Detector for beams collision monitoring and luminosity measurements in the interaction point at MPD@NICA (Status Report)

> A.Litvinenko ,JINR (alitvin@jinr.ru) on behalf of the working group

beam convergence procedure at the point of the interaction

working group

$$[\mathcal{L}] = cm^{-2}s^{-1}$$

one of the key parameters of the collider

Time structure of AuAu collisions at NICA

Basic parameters (for $\sqrt{S_{NN}} = 11 \text{ GeV}$) 1. Length (perimeter) of the ring L = 503,04 m2. Number of bunches $N_{\rm h} = 22$ 3. Number of satellits $N_{s} = 44$ 4. R.M.S. of particles in a bunch $\sigma_z = 0.6 \text{ m}$ 5. Time between bunches $t_{h-h} \cong 76.2 \text{ ns}$ 6. Time between bunch and satellite $t_{h-s} \cong 25.4 \text{ ns}$ 7. Time of single interaction bunches $\Delta \tau_{bb} \leq (6\sigma_z)/(2c\beta) \approx 6$ ns 8. Revolution frequency $f_r \cong 0.56 \cdot 10^6 \text{ Hz}$

Tasks for the luminosity detector

- 1. finding the parameters of the collider, for the most efficient hit of bunches into each other;
- 2. finding the parameters of the collider that optimize the transverse profile of colliding beams;
- 3. selection of collider parameters that optimize the longitudinal position of the interaction vertex

two observables

- \checkmark the first one is the counting rate
- the second one is the distribution of interaction vertices obtained from ToF

what has changed since April this year

old

Ø 10 mm

new

Efficiency = Detected/Produced

DCM-SMM (M. Baznat, A. Botvina, G. Musulmanbekov,V. Toneev, V. Zhezher, //arXiv:1912.09277 [nucl-th], 2019)

Time of Flight for Left and Right Shoulders

 $|\mathbf{T_L} - \mathbf{T_R}| \leq \mathbf{10}$ нс

Efficiency

 $\varepsilon = 82\% \rightarrow \varepsilon = 77\%$

Efficiency = Detected/Produced

DCM-SMM (M. Baznat, A. Botvina, G. Musulmanbekov, V. Toneev, V. Zhezher, //arXiv:1912.09277 [nucl-th], 2019)

Beam convergence adjustment in the transverse plane

Luminosity structure..

$$\mathcal{L}(\delta \mathbf{X}, \delta \mathbf{Y}) = \mathbf{f}_{r} \cdot \mathbf{N}_{b} \cdot \frac{\mathbf{N}_{L} \mathbf{N}_{R}}{\mathbf{S}_{eff}(\delta \mathbf{X}, \delta \mathbf{Y})}$$

 $N_L, N_R\mathchar`-number of the beam ions in the left and right bunches$

Beam convergence adjustment in the transverse plane

estimated time to adjust the convergence of beams in the transverse plane is about three hours 1.5 h - data taking; 1.5 h - setting collider modes;

$\mathcal{L}=10^{27}$	$cm^{-2}s^{-1}$
-----------------------	-----------------

δΧ	N _{tr} /(10 min)	Errors
0	2 760 000	0.06 %
$\delta X = \sigma_X$	1 764 025	0.07 %
$\delta X = 2\sigma_X$	373525	0.16%
$\delta X = 3\sigma_X$	30661	0.60%

$$\mathcal{L} = 10^{25} \ cm^{-2} s^{-1}$$

δΧ	$N_{\rm tr}/(10min)$	Errors	
0	27600	0.6 %	
$\delta X = \sigma_X$	17640	0.75 %	
$\delta X = 2\sigma_X$	3735	1.6%	
$\delta X = 3\sigma_X$	307	5%	

Beta function

Transverse area

$$S_{eff,\perp}(Z) = (1 + (Z/\beta_{IP})^2)$$

Distribution of interaction vertices

$$\begin{cases} P(Z_{V}) = N \frac{\exp(-Z_{V}^{2}/\sigma_{Z}^{2})}{(1 + (Z_{V}/\beta_{IP})^{2})} \\ N = \frac{1}{\int_{-\infty}^{\infty} \frac{\exp(-Z_{V}^{2}/\sigma_{Z}^{2})}{(1 + (Z_{V}/\beta_{IP})^{2})} dZ_{V} \end{cases}$$

