

Nuclotron-based Ion Collider fAcility

PWG4 summary

V. Riabov and C. Yang for the PWG4

Status & structure

- PWG4 scope electromagnetic probes:
 - \checkmark electromagnetic calorimeter (ECAL) reconstruction software
 - \checkmark reconstruction of photons and neutral meson
 - ✓ dielectron continuum and LVMs
 - \checkmark estimation of direct photon yields and flow
- Conveners: V. Riabov, Chi Yang
- Talk outline: most recent results and activities

ECAL simulations

ECAL simulation and reconstruction

- ECAL simulation chain with the latest (v.4) geometry is available in MpdRoot
- ECAL tutorial was released and is available at <u>https://mpdforum.jinr.ru/c/subsystem-software/30</u>
- Reconstruction chain was tested with the latest mass productions (QA samples):
 - ✓ Request 25 → full field (B = 0.5 T)
 - ✓ Request 27 → reduced field (B = 0.2 T)

Neutral mesons: π^0 and η

- Reconstruction efficiencies:
 - ✓ Photons: E > 0 GeV, $T_{reduced} < 2$ ns
 - ✓ |E1-E2|/(E1+E2) ≤ 0.75
 - ✓ Pairs: |y| < 0.5

- Efficiency for π^0 is > 10% at p_T > 50 MeV
- Efficiencies are identical at full and reduced magnetic field
- Efficiency is larger for η meson compared to π^0

Neutral mesons at low p_T : π^0

Full field, T = 0.5

Entries

Reduced field, T = 0.2 T

- Signal is measurable from ~ 50 MeV/c
- Similar S/B ratios at two field configuration

Neutral mesons at high p_T : π^0

- The peak width decreases with increasing momentum (better energy resolution)
- The S/B improves with increasing momentum; similar S/B ratios

Neutral mesons: η

Full field, T = 0.5

- The peak width decreases with increasing momentum (better energy resolution)
- The S/B improves with increasing momentum

V. Riabov and C. Yang, PWG-4 summary

eID: full vs. reduced field

• Worse momentum resolution, larger number of hits

• Better acceptance for electron tracks in TPC (left) and TOF (right)

• Good prospects for combinatorial background rejection at lower magnetic field (to be tested with large data sets)

Electron reconstruction efficiency and purity

Reduced field, T = 0.2 T

Full field, T = 0.5 T

• Comparable electron reconstruction efficiency and better electron purity with the reduced magnetic field

Dielectrons

Low-p_T track reconstruction

• With current track reconstruction algorithm, low p_T tracks are not reconstructed properly even though full hit information is available in the detector for tracks with $p_T > 30 \text{ MeV} \rightarrow \text{major source of CB}$.

• Tracks with $p_T < 100$ MeV do not cross the TPC (hence don't reach TOF \rightarrow Not defined as fully reconstructed).

Improvement of electron reconstruction

- Loosen the number of hits in TPC cut: $N_{hits} > 39 \rightarrow N_{hits} > 20$
- Better/renewed DCA parametrizations.
- Loosen cut on track χ^2 value during track fitting (suggested by A. Zinchenko) \rightarrow crossing angle correction
- Improved reconstruction of low-p_T electron tracks

Reduction of combinatorial background

- LS background before and after close TPC cut.
- ~ 30% reduction in combinatorial background after tuning the low $p_{\rm T}$ track selection
- Clear trend of improvement in CB rejection even using current algorithm.
- Effect due to crossing angle correction is yet to be quantified.
- Expects further improvement once the current algorithm is improved (ongoing).
- Tests with lower-field data samples are ongoing

E_{T} as a measure of centrality

Centrality categorization (DCM-QGSM-SMM)

 \clubsuit Use TPC multiplicity, transverse energy E_T and FHCAL energy to determine event centrality

Centrality by E_T vs. centrality by TPC

Sampled impact parameter distributions

 E_{T} -CPV, $|\eta| > 0.5$, E_{T} -CPV, $|\eta| < 0.5$, TPC centrality, E_{T} , $|\eta| < 0.5$, E_{T} $|\eta| > 0.5$

- Sampled impact parameter distributions are similar but event samples are different
- TPC and E_T can be used for centrality measurements, produce similar results

Centrality with FHCAL

- TPC and ECAL are consistent
- FHCAL returns similar mean impact parameter values with wider spread (RMS) except for peripheral collisions

Centrality by FHCAL vs. centrality by TPC/ECAL

- FHCAL centrality has a very wide correlation with the TPC/ E_T centrality
- Resolution by impact parameter is worse

Summary

- PWG4 is active with many studies in progress
- Many vacant tasks, extra man power is needed
- Contact conveners if you wish to join or have any questions

BACKUP

E_T distributions

Transverse energy E_T ٠

Contributors:

10²

10²

1

0.1

0.2

0.3

Main contributors: ✓ pions (**photons**, π^{\pm})

V. Riabov and C. Yang, PWG-4 summary

0.4

0.5

0.6 Fraction