Relativistic Heavy-Ion Collisions within Three-Fluid Dynamics (3FD) predictions for NICA

Yuri B. Ivanov

X Collaboration Meeting of the MPD Experiment at the NICA Facility 8-10 November 2022 VBLHEP, JINR

Three-fluid dynamics (3FD) model

The 3FD approximation simulate the early, nonequilibrium stage of the stronglyinteracting matter:

- ✓ baryon-rich fluids: nucleons of the projectile (p) and the target (t) nuclei.
- fireball (f) fluid: newly produced particles which dominantly populate the midrapidity region.

momentum along beam

distribution function

3FD model

Total energy-momentum conservation:

 $\partial_{\mu}(T_{p}^{\mu\nu}+T_{t}^{\mu\nu}+T_{f}^{\mu\nu})=0$

Physical Input

- ✓ Equation of State (EoS)
- ✓ Friction
- ✓ Freeze-out energy density ϵ_{frz} = 0.4 GeV/fm³

3FD: YI, Russkikh, Toneev, PRC 73, 044904 (2006)

EoS:

hadronic EoS (no phase transition)
 Mishustin, Russkikh and Satarov,
 Sov. J. Nucl. Phys. 54, 260 (1991)

- hadronic+QGP EoS with 1st-order PT
- hadronic+QGP EoS with crossover

EoS: Khvorostukhin, Skokov, Toneev, Redlich, EPJ C48, 531 (2006)

QGP Transition in central region [Y.I., PRC 87 (2013) 064904]

 $|x| \le 2$ fm, $|y| \le 2$ fm and $|z| \le \gamma_{cm} 2$ fm, $\gamma_{cm} =$ Lorentz factor of initial motion in cm frame

EoS's: Khvorostukhin, Skokov, Redlich, Toneev, EPJ C48, 531 (2006)

Multiple 3FD applications at ASG, SPS, BES-RHIC, NICA and FAIR energies

- Bulk observables crossover EoS is slightly preferable
- Flow observables crossover EoS is strongly preferable
- Global Λ polarization (discussed below)
- Hadronic EoS fails at √s_{NN} ≥ 5 GeV

THESEUS event generator

3FD:

- The output = Lagrangian test particles (i.e. fluid droplets)
- Fluid droplet = element of freeze-out surface
- Observables = integration of hadron distribution functions over freeze-out surface
- This is inconvenient for application of experimental acceptance
- In 2016 the THESEUS event generator was introduced.

(3FD+Particlization+UrQMD): P. Batyuk et al., PHYSICAL REVIEW C 94, 044917 (2016)

- THESEUS = 3FD + Monte Carlo hadron sampling + afterburner via UrQMD
- THESEUS presents the 3FD output in terms of a set of observed particles.

Hydrodynamic modelling of nuclear collisions for NICA / FAIR

courtesy of M. Kozhevnikova

Light nuclei in heavy-ion collisions

Why are they interesting?

- Abundant production at NICA and FAIR energies
- Very scarce data at NICA and FAIR energies
- Signal of spinodial instability
- Signal of critical endpoint (CEP)
- Medium effects

Updated THESEUS event generator

- There are no light nuclei in 3FD and THESEUS, but only primordial nucleons
- Light nuclei are done by means of coalescence that requires additional parameters
- Updated THESEUS (THESEUS-v2):
 - The light-nuclei are treated thermodynamically, on equal basis with hadrons
- Kozhevnikova, Ivanov, Karpenko, Blaschke, Rogachevsky, PRC 103 (2021) 4, 044905

THESEUS-v2: updates

Recalculation of baryon chemical potential taking into account light nuclei production:

$$n_{\text{primordial }N}(x;\mu_B,T) + \sum_{\text{hadrons}} n_i(x;\mu_B,\mu_S,T)$$
$$= n_{\text{observable }N}(x;\mu'_B,T) + \sum_{\text{hadrons}} n_i(x;\mu'_B,\mu_S,T)$$
$$+ \sum_{\text{nuclei}} n_c(x;\mu'_B,\mu_S,T).$$

