MPD PWG2 status report

Vadim Kolesnikov (VBLHEP, JINR) on behalf of the group

MPD Collaboration meeting JINR, Dubna, November 8-10, 2022

□ Introduction : PWG2 tasks

□ Preparation to a new round of feasibility study with Bi+Bi at 9.2 GeV :

- Light hadrons (prod. #25)
- Hyperons (prod. #25)
- Hypernuclei (prod. #29)
- Hyperon polarization (prod. #30)
- □ Summary

PWG2 co-conveners:

Xianglei Zhu (Tsinghua Univ., China) *zhux@tsinghua.edu.cn* Vadim Kolesnikov (JINR, Dubna, Russia) *Vadim.Kolesnikov@cern.ch*

PWG2 physics cases

• Light flavor hadron spectra, yields, and ratios

- Energy, system size and centrality dependence of the production of charged hadrons (pions, kaons, (anti)protons).
- Extraction of transverse momentum spectra, rapidity distributions, mean multiplicities, and particle ratios.
- Nuclear modification factor, antiparticle/particle ratio, radial flow, phase diagram mapping.

Strangeness (hyperons and hypernuclei)

- Analysis of strange hyperons (Lambda, Ksi, Omega) and their antiparticles: spectra, yields, antiparticle/particle ratio, nuclear modification factor, azimuthal anisotropy (together with PWG3).
- (Anti)Lambda polarization.
- Reconstruction of single and double hypernuclei: spectra, rapidity density, and lifetime.

Resonances

- Production of \rho, \phi, Kstar, Lambda(1520) etc.

Light nuclei

- Production of nucleon clusters (d, t, He3, He4) in various reactions (from p+p to Au+Au): spectra, yields, coalescence coefficients.

MPD setup and overall performance

MPD at Stage'1:

- **TPC** tracking: $|\eta| < 1.6$ (Npoints>15)
- **TOF & ECAL** coverage: $|\eta| < 1.3$
- PID: TOF+dE/dx combined |η|<1.3, pT<3 GeV/c, limited PID 1.3<|η|<1.6 (dE/dx)

An (tentative) analysis plan

The goal : readiness of all software/analysis tools for the first data taking in 2024 with Bi beams at 9.2 GeV. Several MPD productions will be analyzed by analysis sub-groups and the following topics will be addressed: (*in read are those items which were not presented in the first Collaboration paper*)

- Hadron spectra, yields, ratios : pions, kaons, protons in centrality selected Bi+Bi
 - -- realistic centrality selection using TPC multiplicity (MEPhI centrality toolkit)
 - -- hadron spectra with low magnetic field (low-pT cutoff)?
- (Anti)Hyperon production in Bi+Bi (Lambda, Ksi, Omega)
- Light nuclei spectra, yields, ratios
- Hyperon polarization
- Hypernuclei reconstruction (invariant mass distributions, pT-spectra, lifetime estimates, etc..)

Light hadrons : existing results (some are in physics paper'1)

- Excitation function of hadro-production in the NICA energy range : pT-spectra, rapidity distributions, K/pi-ratio
- Hyperon phase-space and identified hyperon spectra
- Several production (including private ones), UrQMD, PHSD and PHQMD models

New round of analysis: Light hadrons and hyperons in Bi+Bi

A.Mudrokh, V.Vasendina, A.Zinchenko, V.Kolesnikov

- Production #25 of 50M UrQMD events
- Centrality selection (5-10-20% binning) based on available statistics and specie yields
- Proper PID parameterization and conversion to analysis mDST is ongoing
- Additional hyperon selection method with the TMVA toolkit was tested for old productions

Output from the MEPhI centrality toolkit for MB Bi+Bi

Cent, %	Mult min	Mult max	<n<sub>part></n<sub>	RMS	N _{part} min	N _{part} max	N _{coll}	RMS	N _{coll} min	N _{coll} max
0 – 5	250	376	363.92	23.13	338.91	391.29	835.45	68.11	759.52	913.14
5 - 10	208	250	316.07	25.22	293.63	338.91	690.70	61.21	630.92	759.52
10 - 20	146	208	255.77	29.23	221.58	295.10	526.69	70.78	437.77	635.59
20 - 30	101	146	191.56	24.04	165.03	221.58	361.89	53.44	297.25	437.77
30 - 40	68	101	141.58	20.08	120.71	165.03	243.42	41.04	196.90	297.25
40 - 50	44	68	102.11	16.81	85.66	120.71	157.95	31.31	125.27	196.90
50 - 60	27	44	71.17	13.84	58.16	85.66	97.84	23.26	75.03	125.27
60 - 70	15	27	46.71	11.38	37.13	58.16	56.01	16.93	41.43	75.03
70 – 80	8	15	28.87	8.73	21.63	37.13	29.96	11.22	20.70	41.43
80 - 90	3	8	15.50	6.92	10.21	21.63	13.82	7.46	8.57	20.70
90 - 100	1	2	5.32	3.37	0.41	10.21	3.86	2.96	-1.36	8.57

