
MPDRoot
from R&D towards Software

HNATIC Slavomir



OUTLINE

• Technology Development

• R&D vs Software

• Large vs Small projects 

• COCOMO Model

• Complexity

• Requirements

• Coding

• Codebase

• Innovation



TECHNOLOGY DEVELOPMENT

“…the profession in which a knowledge of the  
mathematical and natural sciences gained by study, 
experience, and practice is applied with judgment to 
develop ways to utilize, economically, the materials 
and forces of nature for the benefit of mankind.”

-- Accreditation Board of Engineering & Technology 
(www.abet.org)

Technology Development =
Scientific Theory + Engineering Practice + Economy

ACTIVITIES FOCUS



R&D vs SOFTWARE ENGINEERING
SOFTWARE ENGINEERINGR & D

PRODUCT DEVELOPMENT

• R&D valid concepts integrated 
into whole

• Not in conflict with existing 
development 

• User/developer friendliness
• Extensible
• Maintainable
• Not requiring unmanageable 

(geeky) support
• Compact, modular
• Follows SE principles & best 

practices

CONCEPT VALIDITY EXPLORATION

• Key goal: Innovation

• Successful end justifies all 
means

• Many of tested hypotheses 
invalid

• Proper practices completely 
out of focus to save time

• Prototypes of valid concepts
must be adapted to SE standards 



LARGE PROJECTS vs SMALL PROJECTS

WHY IS THIS IMPORTANT ?

• MPD – large project by duration, computational size, data volumes, projected user number

• Large codebase with continuous substantial influx of inputs expected

• Small project success (single R&D concept) does not prepare for large project succes

• Software = foundation for Research / R&D 

• Software stability, quality, efficiency – success critical factor

• Change of focus, build of additional skill sets critical as projects become larger

• Large project core influences: 

- size (scaling)
- defects handling
- dealing with uncertainty
- human variation
- synergy



SOFTWARE PROJECT DYNAMICS

COnstructive COst MOdel
(COCOMO II) 
by Barry W. Boehm

• Most rigorous statistical analysis of software projects 
using data from historic projects

• Results expressed in “effort adjustment factors”, 
these describe software project dynamics, 
used to gain insight to adjust the development strategy

• Requirements Analyst Capability factor 2 means
project with very low level analysis of requirements
would cost 2 times more effort than project with very
high level of requirements analysis



COMPLEXITY

Applied Software Measurement, C. Jones (2008)

Backend

Build

Physics

April 2021 April 2022

Codebase Restructuring & Cleanup

Build System Separation

SCALING: indicates action of cumulative forces pushing projects towards either success or failure

Complexity measures
Lines Of Code - crude (easy to obtain)
Functional Points - exact (difficult)

- structure dependent: tight vs loose coupling



DOWNSCALING EFFECT
Project Activity Mix by Size

How Not to be Surprised in Software Development, 
S. McConnell (2012)

COMPACTNESS  &  MODULARITY   =   Long  term  critical objective !!!



REQUIREMENTS MODELING
Uncertainty: Cloud vs Cone

Defects handling

• the later the defect is fixed, 
the more it costs to correct

• try to detect defects early

• do not cumulate technical 
debt – fix defects asap

• variability/convergence of 
the project to desired result

• the cone does not narrow by 
itself

• target sources of uncertainty 
early

MPDROOT

• High level product spec

- in process, once ready 
subject for approval

• Requirements modeling

functional
- user personas
- user stories
- use cases

non-functional
- system performance



CODING

MPDROOT CODING RULES

Basic truths   

1. It’s harder to read the code, than to write it
2. Capability based approach being the most effective

Focus
• readability
• design
• general rules:

https://mpdroot.jinr.ru/mpdroot-naming-convention/
•

Variation: Human vs Development Process

• By far:  Capability > Process

https://mpdroot.jinr.ru/mpdroot-naming-convention/


CODEBASE

NO OBJECT ORIENTED DESIGN OBJECT ORIENTED DESIGN 

FAIRROOTMPDROOT

• No interfaces at all
• No abstraction hierarchy
• Procedural code written using C++ syntax 

ridden with OO design antipatterns

TECHNOLOGY DEVELOPMENT METHODOLOGIES 
CANNOT BE USED EFFECTIVELY

DO:
• Object Oriented Analysis
• Design Interfaces
• Design Class Invariants
• Remove antipatterns (global state, God class)
• Use OO design patterns

(sort of)



TDD: MPDROOT

DESIGNING TESTS ON MULTIPLE ABSTRACTION LEVELS

Test level hierarchy “system / component / unit“ adapted for MPDRoot’s backend:

• Top level…………system (bench) tests….…QA

• Middle level……….component tests……….specific reconstruction FairTasks (invariant interfaces)

• Bottom level…………….unit tests…………....interface units (invariant pure virtual methods)

EFFICIENT DEVELOPMENT CONSISTS OF

1. Define module external behavior

2. Develop working prototype

3. Refactor

- precision (output accuracy improvement)
- performance (structural improvement)



TDD: PILOT USE CASE
Cluster Hit Finder

Preparatory work
• get rid of geometry singleton
• create invariant Base class for geometry 

Interface 
• inheriting from FairTask
• test-driven design
• dependencies passed by injection
• clusterhitfinder units: findClusters, findHits

Implementation
• current Mlem algorithm to be adapted to interface 

(criterion: reconstruction identity)
• new fast clusterhitfinder to be adapted to interface
• both algorithms are standardized and testable on levels of:

- pure virtual methods
- interface
- reconstruction

TDD

• standardized criteria
- precision
- performance

• multilevel analysis  
- improvement of which part 
has the most significant effect?

• hybrid algorithms

• long term effective strategy

• data-driven tests varied depending  
on improvement requirements



Thank You !

Q & A



USERS

SERVICE DESK for Questions

http://mpdroot.jinr.ru/q-a/

“User Involvement – critical project success factor” 
CHAOS Report 2015, Standish Group

http://mpdroot.jinr.ru/q-a/

