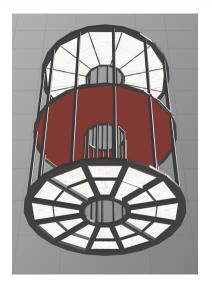
Track Reconstruction in MPD's TPC Using Acts (A Common Tracking Software)

Alexander Kamkin^{1,2} (kamkin@ispras.ru), Pavel Belecky²

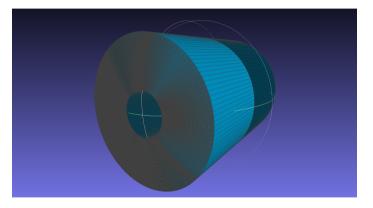
¹Plekhanov Russian University of Economics (PRUE) ²Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISPRAS)

JINR, Dubna | November 9, 2022

Acts Common Tracking Software


- Experiment-independent toolkit for particle track reconstruction
- Implemented in modern C++ (-std=c++17) w/ minimal dependencies
- Result of redesign/refactoring of **ATLAS** tracking software (Athena)
- Designed for multi-threaded data processing (thread safe)

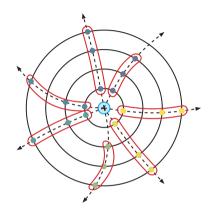
- https://acts.readthedocs.io
- https://github.com/acts-project/acts/


Track Reconstruction Steps

- Digitization
 - ⇒ Measurements (bound to sensor surfaces)
- Space point making
 - ⇒ 3D points (in global coordinates)
- Track seeding
 - ⇒ Seeds / proto tracks (3-point tracklets)
- Track parameters estimation
 - \Rightarrow Initial track parameters $\langle \mathit{I}_{1}, \mathit{I}_{2}, \phi, \theta, \frac{\mathit{q}}{\mathit{p}}, \mathit{t} \rangle$
- Track finding
 - ⇒ Trajectories (arrays of measurements)

Digitization: Virtual Sensor Surfaces in TPC

Measurements in Acts are bound to surfaces \Rightarrow virtual sensors should be introduced

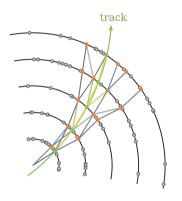


^[Idea]J.D. Osborn, A.D. Frawley, J. Huang, S. Lee, H.P. Da Costa, M. Peters, C. Pinkenburg, C. Roland, H. Yu. Implementation of ACTS into sPHENIX Track Reconstruction. Computing and Software for Big Science, 2021.

Track Seeding

- Seed is a space-point triplet
- Enumeration of space point triplets
- Filtering triplets w/ xy and rz filters

Parameter	Value
$[z_{min}^0, z_{max}^0]$	[-30 cm, 30 cm]
$ctg_{max} \theta = (\frac{\Delta z}{\Delta r})_{max}$	2.0
$[\Delta r_{min}, \Delta r_{max}]$	[1 cm, 6 cm]
Δz_{max}	15 cm
B_z	0.5 T
Impact _{max}	3 cm



https://acts.readthedocs.io

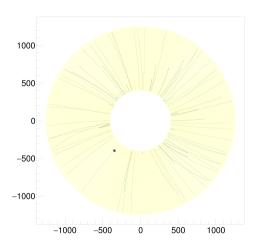
Track Finding

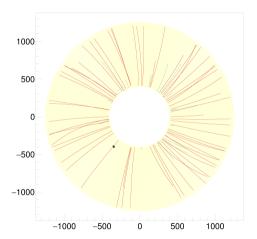
- Track is a sequence of measurements
- Combinatorial Kalman filter (CKF)
- Branching for points on the same surface

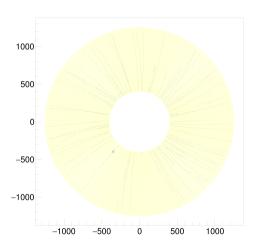
Parameter	Value
PropagationSteps _{max}	1000
EnergyLoss	true
Smoothing	true
N _{max} PerSurface	5
χ^2_{max}	30
Resolve { Material , Sensitive }	true

https://acts.readthedocs.io

Ambiguity Resolution

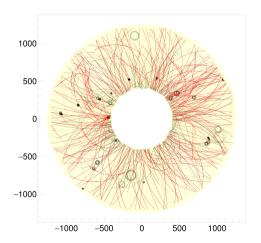

- CKF \Rightarrow a tree-like set of track candidates
- Acts has no general solution for filtering
- We use a naïve approach (subject to change)
 - Long tracks take precedence over short ones
 - Track should contain certain % of new points
 - ... and a certain number of new points in a row

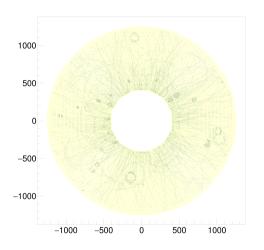

Parameter	Value
Track Min Length	4
NewHitRatio	0.25
NewHitInRow	3

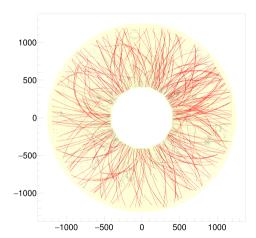

https://acts.readthedocs.io

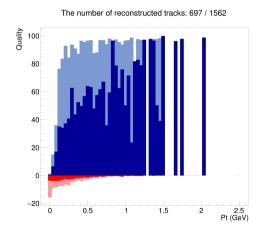
Example 1: Simple Event | Raw Simulation Points



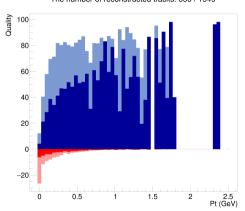

Example 2: Simple Event | Simulated TPC Hits



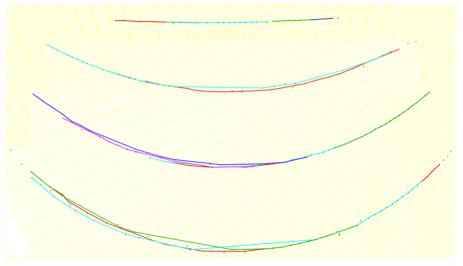

Example 3: More Complex Event | Raw Simulation Points


Example 4: More Complex Event | Simulated TPC Hits




Tracking Efficiency (work in progress)

Raw points (high resolution)



TPC hits (realistic resolution)

Low-Quality for Some Tracks ∼ Piecewise Recognition

Further Research

- Bringing virtual sensors in line w/ real pads geometry
 - Adequate branching in Kalman filter during track finding
- Ambiguity resolution and track merging techniques
 - Many factors: track lengths, χ^2 , shared hits, "holes", etc.
- Deeper study of the track finding efficiency
 - Identifying causes of "bad" cases, more test data, etc.
- Comparison w/ the existing track finding module
 - Need to think about comparison metrics...

Thank You!