PWG5 (Heavy Flavour) summary

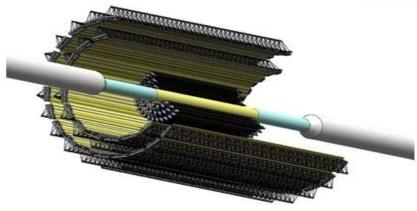
Alexander Zinchenko

Outline

- 1. Scope of activities
- 2. Inner Tracking System (ITS) studies
- 3. Related Work Packages:
 - 1. ITS track reconstruction
 - 2. Exclusive D-meson decay selection
- 4. D+- semileptonic decays
- 5. Outlook

Scope of activities

- Open charm studies: exclusive decays → Inner Tracking
 System (ITS) performance evaluation (synergy with ITS
 project) → dedicated track reconstruction methods ("Vector
 Finder")
- 2. Semi-leptonic decays and charmonia \rightarrow lepton (electron) tagging (synergy with dilepton studies) \rightarrow energy loss simulation and reconstruction in TPC for dE/dx PID



Reconstruction of charmed particles in Au+Au central collisions with MPD ITS3+TPC tracking system

Kondratev V., Murin Yu.

MPD WPG5

MPD ITS geometric models

Two ITS geometric models were used for simulation:

1) project model (ITS-5-40) with 5 layers consisting of ladders with standard MAPS

Sensitive area: 15×30 mm²

Thickness: 50 µm

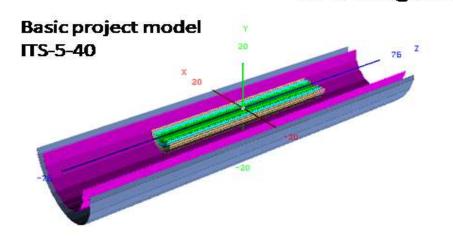
Number of pixels: 512×1024

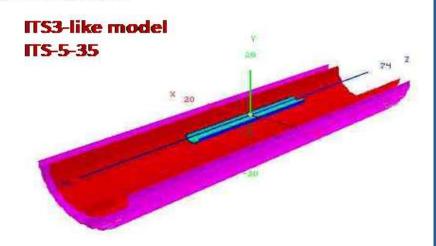
Pixel size: 28×28 µm².

2) ITS3-like model (ITS-5-35) with OB consisting of 2 layers of standard MAPS and IB consisting of 3 layers of bended staves of MAPS (15 um pitch) with large area and thickness of 30 μm

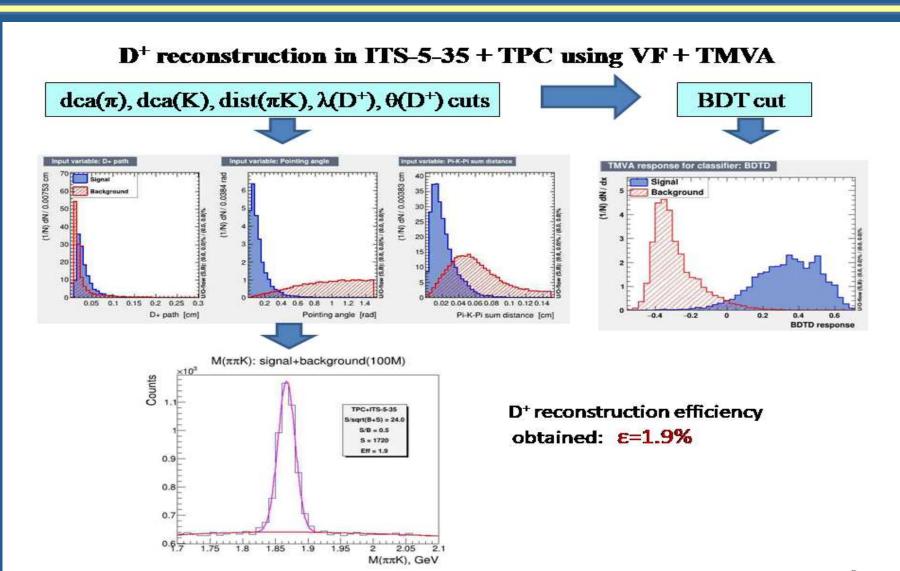
Size of bended MAPS:

1 layer - 280°56.5 mm²


2 layer - 280°75.5 mm²


3 layer - 280°94.0 mm²

MPD ITS geometric models



Layer	No of MAPS	R _{min} , mm	R _{max} , mm	Length, mm		
1	24*12	22.4	26.7	750		
2	24*22	24*22 40.7 45.9		750		
3	24*32	59.8	65.1	750		
4	98*36	144_5	147.9	1526		
5	98*48	194.4	197.6	1526		

Layer	No of MAPS	R _{min} , mm	R _{max} , mm	Length, mm		
1	4	18	18.03	560		
2	4	24	24.03	560		
3	4	30	30.03	560		
4	98*36	144.5	147.9	1526		
5	98*48	194.4	197.6	1526		

D* reconstruction efficiency with two ITS models

Project model ITS3-like model $M(\pi\pi K)$: signal+background(100M) $M(\pi\pi K)$: signal+background(100M) 950 900 TPC + ITS-5-40 TPC+ITS-5-35 S/sqrt(B+S): 21.2 S/sqrt(B+S) = 24.6 S/B = 0.5S = 1360S/B = 0.5Eff: 1.5% S = 1720750 Eff = 1.9 700E 650 0.8 600 0.7 550 endanten berbier berilier 75 1.8 1.85 1.9 1.95 2 2.05 2 1.8 1.85 1.9 1.95 2 2.05 2.1 $M(\pi\pi K)$, GeV M(ππK), GeV **ITS** S/B S $S/\sqrt{S+B}$ €,% ITS-5-40 0.50 21.2 1360 1.5

The reconstruction efficiency increases by 25% when using ITS with an Internal Barrel built on the base of a new type of sensors (bended MAPS with large area)

