Updates on D0 Measurements at SPD

Amaresh Datta (amaresh@jinr.ru)

DLNP Dubna, Russia

Sep 27, 2022

Amaresh Datta (amaresh@jinr.ru) (JINR) Updates on D0 Measurements at SPD

Sep 27, 2022 1/19

< □ > < 同 > < 回 > < 回 >

Using KFParticle Package

- KFParticleBase class uses Construct(*input*) to add daugher KFParticleBase objects sequentially to calculate the point of closest approach / vertex
- KFParticle created with pos, mom, cov, chi2, charge, PID information of the particle (for daughters, info obtained for FirstState of the MCTrack object)
- GetDistanceFrom***() give DCA of KFParticle from vertices or other particles in cm
- GetDeviationFrom***() give χ^2/NDF form vertices or other particles

< □ > < □ > < □ > < □ > < □ > < □ >

Comparison of Existing Wrapper and Inline SV Reconstructions

Figure 1: PYTHIA OpenCharm $\pi^+ K^$ invariant mass : blue : wrapper reco output, Red inline reco output

Figure 2: PYTHIA MinBias $\pi^+ K^$ invariant mass : blue : wrapper reco output, Red inline reco output

▲ 同 ▶ → 三 ▶

Comment on Comparison

- In Physics and MC meeting mentioned mismatch
- After magnetic field was set properly (Vladimir Andreev fixed my problem), the match is now perfect
- Now we can look at other variables

Daughter Candidate DCA To Secondary Vertex

Figure 3: Signal : distance of daughter from secondary vertex

Figure 4: Background : distance of daughter from secondary vertex

< (日) × < 三 × <

Require daughter close to decay vertex, cut \leq 0.01 cm

DCA Between Daughter Candidates

Figure 5: Signal : distance between daughters

Figure 6: Background : distance between daughters

< (日) × < 三 × <

Require $\pi^+ K^-$ to be close, cut ≤ 0.01 cm

Daughter Candidate DCA To Primary Vertex

Figure 7: Signal : distance of daughter from primary vertex

Figure 8: Background : distance of daughter from primary vertex

Still something that does not make sense to me, Bkg should have had narrower and closer to zero

Sep 27, 2022 7/19

Decay Length

Figure 9: Signal : decay lengthFigure 10: Background : decay lengthSignal peak is clealy shifted to about expected lifetime $\sim 100 \ \mu$, althoughit does not cut random background by much. Cut : $L > 0.01 \ cm$

Sep 27, 2022 8/19

Decay Length and Uncertainty

Figure 11: Signal : decay length / uncertainty

Figure 12: Background : decay length / uncertainty

I expected signal to have smaller uncertainties, but may be this is limitation due to inner tracker resolution. Cut : $L/\delta L \ge 3$ drastic cut

Opening Angle Between Daughters

Figure 13: Signal : cosine of angle between daughters

$$\mathsf{Cut}: -0.4 \le cos(heta_{open}) \le 0.7$$

Figure 14: Background : cosine of angle between daughters

Correlated Daughter p_T

Figure 15: Signal : daughter p_T 2D Figure 1 2D

Figure 16: Background : daughter p_T 2D

Probably the best separator so far. Cut : $(p_{T1} + p_{T2}) \ge 1.5$

Cumulative Set of Cuts

- decay $L \ge 0.01$ cm and $(p_{T1} + p_{T2}) \ge 1.5$ blue
- DCA of daughter track to SV \leq 0.01 cm green
- DCA between daughter tracks \leq 0.01 cm red
- $-0.4 \leq cos(\theta_{open}) \leq 0.7$ purple
- $|cos(\theta_{pol})| > 0.8$: Ignore this one
- Requiring even $\frac{L}{\delta l} \ge 3$ on top of other cuts removes signal entirely

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Effect of Cuts

Figure 17: Signal : cumulative cuts cuts

Figure 18: Background : cumulative cuts

Ignore the faint green, consider up to the purple line

Outlook

- About two and half orders of magnitude reduction in background
- A little more than one order of magnitude reduction in signal
- Still not enough background suppression for a fit
- DCA or chi2 of decay products (π⁺, K⁻) to primary vertex are unhelpful when similar analyses depended heavily on this cut. Is it limited by our inner tracker resolution?
- Some recent changes in the inner tracker config (Igor's suggestions) : DSSD 3 layers : 1st layer at 4 cm, 2nd at 14cm, 3rd at 24 cm
- 1st layer now closer than in default config (7 cm)
- Looking at only forward D0 ($|x_F| > 0.2$) next to see if it's easier to separate background and signal (Alexey Guskov's suggestions)

< □ > < □ > < □ > < □ > < □ > < □ >

Thank You

Amaresh Datta (amaresh@jinr.ru) (JINR) Updates on D0 Measurements at SPD

< □ > < □ > < □ > < □ > < □ >

Backup

 Amaresh Datta (amaresh@jinr.ru) (JINR)
 Updates on D0 Measurements at SPD
 Sep

< □ > < □ > < □ > < □ > < □ >

From KFParticle Package

- All methods are part of KFParticleBase class (spdroot/external/KFParticle/KFParticleBase.cxx)
- "void KFParticleBase::Construct(const KFParticleBase* vDaughters[],Int_t nDaughters,const KFParticleBase *Parent,float Mass)"
- "Constructs a short-lived particle from a set of daughter particles"
- "float KFParticleBase::GetDistanceFromVertex(const float vtx[]) const"
- "Returns the DCA distance from vertex in 3D."
- "float KFParticleBase::GetDistanceFromParticle(const KFParticleBase &p) const"
- "Returns the DCA distance from another particle p."
- " Calculate distance from another object [cm]"

Mother χ^2 to Primary Vertex

Figure 19: Signal : Reconstructed KFParticle χ^2 to Primary Vertex

Figure 20: Background : Reconstructed KFParticle χ^2 to Primary Vertex

18 / 19

χ^2 of Secondary Vertex Fit

Figure 21: Signal : Reconstructed KFParticle χ^2

Figure 22: Background : Reconstructed KFParticle χ^2

- ∢ ∃ ▶

19/19