# Fast way to determine *pp*-collision time with TOF detector

#### Polina Filonchik

Moscow Institute of Physics and Technology

filonchik.pg@phystech.edu Work done during START programme in JINR

August 30, 2022

Using information about particles trajectories and hits from TOF detector to determine time of *pp*-collision.

- **()** Resolution of TOF detector  $\sigma_t = 70 \ ps$
- **2** Momentum resolution:  $\frac{\sigma_p}{p} = 5\%$  (or 2%)
- Solution TOF radius is 1 m and length of 3 m

## Plan

- Selection: Only fast particles with momentum > 0.5 GeV/c and events with more than 5 particles
- Analysis: We treat all particles as pions



Figure 1: Dependence of *TOF* on momentum p for 4 types of particles: p, *K*,  $\pi$ , e.

 $t_0$  by minimzation of  $\chi^2$ 

$$\chi^{2} = \sum_{i} \frac{(t_{0} + tof - t_{i})^{2}}{\sigma_{t}^{2} + \sigma_{tof_{i}}^{2}}$$
(1)

where  $t_i$  - the detector signal of the i-th particle from one event and

$$tof = \frac{L}{c}\sqrt{1 + \frac{m^2 c^4}{p^2 c^2}}$$
(2)

and for pions with  $p > 0.5 \ GeV/c$ 

$$\sigma_{tof} = \sigma_p \cdot \left| \frac{dt_{tof}}{dp} \right| = \sigma_p \frac{L}{\sqrt{1 + \frac{m^2 c^4}{p^2 c^2}}} \cdot \frac{m^2 c^4}{p^3 c^3} < \sigma_{tof}(0.5 \text{ GeV}/c) \approx 20 ps$$
(3)

$$t_0 = \sum_i \frac{t_i - tof}{n} = \sum_i \frac{t_{diff_i}}{n}$$
(4)



 $\rightarrow$  t<sub>0</sub> is biased to positive values due to heavy particles K and p.

# CDF of $\pi^{\pm}$ appearance as a function of charge multiplicity



Figure 4: CDF of  $\pi^{\pm}$  appearance as a function of charge multiplicity

## All $\pi$ and part of earliest tracks



Figure 5:  $t_0$ -distribution, where only 60% of earliest tracks of event

#### compensated biased estimation



Figure 6:  $t_0$ -distribution, where 70% of earliest tracks of event

### TOF difference due to PID



Figure 7: Difference of time of flight between kaons and pions; protons and pions



Figure 8: Distribution  $t_{diff}$  of  $\pi$  and misidentified K for momentum < 1.5~GeV/c and more than 3 particles



Figure 9: Difference between the detector's signal and TOF for pions



Figure 10: t<sub>0</sub>-distribution with sliding window method

#### Some artifacts here



Figure 11: Dependence  $m^2$  on p



$$\sigma_{t_0} = \sqrt{\sum_i \frac{(t_{diff_i} - t_0)^2}{n(n-1)}}$$
(5)

$$t_{diff} = t_i - tof \tag{6}$$

Figure 12: t<sub>0</sub>-error with more than 6 particles

| multiplicity | ratio | $\pm 3\sigma$ | $\pm 3\sigma$ / ratio |
|--------------|-------|---------------|-----------------------|
| 3            | 0.103 | 0.089         | 0.864                 |
| 4            | 0.163 | 0.142         | 0.87                  |
| 5            | 0.176 | 0.157         | 0.892                 |
| > 5          | 0.558 | 0.514         | 0.921                 |

multiplicity = n charged tracks with 0.5

$$ratio = \frac{N(tracks = n \text{ and } 0.5$$

- **(**) Typical time to find  $t_0$  is around 300ns per event
- 2 Unbiased estimation of  $t_0$  with  $\sigma = 32 \ ps$
- **②** The ratio of the count of particles with p < 1.5 GeV/c and more than 3 particles to count of particles with p > 0.5 GeV/c and more than 5 particles in one event  $\approx 95\%$
- $t_0$  in  $\pm 3\sigma \approx 90\%$

# Thank you for your attention!