24.0

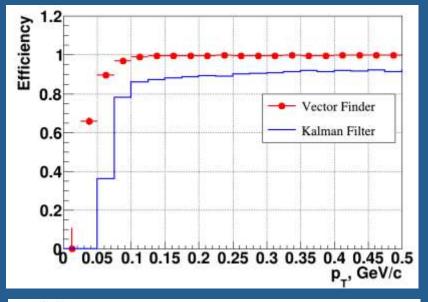
1.9

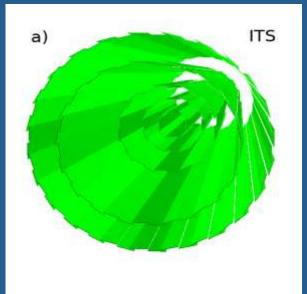
0.50

ITS-5-35

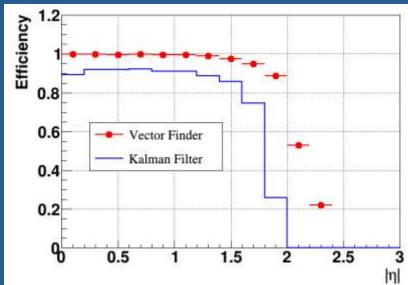
1720

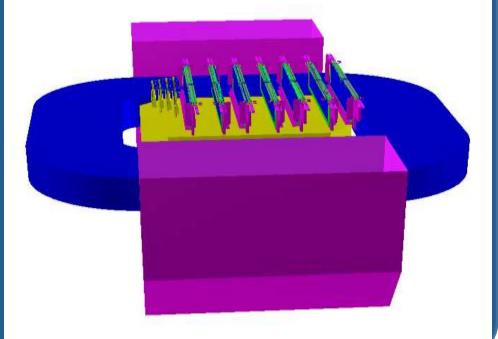
Published articles


- 1. V. P. Kondratyev, N. A. Maltsev and Yu. A. Murin. **Identification Capability of the Inner Tracking System for Detecting D Mesons at the NICA-MPD Facility.**Bulletin of the Russian Academy of Sciences: Physics, **2022**, Vol. 86, No. 8, pp. 1005–1009.
- 2. Zherebchevsky, V. I., Maltsev, N. A., Nesterov, D. G., Belokurova, S. N., Vechernin, V. V., Igolkin, S. N., Kondratiev, V. P., Lazareva, T. V., Prokofiev, N. A., Rakhmatullina, A. R. & Feofilov, G. A.

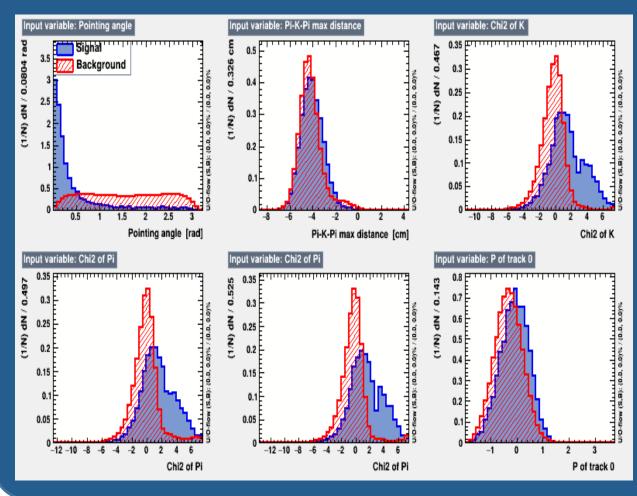

New Technologies for the Vertex Detectors in the NICA Collider Experiments.

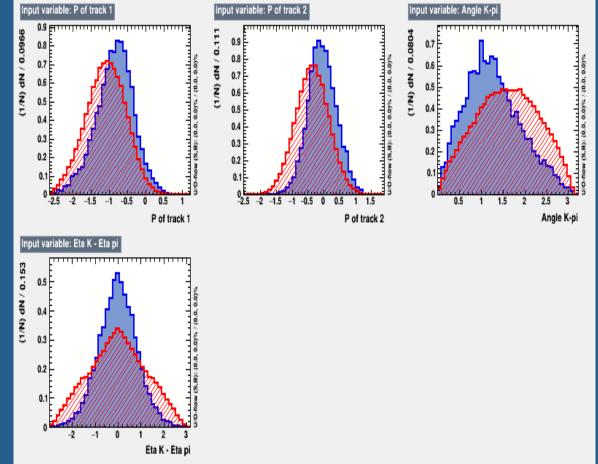
Bulletin of the Russian Academy of Sciences: Physics. 2022, Vol.86, No. 8, pp. 948-955.