Efficiency, Luminosity and beta function

$$N_{L} = N_{R} = 2.8 \cdot 10^{9}$$

$$\sigma_{\rm x} = 1.1 \, {\rm mm}; \ \sigma_{\rm y} = 0.82 \, {\rm mm}$$

 $-30~cm \leq Z_V {\leq 30~cm}$

	$\beta_{IP} = 35 \text{ cm}$	$\beta_{IP} = 60 \text{ cm}$	$\beta_{IP} = 10^4 \text{ cm}$
$\mathcal{L}(cm^{-2}s^{-1})$	$5 \cdot 10^{26}$	$6.9 \cdot 10^{26}$	$9.1 \cdot 10^{26}$
Eff (ε)	0.756	0.635	0.517
$\mathcal{L}(cm^{-2}s^{-1})\varepsilon$	$3.8 \cdot 10^{26}$	$4.4 \cdot 10^{26}$	$4.7 \cdot 10^{26}$

Vertex position

$$T_{L} = \frac{L-z}{c\beta}$$
; $T_{R} = \frac{L+z}{c\beta}$; $\tau = T_{R} - T_{L} = \frac{2z}{c\beta}$

$$c = 3 \cdot 10^8$$
; $\beta = p/E$; $\sqrt{S_{NN}} = 11 \rightarrow \beta = 0.985 \approx 1$

$$z = \frac{1}{2}c \cdot \tau \rightarrow z(cm) = 15 \cdot \tau(ns)$$

$$\sigma_{\tau}=(300\ \div 400)\ ps$$
 ; $\rightarrow\sigma_{z,\tau}\approx(4.5\div 6)\ cm$

Z coordinate. Maximum of interaction point distribution from ToF

$$\widetilde{\sigma}_z = \sqrt{\left(\sigma_{z,V}^2 + \sigma_{z,\tau}^2\right)} = 34 \cdot (1 + 0.016) \text{ cm}$$

$$\Delta Z(cm) = \frac{\widetilde{\sigma}_z}{\sqrt{N_{tot}}} = \frac{34 \cdot (1 + 0.016) \text{ cm}}{\sqrt{N_{tot}}}$$

$$\mathcal{L} = 10^{25} \, cm^{-2} s^{-1}$$

δΧ	N _{tr} /(10 min)	Errors	
0	27600	0.6 %	
$\delta X = \sigma_X$	17640	0.75 %	
$\delta X = 2\sigma_X$	3735	1.6%	
$\delta X = 3\sigma_X$	307	5%	

Adjustment of beam convergence along interaction line

Conclusion II

setting beam convergence along the collision axis does not require record time-of-flight resolutions. Even 400 picoseconds enough.

$$\Delta Z(\text{cm}) = \frac{\widetilde{\sigma}_z}{\sqrt{N_{\text{tot}}}} = \frac{34 \cdot (1+0.016) \text{ cm}}{\sqrt{N_{\text{tot}}}}$$

δΧ	N _{tr} /(10 min)	Errors
0	27600	0.6 %
$\delta X = \sigma_X$	17640	0.75 %
$\delta X = 2\sigma_X$	3735	1.6%
$\delta X = 3\sigma_X$	307	5%

Beam test at CERN

S.G.Buzin, M.G.Buryakov

Two planes

One plane of detector

The plane consists of 100x10x10 mm³ plastic scintillator (organic polystyrene (PS) scintillator with the addition of 1.5% p-terphenyl and 0.05% POPOP) strips viewed from both sides with silicon photomultipliers (SiPM HAMAMATSU S13360-6025CS)

Nearest plans

- 1. TDR
- 2. 8 detector planes
- 3. Closer collaboration with
 - accelerator department

()))))) Backup slides **)))))**)))))

Setting of beam convergence in the <u>transverse plane</u>

$\mathcal{L} = 10^{27} \ cm^{-2} s^{-1}$

δΧ	N _{tr} /(10 min)	Errors	
0	2 760 000	0.06 %	
$\delta X = \sigma_X$	1 764 025	0.07 %	
$\delta X = 2\sigma_X$	373525	0.16%	
$\delta X = 3\sigma_X$	30661	0.60%	

