm	150	150
Maximum load, kHz per tube	150	

Summary table of straw detector parameters

Micromegas central tracker (MCT)

To provide a performance adequate for the physics tasks, it is proposed to install a relatively simple and cheap vertex detector based on micromegas technology. Such detector would be used during the first two or three years of the SPD running.

Detector tasks	xy coordinates			
	method of weighted amplitude channel signals			
Working mode	triggerless			
Detector inner diameter, mm	54			
Number of channels on the inner layer	728			
Detector outer diameter, mm	188			
The composition of the gas mixture (mobility of CO2+ ions 1.72	70 Argon, 30 CO2			
cm2/V*sec, electron drift velocity 0.3 cm/us)	, • · · · · · • • • • • • • • • • • • •			
Anode capacity, pF	20÷200			
Gap between cathode and grid, drift area, mm	5			
Gap between grid and anodes, multiplication area, um				
(n is the number of layers of the photoresistor, the optimal value is	n*64			
n=2)				
Multiplication factor	10000			
Time of the electronic component in the drift region, us	2			
Time of the electronic component in the multiplication region, ns	1÷2			
Time of the ion component of the signal, ns	30÷140			
Loading per channel, kHz	10÷100			
Anode width, um	150÷300			
Anode length, cm	до 100			
Electrode potentials, V: cathode/grid/anode (capacitive coupling)	-350/0/+550			
Design features	Charge distribution between 3÷5 anodes			

Parameter accommodation for both straw and micromegas detectors

Parameter	straw	micromegas	Notes
Optimal number of channels	32	32	
	Channels	Channel steps: 400 µm	
	step:	On the inner radius up to 502	
	10 мм	channels or 16 chips	
Minimum number of channels	8	32	
Fast channel formation time, ns	6÷10	6÷10	Enough 8 bits
Slow channel formation time, ns	150	150, 250, 400	
Time channel resolution, ns	1	<5	
Amplitude channel resolution, bit	8÷10	8÷10	
ADC, bit	8÷10	8÷10	
Gain, mV/fC	1÷4	4÷10	Straw has 3 times more
			multiplication

AST-SPD chip specification

The working name of the new chip is AST-SPD (Amplifier for Straw Detectors-SPD)

Detector parameters				
Range of input charges, fC	+/-(0÷1000)			
Detector channel capacitance, pF	20÷100			
Loading per channel, kHz	150			
Working mode	triggerless			
Common chip parameters				
Technology	CMOS, 180 nm			
Number of channels	32			
Supply voltage, V	1.8			
Power dissipation, mW/ch	10			
Fast, time channel parameters				
Fast channel shaping time, ns	6÷10			
Time channel resolution, ns	1			
Discriminator threshold adjustment, fC	15			
ENC (r.m.s.), e Cd=60pF	<3000			
TAC time window, ns	500÷5000			
Parameters of the s	low, amplitude cha	innel		
Slow channel gain, mV/fC	straw	micromegas		
	1/3	3/9		
Slow channel shaping time, ns	straw	micromegas		
	75/150	250/400		
Base signal width, ns	300/600/ 1000/1600			
Shaper order	4			
ADC capacity, bit	10			
ENC (r.m.s.), e Cd=60pF	<3000			

AST-SPD chip block diagram

The block diagram will be fixed according to the simulation results

	#1						
Channel options	CSP	FS	Dis	TAC	MUX 32:1	SAR ADC	
Channel optimization criteria:		SS]	PD	MUX 32:1	SAR ADC	
 event rates dead time power dissipation chip area 	One S One S Digitiz Reado	AR A AR A zation ut up	ADC ADC n tim o to 1	in chip in the one up to 0 chann	o for tim chip for 100 ns nels	e chann the am	nel plitude channel
Abbreviation: CMOS - field technology CSP - Charge Sensing Amplifier FS - fast shaper SS - slow shaper Dis - discriminator	CSP One S Digitiz	FS S AR A zation	Dis S ADC n tim	TAC PD per cha ie up to	#2 MUX 2:1 annel 500 ns	SAR ADC	
MUX - multiplexer TAC - time-to-amplitude converter SAR ADC - Serial ADC sLVDS - low-voltage LVDS		FS	Dis	TAC	#3 SAR ADC		
	CSP S		5	PD	SAR ADC		
	Two A Digitiz	ADC zatio	SAR n tim	ls per clue up to	hannel 1 μs		

Other chip properties

	OR output of discriminators				
Additional functions	Testing individual channels				
	Disable noisy channels				
	Выбор временного окна ТАС				
ADC data outputs	Parallel				
Digital IO signals	sLVDS				
Settings	Configuration register				
Analog output	Multiplexer output for controlling the operation of				
	the peak detector and connecting an external ADC				
Test channel	Shape and gain control of analog signals:				
	differential outputs of fast and slow drivers				
	Control of the operation of the discriminator and				
	time-to-amplitude converter				

Development stages of the AST-SPD chip

1) Circuit design and simulation of the AST-SPD Terms of work: from 01.09.2022 to 30.04.2023

2) AST-SPD topology development Terms of work: from 05/01/2023 to 12/20/2023

3) Manufacturing of wafers with AST-SPD chips of the first iteration Terms of work: 01/01/2024 to 12/20/2024

Wafer production is possible at semiconductor factories: X-FAB (Germany), Mikron (Russia)

AST-SPD chip development status

Work on the development of AST-SPD has started

JINR and INP BSU signed a contract for the execution of works on the first stage: Circuit design and simulation of the AST-SPD

Works of the first stage:

1) Circuit design and simulation of the AST-SPD of individual blocks of the channel IS AST-SPD

2) Selection of the working option of the channel AST-SPD

3) Assembly and modeling of the top-level AST-SPD