Track reconstruction: Vector Finder for ITS

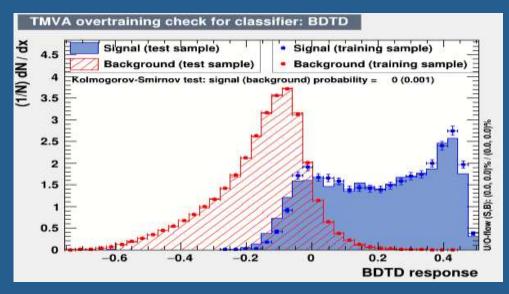


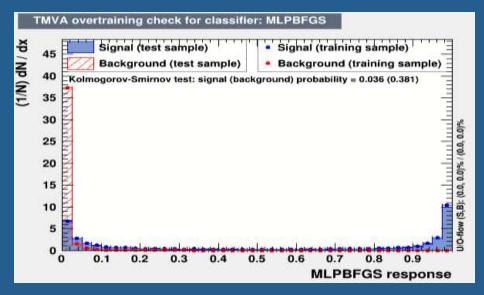
D. Zinchenko

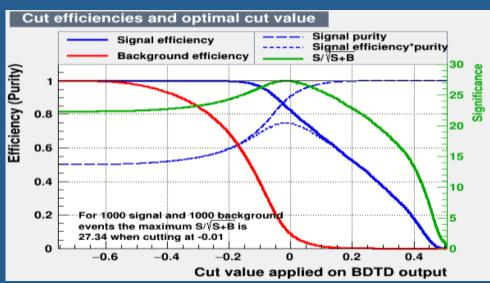

BM@N tracker

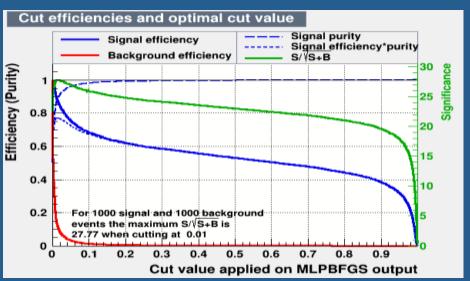


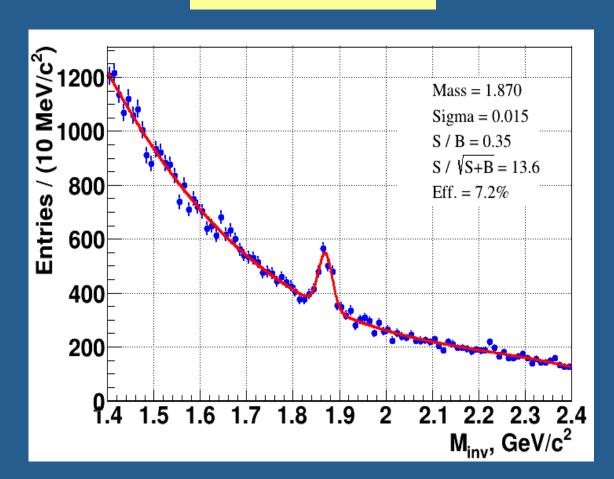
TMVA package: input variables

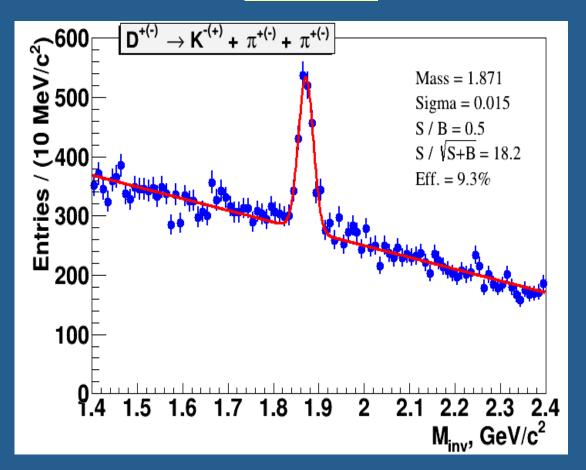

p+p @ 25 GeV Pythia8 (Equivalent statistics ~1B events)
Thanks to V.Kondratev for sharing his experience with TMVA package usage






TMVA package: network performance




D⁺⁽⁻⁾ 3-prong decays

Cuts on variables

TMVA

Semileptonic decays: inclusive electrons

D+ DECAY MODES

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2 \Gamma(K_S^0) = \Gamma(\overline{K}^0)$.

