Sector activity report and proposal of the NICA-MPD PWG structure

V. Kolesnikov and O. Teryaev

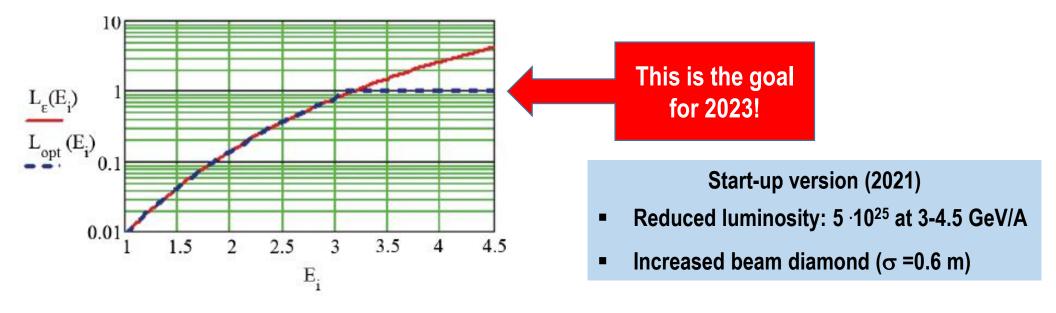
Part I. Sector 2 activity in the framework of the overall NICA-MPD strategy Part II. MPD PWG structure

MPD meeting

29 September 2017

1

NICA-MPD strategy for the Stage'1 period


..was discussed during the NICA-MPD 1-day workshop on Oct.5 2016 (see Indico page)

NICA parameters at the very beginning (from 2021)

Eur. Phys. J. A (2016) **52**: 211 DOI 10.1140/epja/i2016-16211-2

Three stages of the NICA accelerator complex^{\!\star}

V.D. Kekelidze¹, R. Lednicky¹, V.A. Matveev^{1,2}, I.N. Meshkov^{1,3,*}, A.S. Sorin^{1,2}, and G.V. Trubnikov^{1,3}

NICA experimental strategy in 2021-2023

Collider: energy and system size scan from 4 to 11(13,25) GeV in steps of 1-2 GeV GeV

Beam	CM Energy, AGeV	L 2021-23, cm ⁻² c ⁻¹	L >2023, cm ⁻² s ⁻¹
Heavy ions (Au)	11	5 · 10 ²⁵	1027
Intermediate (Z/A~0.45)	13	3 · 10 ²⁶	10 ²⁹
р	25	~10 ²⁹	10 ³²

Limitations by the accelerator:

- lower luminosity (w/o electron cooling for the collider)
- extra reduction by 40% because of a larger interaction region (beam diamond)

Detector constrains:

- **TPC** tracking: $|\eta| < 1.8$ (Npoints>10)
- **TOF & ECAL** coverage: |η|<1.5
- PID: combined (dE/dx+TOF+ECAL) | η|<1.5, 0.1<pT<4 GeV/c, limited in 1.5 < | η| < 1.8 (only dE/dx)
- **FHCAL** coverage: 2.2<|η|<4.8
- **FD** inside the TPC inner pipe
- NO endcaps and vertex detector

Particle yields in Au+Au collisions @ Vs_{NN} = 8 GeV (central collisions)

<u>Stage'1 (2021-23) one week of running at L = 5 · 10²⁵ cm⁻²s⁻¹ (duty factor = 0.5)</u>

Particle	Multiplicity	Decay mode	BR	*Efficiency %	Yield /1 w
π^+	293			61	7.7 · 10 ⁸
K+	59			50	1.5 · 10 ⁸
р	140			60	4.2 · 10 ⁸
Λ	~35	p +π⁻	64%	10%	2.5 · 10 ⁷
Ξ-	~2	$\Lambda + \pi^{-}$	~100%	2.5%	1.5 · 10 ⁵
ρ	31	e+e-	4.7 · 10 ⁻⁵	35	2.5 · 10 ³
ω	20	e+e-	7.1 · 10 ⁻⁵	35	2.5 · 10 ³
φ	2.6	e+e-	3 · 10 ⁻⁴	5	6.0 · 10 ²
Ω	0.14	Λ+К	0.68	1	1.0 · 10 ⁴

*Efficiency includes the MPD acceptance, realistic tracking and particle ID. Particle Yields from experimental data (NA49), statistical and HSD models.