'hadrons' = baryon resonances

Nucleus(E[MeV])	J	decay modes, in %		
d	1	Stable		
t	1/2	Stable		
³ He	1/2	Stable		
⁴ He	0	Stable		
${}^{4}\text{He}(20.21)$	0	p = 100		
4 He(21.01)	0	n = 24, p = 76		
4 He(21.84)	2	n = 37, p = 63		
4 He(23.33)	2	n = 47, p = 53		
4 He(23.64)	1	n = 45, p = 55		
4 He(24.25)	1	n = 47, p = 50, d = 3		
4 He(25.28)	0	n = 48, p = 52		
4 He(25.95)	1	n = 48, p = 52		
4 He(27.42)	2	n = 3, p = 3, d = 94		
${}^{4}\text{He}(28.31)$	1	n = 47, p = 48, d = 5		
${}^{4}\text{He}(28.37)$	1	n = 2, p = 2, d = 96		
4 He(28.39)	2	n = 0.2, p = 0.2, d = 99.6		
4 He(28.64)	0	d = 100		
4 He(28.67)	2	d = 100		
4 He(29.89)	2	n = 0.4, p = 0.4, d = 99.2		

Stable light nuclei and low-lying resonances of the ⁴He.

THESEUS-v2: rapidity distributions

Resonances of ⁴He are unimportant in midrapidity at SPS energies. **Resonances of ⁴He are unimportant in midrapidity** at SPS energies. **Resonances of**

Kozhevnikova, YI, arXiv:2210.07334 [nucl-th]

$N(t) \times N(p) / N^2(d)$ ratio

Kozhevnikova, YI, arXiv:2210.07334 [nucl-th]

CEP? Spinodial instability?

THESEUS models growth to energies of 20–30 GeV, although there is neither CEP nor spinodial instability?

Accurate subtraction of weak-decays feed-down from proton yield is important

Polarization in heavy-ion collisions

Motivations: Study of

✓ vortical motion in heavy-ion collisions

✓ mechanism of angular-momentum transfer from orbital one to spin

- Chiral Vortical Effect [Vilenkin (1979); Rogachevsky&Sorin&Teryaev (2010)]
- Phenomenological models [A. Ayala et al., PRC (2022)]

Vortical motion of nuclear matter

Vortical motion: $\boldsymbol{\omega} = (1/2) \boldsymbol{\nabla} \times \boldsymbol{v} = Vorticity$

Relativistic Vorticity =
$$\omega_{\mu\nu} = \frac{1}{2}(\partial_{\nu}u_{\mu} - \partial_{\mu}u_{\nu})$$

- Angular momentum \rightarrow spin polarization
- Similarly to Barnett effect (1915): magnetization by rotation

Polarization Measurements

STAR

- Global Λ and anti-Λ polarization [Nature 548, 62 (2017)]
- Local polarization of hyperons along the beam direction
 [PRL 123, 132301 (2019)]
- Measurement of global spin alignment of vector Mesons [NPA 1005 (2021) 121733]
- ✓ Global polarization of Ξ and Ω hyperons at 200 GeV
- [PRL 126 (2021) 16, 162301]

At NICA and FAIR energies, data are still very scarce
➢ HADES: Λ Polarization at 2.4 GeV [PLB 835 (2022) 137506]
➢ STAR-FXT: Λ Polarization at 3 and 7.2.GeV
PRC 104 (2021) L061901; EPJ Web Conf. 259, 06003 (2022).

Threshold collision energies, above which measurements are feasible.

Facility	BM@N	HIAF	FAIR	NICA
$\sqrt{s_{NN}}$ [GeV]	2.3 - 3.5	2.3 - 4	2.7 - 4.9	4 - 11
global Λ , $\sqrt{s_{NN}} \gtrsim$	$2.3~{\rm GeV}$	$2.3~{\rm GeV}$	$2.7~{\rm GeV}$	$4 \mathrm{GeV}$
global $\bar{\Lambda}, \sqrt{s_{NN}} \gtrsim$	no	$3.5~{\rm GeV}$	$3~{\rm GeV}$	$5 \mathrm{GeV}$
local Λ , $\sqrt{s_{NN}} \gtrsim$	$2.7~{\rm GeV}$	$2.5~{\rm GeV}$	$2.7~{\rm GeV}$	$6 \mathrm{GeV}$
local $\bar{\Lambda}, \sqrt{s_{NN}} \gtrsim$	no	no	$4 { m GeV}$	no 16

Polarization at $3 < \sqrt{s_{NN}} < 11 \text{ GeV}$

- ✓ There are no data at $3 < \sqrt{s_{NN}} < 7 \text{ GeV}$
- ✓ Where is maximum of P_{Λ} ?
- ✓ Is difference between P_{Λ} and $P_{anti-\Lambda}$ that huge as at 7.7 GeV?
- Local polarization of hyperons along the beam direction at 5 -- 11 GeV?
- ✓ Global spin alignment of vector mesons at 5 -- 11 GeV?