	Mode	Fraction (Γ_j/Γ)			Scale factor/ Confidence level			
Inclusive modes								
Γ_1	e ⁺ semileptonic	(16.07	+	0.30) %	5		
Γ ₂ Γ ₃	μ^+ anything	(17.6	+	3.2) %	,		
Гз	K- anything	(25.7	4	1.4) %			
Γ4	K^0 anything + K^0 anything	(61	4	5) %			
5	K ⁺ anything	(5.9	+	0.8) %			
6	$K^*(892)^-$ anything	(6	+	5) %			
Γ7	$K^*(892)^0$ anything	(23	#	5) %			
Г8	K*(892)0 anything	< 6.6			9/	CL=90%		
Γ9	η anything	(6.3	#	0.7) %	1000=100000		
Γ10	η' anything	(1.04	±	0.18) %			
Γ11	ϕ anything	(1.12	+	0.04) %			

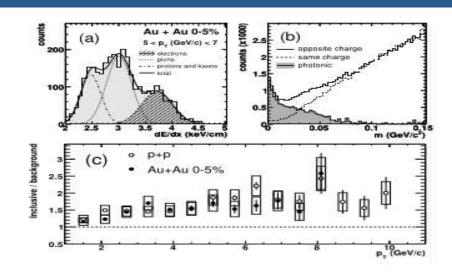
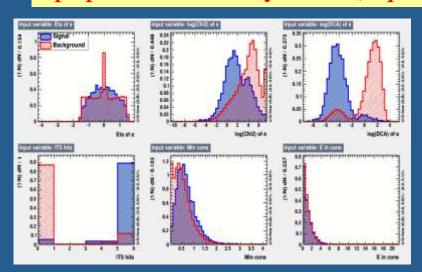
DO DECAY MODES

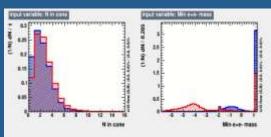
Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as K^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0) = \Gamma(K^0)$.

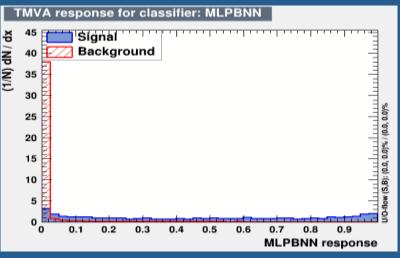
	Mode	F	Fraction (Γ_j/Γ)		/F)	Scale factor/ Confidence leve	
	Topologi	ical mo	des				
Г ₁ Г ₂ Г ₃	0-prongs	[a]	(15	\pm	6) %	
Γ_2	2-prongs	1,500,500	(71	\pm	6) %	
Γ3	4-prongs	[b]	(14.6	+	0.5) %	
Γ4	6-prongs	[c]	(6.5	\pm	1.3	$) \times 10^{-4}$	
	Inclusiv	e mode	es				
Γ ₅	e ⁺ anything	[d]	(6.49	\pm	0.11) %	
Le .	μ^+ anything		(6.8	\pm	0.6) %	
Γ7	K ⁻ anything		(54.7	+	2.8) %	S=1.3
Γ ₅ Γ ₆ Γ ₇ Γ ₈	\overline{K}^0 anything + K^0 anything		(47	\pm	4) %	
Γ9	K ⁺ anything		(3.4	\pm	0.4) %	
Γ10	$K^*(892)^-$ anything		(15	±	9) %	

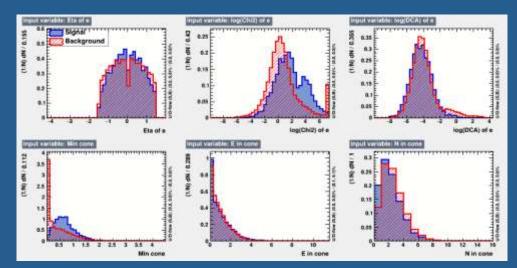
Transverse momentum and centrality dependence of high- p_T non-photonic electron suppression in Au+Au collisions at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$

