Revised study of global hyperon polarization at NICA/MPD

Elizaveta Nazarova¹

MPD Cross-PWG Meeting

04.10.2022

¹ Joint Institute of Nuclear Research, Dubna, Russia

- Review of the analysis
 - Introduction
 - Simulation
 - > Analysis technique
 - > Revised polarization transfer
- Results with revised polarization transfer
- Conclusions

- Predicted¹ and observed^{2,3} <u>global polarization signals</u> <u>rise</u> as the collision energy is reduced:
 - > NICA energy range will provide new insight
- $\Lambda(\bar{\Lambda})$ splitting of global polarization
- Comparison of models, detailed study of energy and kinematical dependences, improving precision
- Probing the vortical structure with new observables^{4,5}

¹O. Rogachevsky, A. Sorin, O. Teryaev, Phys.Rev. C 82, 054910 (2010)
²J. Adam et al. (STAR Collaboration), Phys. Rev. C 98, 014910 (2018)
³F. Kornas for the HADES Collaboration, SQM 2021
⁴O. Teryaev and R. Usubov, Phys. Rev. C 92, 014906 (2015)
⁵M. A. Lisa et al., Phys. Rev. C 104, 011901 (2021)

Global hyperon polarization at NICA/MPD

Global polarization of Λ hyperons

• Motivation (primary): Measurement of $\Lambda(\bar{\Lambda})$ global polarization at NICA/MPD (4 - 11 GeV)

Global polarization of Λ hyperons

• Anisotropic decay for Lambda hyperon (1) $\Lambda \rightarrow p + \pi^{-}$

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = \frac{1}{2}(1 + \alpha_{\mathrm{H}}|\vec{P_{\mathrm{H}}}|\cos\theta^*) \left| \left(\mathbf{1}\right) \right|$$

- * denotes Lambda rest frame
- θ^* angle between the decay particle and polarization direction
- $\alpha_{\Lambda} \simeq -\alpha_{\bar{\Lambda}} \simeq 0.732$
- Polarization can be measured using the azimuthal angle of proton in Lambda rest frame $\phi^*(2)$

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi^*) \right\rangle \left| \left(2 - \frac{1}{2} \right) \right\rangle \right| \left\langle 2 - \frac{1}{2} \right\rangle \left\langle 2$$

5/57

D

reaction

θ

θ.

Section Sectio

p

Polarization measurement — EP method

- Obtain invariant mass distribution in bins of $\Delta \phi_p^* = \Psi_{\rm EP}^1 \phi_p^*$
 - > Net amount of Λ in each bin
 - > Distribution of $N_{\Lambda}(\Delta \phi_p^*)$
- Fit of the distribution¹ to get $\langle \sin(\Delta \phi_p^*) \rangle \rightarrow P_{\Lambda}$
 - > «Event plane» method (p_n fit parameters)
 - $P_{\Lambda} = \frac{8}{\pi \alpha_{\Lambda}} \frac{p_1}{R_{\rm EP}^1}$

(Following HADES procedure)

$$\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi_p^*) \right\rangle$$

04.10.2022

$${}^{1}\frac{\mathrm{d}N}{\mathrm{d}\Delta\phi_{p}^{*}} = p_{0}(1+2p_{1}\sin(\Delta\phi_{p}^{*})+2p_{2}\cos(\Delta\phi_{p}^{*})+2p_{3}\sin(2\Delta\phi_{p}^{*})+2p_{4}\cos(2\Delta\phi_{p}^{*})+\ldots)$$

Elizaveta Nazarova

Global hyperon polarization at NICA/MPD

Simulation

MC simulation PHSD

Detector simulation GEANT 4

Event reconstruction MPD • <u>MC simulation</u> using PHSD model

≻ Thermodynamical (Becattini) approach for calculation of thermal vorticity → hyperon polarization ($\mathbf{P} = \{P_x, P_v, P_z\}$)

