General QA for large productions

V. Riabov

Big productions

UrQMD, BiBi@9.2, 50M events, minbias 0-16 fm: \rightarrow REQUEST 25 \rightarrow QA

- resonances (rho(770)0, phi(1020), K0(892)*, K+/-(892)*, Sigma(1385)+/-, Lambda (1520));
- charged hadrons (\pi, K, p, pbar) and hyperons (\Lambda, \Ksi), Omega;
- v1, v2, v3 vs pT, rapidity, centrality for charged pions, kaons, protons + KS, Lambda;
- neutral mesons and photons with the ECAL

DCM-QGSM-SMM, BiBi@9.2, 1M events, minbias 0-16 fm: \rightarrow **REQUEST 26** \rightarrow **QA** - trigger efficiency and centrality studies;

PHQMD, BiBi@9.2, 1M events, minbias 0-16 fm: \rightarrow **REQUEST 27** \rightarrow **QA** (in progress) - trigger efficiency and centrality studies;

UrQMD, BiBi@9.2, magnetic field 0.2T, 10M events, minbias 0-16 fm: \rightarrow REQUEST 28 \rightarrow QA - same as Request 25 with the reduced magnetic field

PHQMD, BiBi@9.2, 20M events, minbias 0-16 fm: \rightarrow **REQUEST 29** \rightarrow **QA** (in progress) - (hyper)nuclei performance studies;

vHLLE+UrQMD with XPT, 15M events, minbias 0-16 fm: \rightarrow POSTPONED vHLLE+UrQMD with 1PT, 10M events, minbias 0-16 fm: \rightarrow POSTPONED - Flow, HBT;

PHSD, BiBi@9, 15M events, minbias 0-16 fm: → POSTPONED
- (anti)Lambda polarization studies;

Configuration

- The same configuration (MpdRoot version) is used for all productions
- Details are provided in description of Request 25. Other requests contain only small changes to read different input file formats, etc.:
 - ✓ Geant-4;
 - ✓ Latest version (-dev) of MpdRoot;
 - ✓ BiBi@9.2 GeV, 0-16 fm;
 - ✓ Different input event generators, full events with UrQMD, DCM-QGSM-SMM, PHQMD, PHSD, etc.;
 - \checkmark Wide/realistic vertex distribution, sigma_z = 50 cm
 - ✓ Full detector including all subsystems and materials
 - ✓ Resonances are Dalitz decays are processed by Pythia-8 for realistic shapes (if present in the input files)
 - ✓ Number of tracking steps is increased to "infinity" to make sure that heavy fragments are tracked to detectors
 - ✓ Centrality dependent T_0 resolution (FFD resolution from DCM-QGSM-SMM simulations):

Event selection

- All events were simulated with b = 0-16 fm
- However, different event generators produce different output
- Empty (elastic) events must be rejected from physics analyses
- Examples for Request 25 (UrQMD) production

- ✓ Many empty events with only original 209*2 nucleons as primaries are simulated at large values of impact parameter, impact parameter distribution has a sharp edge at higher limit (16 fm)
- ✓ By selecting event with N_{primary} > 0 (or 209*2) one can reject the empty events and work with inelastic events only
- ✓ Alternative is to require at least one generated primary particle at $|\eta| < 1$

Generated and reconstructed vertices - I

• Generated z-vertex with sigma_z = 50 cm:

• Reconstructed z-vertex by TPC (inelastic events):

V. Riabov, Cross-PWG Meeting, 02.08.2022

Generated and reconstructed vertices - II

Origin (starting points) of TPC tracks in peripheral events with b > 12 fm:

٠

In peripheral UrQMD events a big fraction of TPC tracks originate from interactions in the FFD and materials
 This is not observed in DCM-QGSM-SMM events

Generated and reconstructed vertices - III

• Rapidity distribution of generated particles, UrQMD:

Protons Neutrons Pions Fragments/ions

• Rapidity distribution of generated particles, DCM-QGSM-SMM:

✓ In peripheral UrQMD events, the FFD/FHCAL is sprayed with nucleons, which are supposed to be bound in heavy fragments as predicted by DCM-QGSM-SMM → <u>forward simulations with UrQMD are wrong</u> (don't use for forward detectors) → <u>pay attention to spikes and structures in reconstructed distributions</u>.

Generated and reconstructed vertices - IV

• Vertex reconstruction efficiency vs. generated z-vertex and number of TPC tracks (nhits>10), UrQMD:

- ✓ Reconstructed |z-vertex| < 150 cm, even for events with generated |z-vertex| > 150 cm → <u>limitations of TPC</u>
- ✓ <u>Reconstructed vertex (!=0) can be incorrect in peripheral events</u>
- \checkmark Need a vertex task to combine information from the TPC and FFD

Detector acceptance

• TPC tracks with nhits > 10:

- \checkmark With a wide z-vertex distribution, charged particles are reconstructed up to $\eta \sim 2$ with asymmetric acceptance
- ✓ Mean momentum of accepted particles increases with rapidity
- ✓ Observe effect of the central membrane?
- ✓ Should think what physics could be gain from a wider rapidity coverage

Momentum resolution

Number of hits: ٠

•

More straight tracks with larger number of hits with the reduced magnetic field \checkmark Momentum resolution is a factor of two worse with the reduced magnetic field \checkmark