Two vortex rings at forward (projectile) and backward (target) rapidities, like smoke rings.

The matter rotation is opposite in this two rings.

3FD prediction: These smoke rings can be observed even in midrapidity at 5 < VsNN < 11 GeV

$$R_{\Lambda}(y) = \left\langle \frac{\mathbf{P}_{\Lambda} \cdot (\mathbf{p} \times \mathbf{e}_{z})}{|\mathbf{p} \times \mathbf{e}_{z}|} \right\rangle_{y}$$

 $P_{\Lambda}(\mathbf{p})$ is polarization of the Λ hyperon, **p** is its spacial momentum, and \mathbf{e}_{z} is the unit vector along the beam.

Collective transverse flow

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi}\frac{d^{2}N}{p_{T}dp_{T}dy}(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \Psi_{\rm RP})))$$

 ϕ = azimuthal angle

 V_1 = directed flow V_2 = elliptic flow

Directed flow (v_1)

- ✓ v₁, especially the proton one, is very sensitive to onset of the deconfinement transition.
- The deconfinement transition happens in the NICA energy range.
- ✓ Crossover EoS is preferable.
- Proton directed flow at vsNN < 7 GeV (AGS) is well reproduced in terms of <P_x>, but not in terms of v₁. Why?

• Pion v_1 data are absent at $v_1 < 7.7$ GeV

YI and Soldatov, PRC 91 (2015) 2, 024915

Directed flow (further questions)

✓ Kaon v₁ data [STAR, PRL 120, 062301 (2018)] are still not explained.
 ✓ Kaon v₁ data are absent at VsNN < 7.7 GeV

Deuteron v₁ data [STAR, PRC 102, 044906 (2020)] are still not explained.
 Deuteron v₁ data are absent at 3 < √sNN < 7.7 GeV

Summary

✓THESEUS event generator is very suitable for simulating heavy-ion collisions at NICA energies

✓THESEUS also provides predictions for light nuclei

It is interesting to measure at NICA:

✓ Light nuclei production

✓ Polarization

✓ Directed and elliptic flow

Thank you

for your attention!

Chiral vortical effect (CVE)

Axial current

$$J_5^{\nu}(x) = -N_c \left(\frac{\mu^2}{2\pi^2} + \kappa \frac{T^2}{6}\right) \epsilon^{\nu\alpha\beta\gamma} u_{\alpha} \omega_{\beta\gamma}$$

induced by vorticity $\omega_{\mu\nu} = \frac{1}{2}(\partial_{\nu}u_{\mu} - \partial_{\mu}u_{\nu})$

Vilenkin, PRD 20, 1807 (1979); 21, 2260 (1980). Son and Zhitnitsky, PRD 70, 074018 (2004)

 $\vec{\omega}$

 $\frac{\mu^2}{2\pi^2}_{\frac{T^2}{6}} = \text{axial anomaly term is topologically protected}$ $\frac{\kappa}{\frac{T^2}{6}} = \text{holographic gravitational anomaly}$

Landsteiner, Megias, Melgar, Pena-Benitez, JHEP 1109, 121 (2011) [Gauge-gravity correspondence] Lattice QCD results in $\kappa = 0$ in confined phase and $\kappa \leq 0.1$ in deconfined phase [Braguta, et al., PRD 88, 071501 (2013); 89, 074510 (2014)]

Chiral vortical effect (CVE): Coalescence

Coalescence-like hadronization: quarks coalesce into hadrons, keeping their polarization.

 $\Lambda \ \ \ -- \ \ \overline{\Lambda} \ \ polarization$ splitting is not explained

Only BES-RHIC energies were studied

AU+AU, 20-50

Sun and Ko, PRC 96, 024906 (2017)

Axial-vortical-effect (AVE):

Axial-charge conservation at hadronization

$$P_{\Lambda} = \int d^{3}x \left(J_{5s}^{0} / u_{y} \right) / (N_{\Lambda} + N_{anti-K}^{*}) P_{anti-\Lambda} = \int d^{3}x \left(J_{5s}^{0} / u_{y} \right) / (N_{anti-\Lambda} + N_{K}^{*})$$

 u_y results from boost to the local rest frame of the matter Sorin and Teryaev, PRC 95, 011902 (2017)

> P_{Λ} and $P_{anti-\Lambda}$ are quite different Therefore, $\Lambda - \overline{\Lambda}$ splitting can be addressed =

Axial-vortical-effect (AVE) polarization