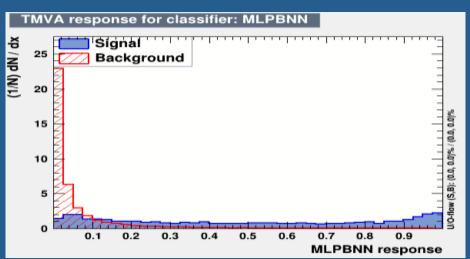
B.I. Abelev, ⁹ M.M. Aggarwal, ³⁰ Z. Ahammed, ⁴⁵ B.D. Anderson, ²⁰ D. Arkhipkin, ¹³ G.S. Averichev, ¹² Y. Bai, ²⁸ J. Balewski, ¹⁷ O. Barannikova, ⁹ L.S. Barnby, ² J. Baudot, ¹⁸ S. Baumgart, ⁵⁰ V.V. Belaga, ¹² A. Bellingeri-Laurikainen, ⁴⁰ R. Bellwied, ⁴⁸ F. Benedosso, ²⁸ R.R. Betts, ⁹ S. Bhardwaj, ³⁵ A. Bhasin, ¹⁹ A.K. Bhati, ³⁰ H. Bichsel, ⁴⁷ J. Bielcik, ⁵⁰ J. Bielcikova, ⁵⁰ L.C. Bland, ³ S-L. Blyth, ²² M. Bombara, ² B.E. Bouner, ³⁶ M. Botje, ²⁸

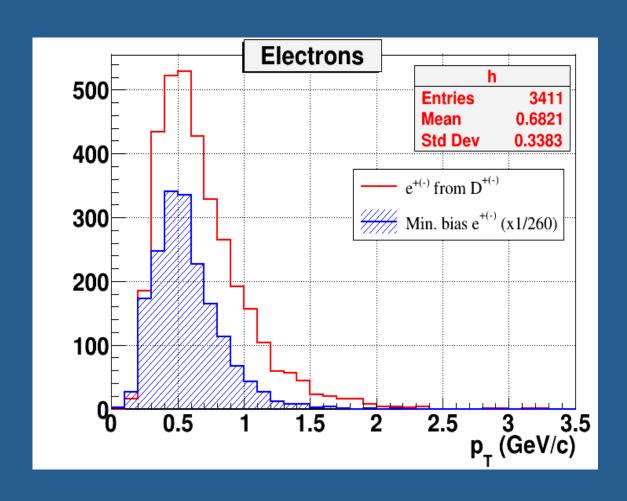




FIG. 1: (a) dE/dx projections for $5 < p_T(\text{GeV}/c) < 7$ in central Au+Au events after EMC and SMD cuts. The lines are Gaussian fits for p + K, π , and electron yields. (b) Invariant e^+e^- mass spectrum. (c) Ratio of inclusive and background electron yield vs. p_T for p+p and Au+Au collisions. Vertical bars are statistical errors, boxes are systematic uncertainties.

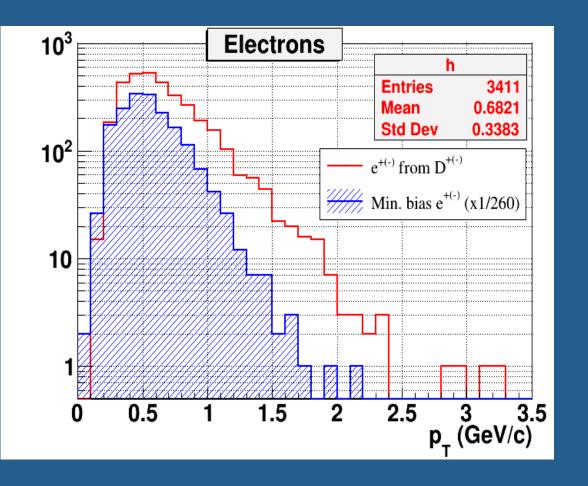

Semileptonic decays: inclusive electrons - TMVA




p+p @ 25 GeV Pythia8 (Equivalent statistics ~500M events)



A. Zinchenko MPD collaboration meeting 10.11.2022


15

Semileptonic decays: inclusive electrons

A. Zinchenko

Outlook

- > Import ITS tracking package from BM@N
- ➤ Performance of the 6-layer ITS
- ➤ Reproduce D-meson results in Au+Au
- > Semieptonic decays in Au+Au
- \rightarrow J/ ψ to e+e-