# Fast cluster finder for TPC detector

ALEXANDER KRYLOV (LHEP)

EMAIL: <u>AVKRYLOV@JINR.RU</u>

OLEG ROGACHEVSKY (LHEP)

VIKTOR KRYLOV (LNP)

#### ClusterFinder Task



#### TPC Digits

**TPC** Hits



## Event Display for the MPD

Event Display help to:

- visualize events online in the control room during run;
- checking reconstruction and physics analysis algorithms;
- look more closely in special events.

#### Reconstruction tasks' timing

- A reconstruction of high multiplicity events reaches timings above 1 minute;
- ClusterFinder task takes half of that time on itself;
- We need fast ClusterFinder task for online visualization purposes.



Percent of reconstuction timing for different tasks

#### New Fast ClusterFinder algorithm



Fast ClusterFinder algorithm workflow

### Tracking new hits with present Kalman filter

Quality of ClusterFinder with present Kalman tracking can be estimated by number of hits recognized as a track. For 100 tracks in event tracking recognize:

- 93.55% hits for current ClusterFinder
- 86.72% hits for fast ClusterFinder

For all tests was used BOX generator with muons and Pt = 2.5 GeV/s



#### Number of reconstructed tracks

Also we can measure number of reconstructed tracks after ClusterFinder and KalmanFilter tasks.

Lack of work with "edge effect" sometimes gave us 2 different tracks for 1 primary track.



Number of recognized **primary** tracks for different multiplicity

#### Hits recognized into a track



### Online ClusterFinder Execution time for one Sector



#### Unsolved problems



"Edge effect" problem

#### To Do

- 1. Take into account the edge effect
- 2. Check performance on real generators (UrQMD, LAQGSM etc.)
- 3. Get rid of cos() and sin() methods to speed up clustering
- 4. Add parallelization
- 5. Implement ClusterFinder into the Event Display