BiBi 9.2 GeV UrQMD Request 25

Flow QA

Valerii Troshin, Peter Parfenov NRNU MEPhI

02.08.2022

Tpc Track Quality; Primary protons

Tpc Track Quality; Primary pions

Tpc Track Quality; pions |DCA|<1cm

Anisotropic transverse flow

Spatial asymmetry of energy distribution at the initial state is transformed, through the strong interaction, into momentum anisotropy of the produced particles.

$$Erac{d^3N}{d^3p}=rac{1}{2\pi}rac{d^2N}{p_Tdp_Tdy}(1+\sum_{n=1}^\infty 2v_n\cos(n(\phi-\Psi_{RP}))) \ ec{V} \ v_n=\langle\cos(n(\phi-\Psi_{RP}))
angle$$

In the experiment reaction plane angle $\Psi_{\rm RP}$ can be approximated by participant $\Psi_{\rm PP}$ or spectator $\Psi_{\rm SP}$ symmetry planes.

Scalar product method for v_n measurement

u and Q-vectors:

$$\mathbf{u_n} = \{u_{n,x}, u_{n,y}\} = \{\cos n\phi, \sin n\phi\}$$
$$\mathbf{Q_n} = \{Q_{n,x}, Q_{n,y}\} = \left\{\sum_k w^k u_{n,x}^k, \sum_k w^k u_{n,y}^k\right\}$$

Here w^k is energy in *k*-th module of FHCal.

Scalar product method gives independent estimates for flow valu Q-vector components and symmetry plane sources.

 v_1 with respect to symmetry plane Ψ_s is calculated using group of particles (modules) "a":

$$v_{1,i}^{a}(p_{T},y) = \frac{2\langle u_{1,i}(p_{T},y)Q_{1,i}^{a}\rangle}{R_{1,i}^{a}}, i = x, y \ v_{2,i}^{a}(p_{T},y) = \frac{2\langle u_{2,i}(p_{T},y)Q_{2,i}^{a}\rangle}{R_{2,i}^{a}} \quad v_{2,i}^{a}(p_{T},y) = \frac{4\langle u_{2,i}(p_{T},y)Q_{1,i}^{a}Q_{1,i}^{b}\rangle}{R_{1,i}^{a}R_{1,i}^{b}}$$

 $R^{a}_{1,i}$ is a 1st order event plane resolution correction (details in the following slides)

R₁ 2 sub-event method: FHCal

R₂ 2 sub-event method: TPC

$$R_{2,i} = \sqrt{\langle \Psi_{2,i}^N \Psi_{2,i}^S \rangle}, i = x, y$$

 ψ -vectors formed by charged hadrons in TPC acceptance: N - $\eta \in [$ 0.05, 1.5] S - $\eta \in [$ -1.5, -0.05]

- |DCA|<1 cm
- PDG code

Primary tracks in FHCal acceptance

- |DCA|<1 cm
- Number of hits in TPC> 16
- PDG code

FHCal

mother id =-1

• PDG code Primary tracks in FHCal acceptance

TPC tracks:

- mother id =-1
- Number of hits in TPC> 16
- PDG code

FHCal

mother id =-1

• PDG code Primary tracks in FHCal acceptance

TPC tracks:

- mother id =-1
- Number of hits in TPC> 16
- PDG code

FHCal

40-60 %

40-60 %

40-60 %

0.8

rapidity

MC particles:

- |DCA|<1 cm
- PDG code

Primary tracks in FHCal acceptance

- |DCA|<1 cm
- Number of hits in TPC> 16

PDG code

FHCal

- |DCA|<1 cm
- PDG code

Primary tracks in FHCal acceptance

- |DCA|<1 cm
- Number of hits in TPC> 16
- PDG code

mother id =-1

• PDG code Primary tracks in FHCal acceptance

TPC tracks:

- mother id =-1
- Number of hits in TPC> 16
- PDG code FHCal

- mother id =-1
- PDG code

Primary tracks in FHCal acceptance

TPC tracks:

- mother id =-1
- Number of hits in TPC> 16
- PDG code

FHCal

 $v_{2}(y,p_{T}) p: u_{2}Q_{2}$

 $v_{2}(y,p_{T}) \pi^{+} u_{2}Q_{2}$

|vtx_z|<70 cm effect</pre>

v₁(y) π⁺: u₁Q₁

 $v_1(p_T) \pi^+: u_1Q_1$

v₁(y) p: u₁Q₁

v₁(p_T) p: u₁Q₁

 $v_{2}(y) \pi^{+} u_{2}Q_{1}Q_{1}$

 $v_2(p_T) \pi^+: u_2 Q_1 Q_1$

v₂(y) p: u₂Q₁Q₁

 $v_2(p_T) p: u_2Q_1Q_1$

Summary

- Good agreement of reconstructed and true resolution for FHCal except for most peripheral collisions.
- Consistent resolution values obtained with X and Y components of Q-vectors.
- p_T and rapidity dependences of directed flow of protons are in good agreement with values from the event generator.
- The flow of reconstructed tracks is consistent with the flow of corresponding tracks from the model
- The wide distribution of vertex_z and the influence of the reconstruction on it does not significantly affect the flows
- Rapidity dependences of directed flow of pions is inconsistent with true flow for model and reconstruction. It may be affected by non flow correlations. It can be checked by differential analysis with bigger statistics.

Do not see any problems with the productions

Backup

R_1 2 sub-event method: FHCal rings

 $v_1(y) \pi^+: u_1Q_1; mother_id=-1$

31

 $v_1(p_T) \pi^+: u_1Q_1; mother_id=-1$

 $v_{2}(y) \pi^{+}: u_{2}Q_{1}Q_{1}; mother_id=-1$

 $v_2(p_T) \pi^+: u_2Q_1Q_1; mother_id=-1$

 $v_2(y,p_T) \pi^+: u_2Q_2; mother_id=-1$

