MC corrections for calculation of differential π^0 production cross section

Ruslan Akhunzyanov

LHEP, JINR

SPD Physics Meeting July 19, 2022

Goal of study

• To estimate MC corrections for measurement of unpolarized π^0 production cross section at SPD for different momenta and polar angles.

Plan of the talk

- Kinematical distributions of MC π^0 .
- Reconstruction procedure
- Estimation of N_{RC} / N_{MC} for different p and θ .

Event sample

- SpdRoot 4.1.4
- Pythia8: SoftQCD (without elastic)
- $\sqrt{s} = 27 \, \text{GeV}$
- 99 000 events

MC π^0 : selection

- Simply go through MC particles with pdg code = 111 (π^0) .
- Always exclude π^{0} 's that were produced in ECAL or beyond it.
- Optionally, include only π^{0} 's with distance ρ between π^{0} production vertex and the primary vertex < 1 mm.

MC π^0 : origin

π^0 production process

MC π^0 : 1D distributions

MC π⁰: θ vs p

MC π^0 : $p_T vs x_F$

 $x_F = \frac{p_z}{\sqrt{s/2}}$

9

MC π^0 : $p_T vs \eta$

$$\eta = \frac{1}{2} \ln \left(\frac{p + p_L}{p - p_L} \right) = -\ln \left(\tan \frac{\theta}{2} \right)$$

10

MC π^0 : θ vs p (for comparison with RC)

Reconstruction of π^0

- Loop through SpdEcalRCParticle objects, which contain information on reconstructed ECAL cluster energy and position.
- From the corresponding SpdEcalClusterMCInfo object obtain information on what MC particle(s) has (have) contributed energy to the cluster.
- For further analysis take only clusters produced by photons.
- Apply cut $E_{cluster} > 200 \text{ MeV}$ (100 MeV) to reduce background.
- Assuming that cluster was produced by a photon going out from the primary vertex, calculate invariant mass for each pair of clusters.

$\pi^{0} \text{ invariant mass (all ecal-rc-particles)} \left(\text{cut } E_{\text{cl}} > 200 \text{ MeV} \right)$ Invariant mass (all ecal-rc-particles)

$\pi^{0} \text{ invariant mass (all ecal-rc-particles)} \text{ Invariant mass (all ecal-rc-particles)} \left(\text{cut } E_{\text{cl}} > 100 \text{ MeV} \right) \text{ Invariant mass (neutral ecal-rc-particles)} \right)$

Reconstruction of π^0

• Invariant mass distribution is fitted by function:

$$f(m) = \frac{I}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(m-\mu)^2}{2\sigma^2}\right] + (a_0 + a_1 m + a_2 m^2)$$

- The procedure described above is applied for each $p-\theta$ bin.
- Binning used:
 - p = 0.4 .. 3.0 GeV/c, 13 bins
 - $\theta = 0 .. 0.5^*\pi$, 5 bins

π^{0} invariant mass: 0.000 < θ < 0.314

π^{0} mean mass and sigma (cut E_{cl}>200 MeV)

π^{0} mean mass and sigma (cut E_{cl}>100 MeV)

min = 13%, max = 43%

19

TODO

- To apply more realistical procedure for $\pi 0$ reconstruction.
- Further refine this procedure.
- To estimate contribution of different factors (energy cut, geometry, ...) to the acceptance.

backup slides

π⁰ invariant mass (all ecal-rc-particles)

π^{0} invariant mass: 0.314 < θ < 0.628

π^{0} invariant mass: 0.628 < θ < 0.942

π^{0} invariant mass: 0.942 < θ < 1.257

π^{0} invariant mass: 1.257 < θ < 1.571