Particle yields in Au+Au collisions @ $\sqrt{s_{NN}} = 8 \text{ GeV}$ (central collisions)

Stage'2 (>2023) Expectations for 10 weeks of NICA running at $L = 10^{27} \text{cm}^{-2}\text{s}^{-1}$ (duty factor = 0.5)

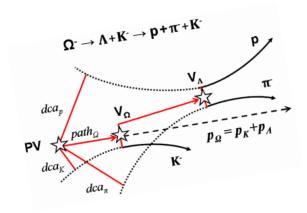
Particle	Multiplicity	Decay mode	BR	*Efficiency %	Yield/10 w
π^+	293			61	2.6 . 10 ¹¹
K+	59			50	4.3 . 10 ¹⁰
р	140			60	1.2 . 10 ¹¹
ρ	31	e+e-	4.7 · 10 ⁻⁵	35	8.0 · 10 ⁵
ω	20	e+e-	7.1 · 10 ⁻⁵	35	8.0 · 10 ⁵
φ	2.6	e+e-	3 · 10 ⁻⁴	15	2.0 · 10 ⁵
Ω	0.14	ΛК	0.68	1	4.0 · 10 ⁶
D ⁰	2 · 10 ⁻³	Κ ⁺ π ⁻	0.038	20	2.2 .10 ⁴
J/ψ	8 · 10 -5	e+e-	0.06	15	10 ³

*Efficiency includes the MPD acceptance, realistic tracking and particle ID. Particle Yields from experimental data (NA49), statistical and HSD models.

SEARCHING for a QCD MIXED PHASE at the NUCLOTRON-BASED ION COLLIDER FACILITY (NICA White Paper)

- NICA is ideally suited for exploring the transition between the hadronic phase and the new plasma phase. This exploration is the top priority of the NICA program
- The first round of NICA experiments should concentrate on a variety of diagnostic observables that have already been employed in experimental programs at RHIC and SPS
- The detector will collect simultaneously centrality-selected high-precision data on double differential spectra of identified hadrons. In consequence, freeze-out conditions will be precisely established for collisions in the transition domain.
- We recommend that the MPD detector at NICA will be optimized for the study of fluctuations and correlations of bulk properties and that a primary goal will be to measure the excitation functions and the dependence of fluctuations&correlations on centrality and system size.
- In the second stage one should consider measurements of open-charm hadrons, di-leptons, and di-photons at NICA.

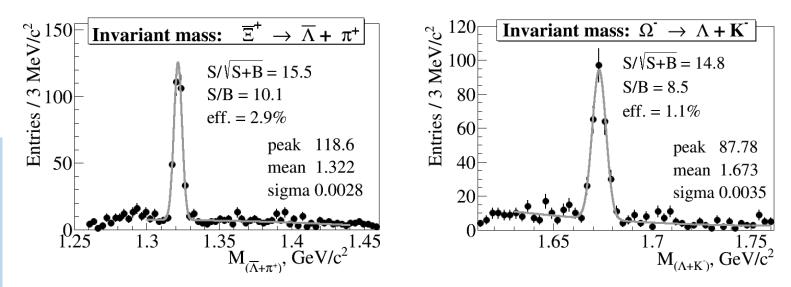
Strategy of the future activity on MPD feasibility study (proposal) – a year ago!