TPC acceptance

• Transverse momentum of reconstructed TPC tracks:

✓ **Acceptance is larger** for light particles with the reduced magnetic field;

TPC - dE/dx

• dE/dx distributions for reconstructed TPC tracks \rightarrow extended ranges are clearly seen:

<u>dE/dx parameterizations for reconstructed particles ~ the same except for momentum smearing effect</u>

TOF matching

• Track matching in dPhi, dZed:

• Matched particles:

✓ <u>Matching is better</u> for tracks with the reduced magnetic field; <u>softer tracks are matched</u> ✓ The lower the particle mass the longer the gain in eccentaria

✓ <u>The lower the particle mass the larger the gain in acceptance</u>

TOF acceptance

Full field, T = 0.5 T

Reduced field, T = 0.2 T

Acceptance is larger with the reduced magnetic field; practically no mismatching signals with β > 1
 Mass resolution is worse with the reduced magnetic field

Electrons

✓ Comparable electron reconstruction effiiecny and better electron purity with the reduced magnetic field;

Resonances: K*(892)⁰

Full field, T = 0.5

- ✓ <u>Comparable signals and efficiecnies</u>
- \checkmark **Worse mass resolution** with the reduced magnetic field;

Resonances: $\phi(1020)$

Full field. T = 0.5

- ✓ <u>Comparable signals and efficiecnies</u>
- ✓ **Worse mass resolution** with the reduced magnetic field;

Resonances: $\rho(770)^0$

Full field. T = 0.5

- ✓ **Comparable signals and efficiecnies**
- ✓ **Worse mass resolution** with the reduced magnetic field;

Resonances: $\Sigma(1385)^{\pm}$

Full field, T = 0.5(GeV(c²) (0.000) (0.000) 0006 MeV/c² Ψ0.22E × 0.2 ssolution 800.0 0.18 Entries 7000 0.16 U328 W328 W328 6000 0.14 0.12 5000 0.006 0.1 4000 0.005 0.08 3000 0.06 0.004 2000 0.04 0.003 1000 0.02 0^L 0 1.2 ² 2.2 2.4 *p*_T (GeV/c) 0.002^L 1.6 1.65 Μ_{π⁴Λ} (GeV/c²) 1.25 1.3 1.35 1.4 1.45 1.5 1.55 0.2 0.6 0.8 1 1.2 1.4 1.6 1.8 0.4 0.5 1.5 2.5 р_т (GeV/c) Reduced field, T = 0.2 T10 MeV/c² 2000 1000 0.01 (GeV(c²) (0.009 Ψ0.22 × 0.2 800'0 (Entries / 1800 0.18 1600 0.16 1400 0.14 Wass Mass 1200 0.12 0.006 1000 0.1 800 0.08 0.005 -600 0.06 0.004 400 0.04 200 0.003 0.02 이드 1.2 00^L 1.5 1.55 1.6 1.65 Μ_{π^aΛ} (GeV/c²) ² 2.2 2.4 *p*_T (GeV/c) 1.45 1.35 1.4 1.25 1.3 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 0.002 1 0.5 1.5 2 2.5 p_{_} (GeV/c)

- ✓ <u>Comparable signals and efficiecnies</u>
- ✓ **Worse mass resolution** with the reduced magnetic field;

Weak decays: K_s , Λ , Σ^-

Full field, T = 0.5

Neutral mesons: π^0 and η

- Reconstruction efficiencies:
 - ✓ Photons: E > 0 GeV, $T_{reduced} < 2$ ns
 - ✓ |E1-E2|/(E1+E2) ≤ 0.75
 - ✓ Pairs: |y| < 0.5

- Efficiency for π^0 is > 10% at p_T > 50 MeV
- Signal is measurable starting from ~ 50 MeV/c
- Efficiencies are identical

Neutral mesons at low p_T : π^0

Full field, T = 0.5

Reduced field, T = 0.2 T

0.3

0.35 0.4

0.22 0.24

M_{rr} (GeV/c²)

0.2

0.025-0.075 GeV/c

- Signal is measurable from ~ 50 MeV/c ٠
- Similar S/B ratios •

Neutral mesons at high p_T : π^0

- The peak width decreases with increasing momentum (better energy resolution)
- The S/B improves with increasing momentum; similar S/B ratios

Mass and width of π^0

Full field, T = 0.5

- Width is driven by single photon energy resolution
- Mass and width have modest dependence on collision centrality and analysis cuts

Neutral mesons: η

Full field, T = 0.5

- The peak width decreases with increasing momentum (better energy resolution)
- The S/B improves with increasing momentum

Centrality with DCM-QGSM-SMM (Request 26)

E_{TOT} vs. E_{cone}

Vertex and T₀ resolution (Request 26)

Trigger efficiency vs. b (Request 26)

FFD trigger efficiency vs. impact parameter

12

14

b (fm)

10

0.4

0.2

0^L

2

4

6

8

Trigger efficiency vs. z-vertex (Request 26)

FFD trigger efficiency vs. z-vertex

FFD||FHCAL trigger efficiecny vs. z-vertex

Conclusions

• Do not see any problems with the productions