 $\mathcal{L} = 10^{25} \ cm^{-2} s^{-1}$

δΧ	N _{tr} /(10 min)	Errors
0	27600	0.6 %
$\delta X = \sigma_X$	17640	0.75 %
$\delta X = 2\sigma_X$	3735	1.6%
$\delta X = 3\sigma_X$	307	5%

Detector for beams tuning and absolute luminosity measurements in the interaction point at MPD@NICA

> A.Litvinenko ,JINR (alitvin@jinr.ru) on behalf of the working group

beam convergence procedure at the point of the interaction

Fixed target luminosity

$$\mathcal{L} = \frac{N_{bm}N_{t}f}{S}$$

- Nt the number of target atoms in volume through which the beam passes
 - N_{bm} numbers of particles per burst
- f repetition rate
 - S transverse beam area

Fixed target luminosity

$$\mathcal{L} = N_{bm} N_A \frac{\rho(g/cm^3) l_t(cm)}{A_t} f$$

Time structure of AuAu collisions at NICA

Collision parameters (for
$$\sqrt{S_{NN}} = 11 \text{ GeV}$$
)

- 1. Cross section for minimum bias event $\sigma_{AuAu} \approx 6.2 b$
- 2. Max Luminosity
- 3. Counting rate

 $\mathcal{L} = 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$ $R = 6200 \text{ s}^{-1} = \mathcal{L} \cdot \sigma_{AuAu}$

Scattering probability for a single crossing of bunches $w_1 = \frac{R}{f_r N_b} \approx 5 \cdot 10^{-4}$

Admixture of pile up events for $t \le 100 ns$ $< 10^{-4}$ negligible

Favorable conditions for creating a "luminosity detector"

- ☆ Topology of Au + Au collisions when in a cone $\theta \le 4^0$ along both beams many spectators are flying ($E_s \approx E_b = 5.5$ GeV) (₇₉Au)). Convenient for trigger.
- Long time between neighboring collisions. No overlapping events.
- The role of scattering on the residual gas is small.
 - Low counting rate.
 - ✓ Small energy.
 - Large asymmetry of events.

The centrality determination - the observables:

Simulation

Detector operating conditions $(\sqrt{S_{NN}} = 11 \text{ GeV})$

Spectator energy $E_S \approx 5.5 \text{ Gev/c}$

Energy loss spectrum in the scintillator

Simulation

Detector operating conditions $(\sqrt{S_{NN}} = 11 \text{ GeV})$

strip occupancy (per 4 strips)

III. absolute luminosity

S. van der Meer, CERN-ISR-PO-68-31, 1968

van der Meer scan

CALIBRATION OF THE EFFECTIVE BEAM HEIGHT IN THE ISR

ISR-P0/68-31 June 18th, 1968

S. van der Meer

by

at RHIC and LHC the van der Meer scan is commonly accepted procedure for calibration

Definitions and normalizations

 $\mathcal{L} = (N_L N_R f_r N_b) / (S_{eff})$

$$\frac{1}{S_{eff}(\delta X, \delta Y)} = \left(\int_{-\infty}^{\infty} dx \, p_{\perp}(x - \delta X/2) p_{\perp}(x + \delta X/2)\right) \cdot \left(\int_{-\infty}^{\infty} dy \, p_{\perp}(y - \delta Y/2) p_{\perp}(y + \delta Y/2)\right)$$

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}d(\delta X)d(\delta Y)\frac{1}{S_{eff}(\delta X,\delta Y)}=1$$

III. absolute luminosity

IN THE BEGINNING

 $S \sim (N_b)^2$

B~N_b

N _b (1/bunch)	$\mathcal{L}(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$N_{AuAu}(1/s)$	$N_{LD}(1/s)$	N _{AuAu} (1/m)	$N_{LD}(1/m)$	B/S
2 · 10 ⁹	10²⁷	6000	4900	360000	294000	< 10 ⁻⁵
2 · 10 ⁸	10²⁵	60	49	3600	2940	< 10 ⁻⁴
$2 \cdot 10^{7}$	10 ²³	0.6	0.49	36	29 .4	< 10 ⁻³
2 · 10 ⁶	10²¹	0.006	0.0049	0.36	0.29	< 10 ⁻²