- Focus on the study of MPD performance for Stage'1 probes
 - Hadron spectra and yields
 - Flow
 - (multi)Strangeness production (except Ω)
 - Fluctuations and correlations
 - Electromagnetic probes (abundant species only: π^0 and η)
- MPD performance → towards realistic simulation
 - Timely upgrades/tuning in TPC tracking (i.e. TPC cluster finder)
 - Realistic TOF reconstruction (detector description, TPC-TOF matching, etc..)
 - ECAL reconstruction

Maximal allowed phase-space even for a limited set of MPD elements!

- Numerous tasks for MPD TDR preparation
- **Open questions** : simulation of MPD endcaps, IT, GEMs (Stage'2)

Main problems – time and man power (as usual!)


MPD performance: multi-strangeness (Stage'1)

- ~ 5 · 10 ⁵ central Au+Au at 9 GeV
- Λ- candidates in the invariant mass window ±3σ around the peak combined with kaons
- Topological cuts optimized to maximize significance
- Constrained at low pT (pT>0.2 GeV/c)

D. Suvarieva, A.Zinchenko, V.Vasendina

- Stage'1 MPD configuration (TPC+TOF)
- Selection criteria dictated by the decay topology

Yields for 10 weeks of running (Stage'1)

Particle	Λ	anti- Λ	Ξ^{-}	anti-Ξ+	Ω-	anti– Ω^+
Yield	3 · 10 ⁸	3.5 · 10 ⁶	1.5 · 10 ⁶	8.0 · 10 ⁴	7 · 10 ⁴	1.5 · 10 ⁴

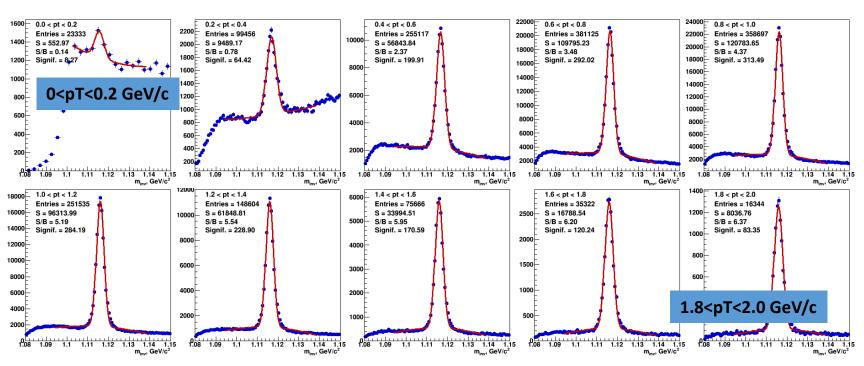
MPD performance: strangeness (Lambda flow)