7

Light hadrons in Bi+Bi : PID tuning

A.Mudrokh

- QA and PID tuning performed for production **25** (UrQMD)
- mDST production for hyperon analysis has started with proper PID parameterizations

A reconstruction: standard method vs TMVA

A.Zinchenko, V.Vasendina

- PHSD data set (~8M events)
- ML approach within the Toolkit for Multivariate Data Analysis with ROOT (TMVA)

Better Lambda selectivity with TMVA

Ξ -reconstruction: standard method vs TMVA

- PHSD data set (~8M events)
- ML approach within the Toolkit for Multivariate Data Analysis with ROOT (TMVA)

Improvement in Ksi selectivity with TMVA

$\Omega^{\text{-}}$ reconstruction: standard method vs TMVA

- PHSD data set (~8M events)
- ML approach within the Toolkit for Multivariate Data Analysis with ROOT (TMVA)

Method of topological cuts (13 cuts)

TMVA method (16 cuts)

Better Omega selectivity with TMVA

New analysis of hadron spectra and yields : what can be added for Physics paper'2?

- (Again) spectra in rapidity bins, rapidity spectra, total yields in centrality selected Bi+Bi (pions, kaons, protons, hyperons)
- Particle yields and ratios, meson-to-baryon ratio, Rcp, etc.
- Deeper inside into QCD diagram mapping analysis (thermal statistical fits of hadron production data) and analysis of transverse dynamics (BW and T, \beta with different profiles) – expert's manpower is needed

Hypernuclei in MPD : analysis'2021

- 40M events of Bi+Bi at 9 GeV (PHQMD model), analysis 2021-22
- H3L invariant spectra and lifetime, estimates for heavier specie
- Not included to the MPD physics performance paper'1

Fit: $dN/d\tau = p0 \exp(-\tau/p1)$, p1 - lifetime

New production #29 (PHQMD model)

20M events from the PHQMD event generator for (hyper)nuclei performance study

PHQMD predictions in A+A

- QA for the request t#29 ۲
- Production is ongoing
- Final PID tuning for hadrons and nuclei ٠ left for the end of the production
- New complementary ML approach • for hypernuclei selection tested

${}^{3}_{\Lambda}$ H reconstruction (2-prong): standard chain vs TMVA

- Standard chains set of 7 cuts optimized in semi-automatic mode to maximize significance
- Machine learning approach TMVA (Multivariate Data Analysis with ROOT)

Standard method of topological cuts (7 cuts)

TMVA method (8 cuts)

Better selectivity of hypertritons with the TMVA toolkit

${}^{3}_{\Lambda}$ H reconstruction (3-prong): standard chain vs TMVA

TMVA also indicates better selectivity for 3-prond decay mode

Global hyperon polarization at NICA/MPD

E.Nazarova, V.Voronyuk

•Bi-Bi @ 9.2GeV, 4M MB events, b [0,12]fm (PHSD, private production)

- -Global hyperon polarization (Thermodynamical approach)
- >Higher polarization for anti-Lambda w.r.t. Lambda
- <u>Transfer of polarization vector to MCTracks</u>

<u>Transfer of polarization during hyperon decays (feed-down)</u>
 Centrality determined through TPC multiplicity
 Event plane resolution estimated via FHCal

More details in https://indico.jinr.ru/event/3260/

•Global polarization analysis •«Event plane» method •Fit of $N_{\Lambda}(\Delta \phi_p^*)$ •Accurately returns values of global polarization for (Anti)Lamba (using MC/Reco Tracks)

Global hyperon polarization at NICA/MPD (2)

- •Bi-Bi @ 9.2GeV, 15M MB events, PHSD, b [0,12]fm (<u>Request 30</u>)
- -QA tests (~900k events) show no problems
- Signal of polarization is present, extracted values from fitting correspond to the mean polarization
- Results are in good agreement with the ones from the private production
 Full official production is under way

Summary

- Data from several new productions will be analyzed soon within PWG2
- Prod. 25 (UrQMD) will the base for hadron and hyperon studies once mDST are ready
- Prod. 29 (PHQMD) will be used for (hyper)nuclei, the DST production rate is sufficient
- Prod. 30 (PHSD), a one dedicated to (anti)Lambda-hyperon polarization studies.
 Problems in the analysis have solved.

Thank you for your attention!