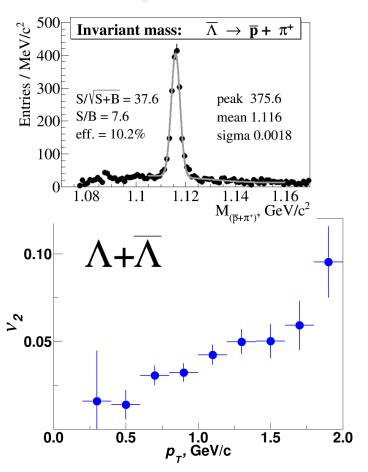
N. Geraksiev

Realistic tracking and PID

A→P+T

dcavo

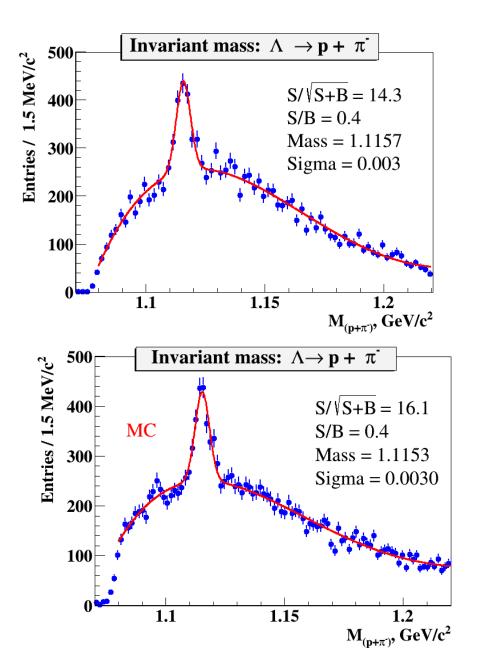

path

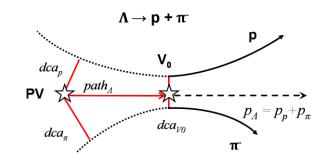

dea

dcap

PV

- Selection criteria dictated by the decay topology
- Optimal cut values (i.e. DCA at the primary vertex, two-track separation, etc.) found from multidimentional scan over the set of criteria with a requirement to maximize the significance
- Hyperons studied up to pT=2 GeV/c, low-pT part of the spectra needs further optimization of the selection criteria





- Min. bias Au+Au @ 11A GeV (UrQMD), TPC+TOF barrel
- Secondary vertex reconstruction
- Event plane from TPC tracks

BM@N: Λ reconstruction (d + Cu, C, CH₂)

A. Zinchenko V. Vasendina

PV – primary vertex

Event topology:

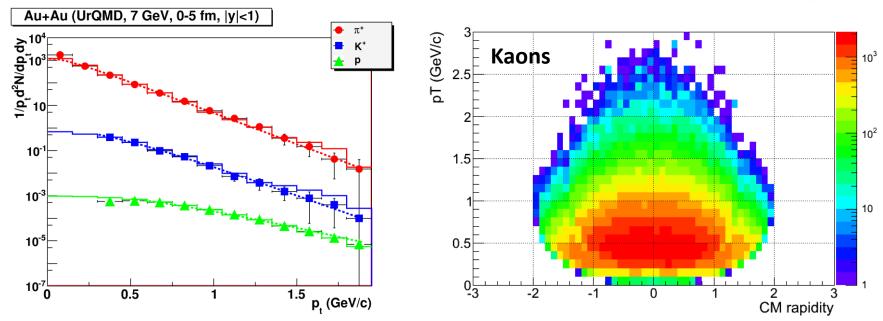
- V_0 vertex of hyperon decay
- ✓ dca distance of the closest approach
- **path** decay length

Signal event topology defined selection criteria:

- ✓ relatively large distance of closest approach
 (DCA) to primary vertex of decay products
 ✓ small track to track separation in decay vertex
- ✓ small track-to-track separation in decay vertex
- ✓ relatively large decay length of mother particle

 Λ signal width of 3 MeV and background level is reproduced by MC simulation.

MPD performance study : hadron spectra & yields

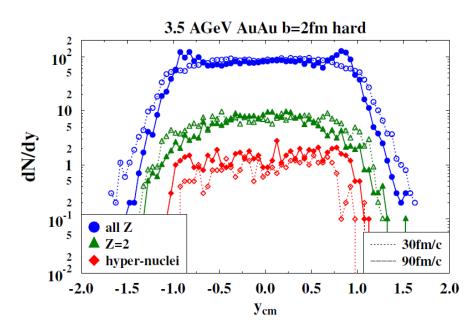

V. Kolesnikov, very old stuff

- PID: 2σ π/K ~ 1.7 GeV/c, (π,K)/p ~ 3 GeV/c
- Full MPD reconstruction chain
- Combined TOF + dE/dx identification
- Fully corrected pt-spectra of π ,K,p

MatchedTofAll 48370 Entries 0.1957 Mean x 0.6385 Mean y dp_udm2dp 8 8 **RMS** x 0.3407 RMS v 0.4299 80 60 40 20-2.50 P Genici 0.6 0.4 0.2 Mass² (GeV²/c⁴)

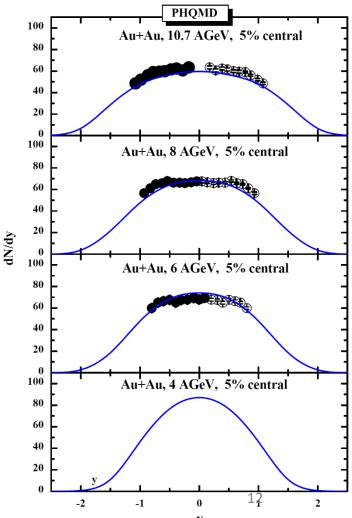
fHistMass2All

- Full reconstruction chain, realistic PID, corrections
- Hadron spectra :large rapidity & pT-coverage



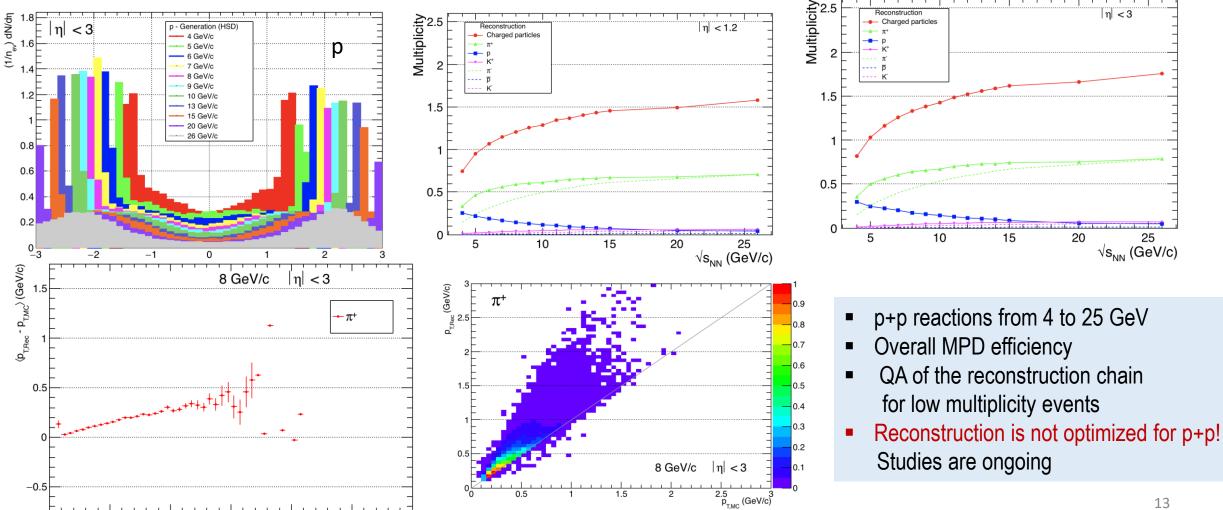
Modeling of fragment and hypernuclei formation

V. Kireev + theory group (Frankfurt, GSI)


PHQMD – a new model for the NICA/CBM energies which allows - in contrast to all other models - to predict the dynamical formation of fragments:

- allows to understand the proton spectra and the properties of light fragments (dn/dp-dv. v..v. fluctuations)
- allows to understand fragment formation in participant and spectator region
- allows to understand the formation of hypernuclei at NICA
- good agreement with the available fragment data from AGS/SPS and single particle spectra

First Results of PHQMD at BMN energy

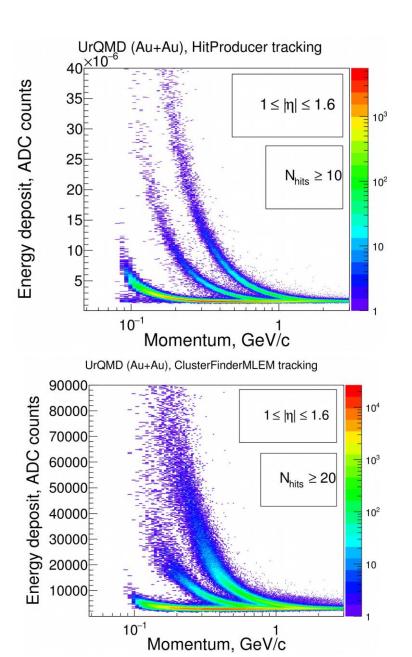

- fragments are stable from 30 to 90 fm/c
- hyper-nuclei are produced in number
- Protons at midrapidity well described

Preliminary simulations of pp collisions for MPD

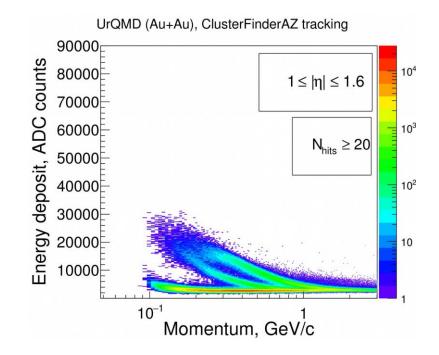
Katherin Shtejer Díaz

PHSD model (provided by Dr. E. L. Bratovskaya) based on the string formed by guark-guark, guark-diguark and diguark-diguark systems. High energy inelastic hadron – hadron collision in HSD is described by FRITIOF string model (including PYTHIA)

Distributions of charged particles $(\pi^+, \pi^-, p, \bar{p}, K^+, K^-)$

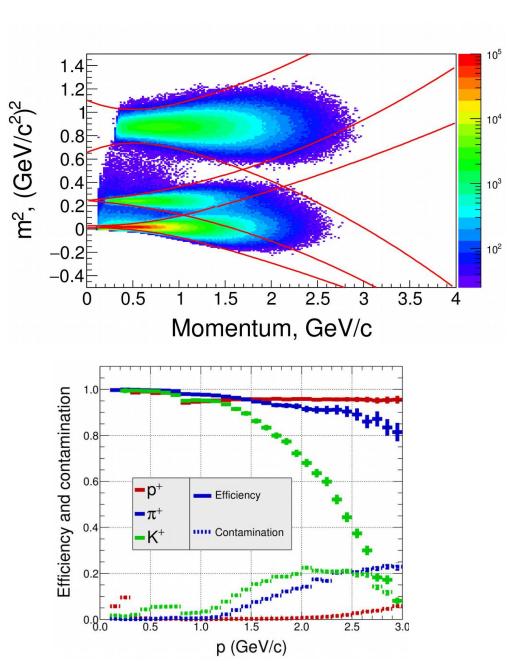

2.5 3 p_{TMC} (GeV/c)

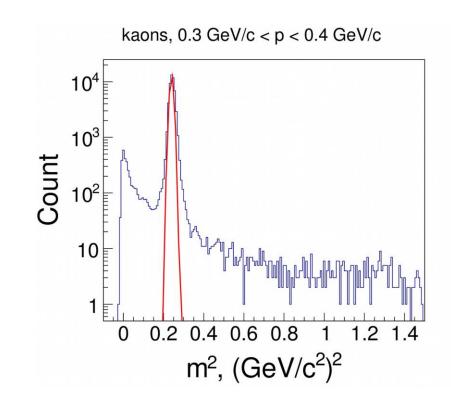
0.5


1.5

2

MPD reconstruction QA: PID


A. Mudrokh

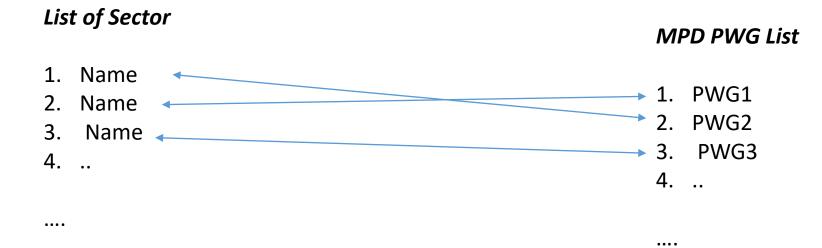


- Phase space is crucial for Ev-by-Ev: how far from |η|>=1 we can go?
- Optimization of clusterfinder/tracking for large eta
- New set of quality selection criteria
- In principle, solved, but took several months

MPD reconstruction QA: PID

A. Mudrokh

- Combined PID efficient up to several GeV/c
- Large tailless at low pT due to TOF mismatches, not solved
- Owing to the large contamination above pT=1.5 GeV/c, a user-defined set of cuts to optimize eff/contam


Summary to Part I

- In principle, most of the signals for the NICA Stage'1 were simulated (hadrochemistry, strangeness, hypernuclei, flow, dileptons, femto).
- There was lack of studies for Ev-by-ev fluctuations now, hopefully, we'll advance in this direction (Anar + Baku group)
- As it was agreed early next step should be more realistic tracking + full set of detectors (TPC+TOF+ECAL+FHCAL).
 But, slow progress there (no final ECAL simulation, PID with cluster finder only recently was understood, etc..)
- Optimization of the NICA simulation group structure why not (see Part II)?

Part II. Structure of the NICA_MPD PWG

Ultimate goal(s)

- 1) Map the two lists below
- 2) Fill all the PWG fields (at least, for the NICA Stage'1)

A proposal for the (optimal) list of the NICA-MPD working groups

O.Teryaev and V.Kolesnikov

meaning of the "optimal":

- there is a group leader (experienced or well-known person)
- more than 3 active persons
- the (proto)group has already some achievements (papers, conferences, etc..)

```
Femtoscopy (FMT)
Fluctuations (FLC)
Strangeness: hyperons and hypernuclei, phi-mesons (STR)
Flow (FLW)
Electromagnetic probes (ELP)
Polarization (PLR)
Bulk properties: hadron chemistry, spectra, yields, ratios (BLK)
+ .....
Theory: phenomenology and models (THE)
Soft: simul.&analysis framework (SOFT)
Reconstruction: tracking, matching, event characterization, PID, etc. (RECO)
```

MPD simulation and feasibility study activities (status)

PWG	Members	Activity status
FLW	MEPhI +N.Geraksiev	Very active in FHCAL TDR preparation, no news during recent 6 months
FMT	MSU + P.Batyuk	Quite active, good publicity over last year (papers, conferences)
STR	A.Zinchenko + 4	Little activity after a period of intensive studies with ideal tracking, waiting for realistic simulation, writing thesis
ELP	V.Vasendina +1	No activity after a period of intensive studies with ideal tracking, waiting for the final ECAL simulation, lack of manpower
BLK	V.Kolesnikov + 3	Early preliminary results on hadron spectra, realistic PID is an obstacle for further developments; focus on MPD performance in elementary interactions
RECO	A.Zinchenko+0	Tuning of MPD tracking with cluster finder, PID is still a challenge, no progress in ECAL reconstruction
PLR	~ 3-4 members	Preliminary results were obtained by the theory group and Armen. How well progressing now?
FLC	A.Rustamov + Baku	Very old estimates based on models. Expect more soon

Sector 2 NEOFSTI, list of activities mapped on the MPD PWG

- 1) Ilieva M. (STR)
- 2) Kireev V. (THE + BLK)
- 3) Kolesnikov V. (BLK)
- 4) Mudrokh A. (RECO + BLK)
- 5) Geraksiev N. (STR + FLW, i.e. hyperon flow)
- 6) Shtejer K. (p+p reactions in general, BLK)
- 7) Suvarieva D. (STR + PLR, restricted activity)
- 8) *Vasendina V. (ELP + STR + BM@N(?!))
- 9) *Zinchenko A. (RECO + STR + ELP + BM@N(??!!))
- 10) Yordanova L. (STR, phi-mesons, *no activity*)

Remarks:

- (*) Strong overloading, additional manpower is requested
- Optimization of activity sharing for Stage'1 is needed
- 3 out 4 PHD students from Bulgaria (Geraksiev, Suvarieva, Ilieva) have being writing their thesis

THE END