Detector simulation

- > Transfer of **P** to MCTracks
- > Transfer of polarization during hyperon decays¹
- > Anisotropic decay of Λ hyperons (following eq. (1))

Event reconstruction

- > Centrality calibration TPC multicplicity
- > Event plane determination (Ψ_{EP}^1 , R_{EP}^1) via FHCal
- > Lambda reconstruction PID
- > Global polarization extraction EP method

 ${}^{1} \Xi^{+}(\Xi^{-}), \Xi^{0}, \Sigma^{0}$ decays

Simulation

MC simulation PHSD	 <u>MC simulation</u> using PHSD model ≻ Thermodynamical (Becattini) approach for calculation of thermal vorticity → hyperon polarization (P = {P_x,P_y,P_z})
Detector simulation GEANT 4	 <u>Detector simulation</u> Transfer of P to MCTracks Transfer of polarization during hyperon decays¹ Anisotropic decay of Λ hyperons (following eq. (1)) <u>Event reconstruction</u> Centrality calibration - TPC multicplicity
Event reconstruction	 Event plane determination (Ψ¹_{EP}, R¹_{EP}) - via FHCal Lambda reconstruction - PID Global polarization extraction - EP method
MPD Elizaveta Nazarova	¹ $\Xi^{+}(\Xi^{-}), \Xi^{0}, \Sigma^{0}$ decays Global hyperon polarization at NICA/MPD $\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^{*}} = \frac{1}{2}(1 + \alpha_{\mathrm{H}} \vec{P_{\mathrm{H}}} \cos\theta^{*}) (1)$ $04.10.2022 \qquad 8/57$

Results (prior dataset, 10M events)

$$\frac{\mathrm{d}N}{\mathrm{d}\Delta\phi_p^*} = p_0(1+2p_1\sin(\Delta\phi_p^*)+2p_2\cos(\Delta\phi_p^*)+2p_3\sin(2\Delta\phi_p^*)+2p_4\cos(2\Delta\phi_p^*)+\ldots)$$

Elizaveta Nazarova

Global hyperon polarization at NICA/MPD

Results (prior dataset, 1M vs 10M events)

- (left) PHSD @ 9 GeV, ~1M events
- (right) PHSD @ 9 GeV, ~10M events
- Not only the errors decreased, but the value of polarization
- For the full sample, the reconstructed value is consistent with 0

10/57

<u>Polarization transfer revised (V. Voronuyk, global_polarization</u> <u>branch) — will be merged with dev branch of mpdroot after all</u> <u>productions for 2nd collaboration paper are done</u>

- Polarization vector $\mathbf{P} = \{P_x, P_y, P_z\}$ from PHSD model data rotated w.r.t. reaction plane
- Spin direction for hyperons is randomized according to the probability (length of the vector |**P**|)
- For secondary Lambda: spin direction randomized, dependent on the feeddown constant
- Fixed anisotropic decay for anti-Lambda hyperons

Revised polarization transfer

- Calculate random $\cos\theta^*$ (from (1)) with |P|=1)
- $\alpha_{\bar{\Lambda}} = -\alpha_{\Lambda} = 0.732$
- φ^* random in [0,2 π]
- Construct unitary vector of proton
- Rotate it w.r.t. polarization direction
- Boost to the lab frame

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = \frac{1}{2}(1 + \alpha_{\mathrm{H}}|\vec{P_{\mathrm{H}}}|\cos\theta^*)$$
(1)

- <u>Testing</u>
 - Using our prior production of 10M events
 MCTracks information
 - Using privately produced dataset with the revised transfer — 1M, 2M and 4M events for comparison

Results: 1. Primary Lambda — prior 10M production

- Anisotropy is clearly visible in the angular distribution
- Good agreement between values calculated via fitting procedure and mean polarization

Results: 1. Mean Lambda polarization — prior 10M production

14/57

Returning the values of mean global polarization in both cases

Global hyperon polarization at NICA/MPD

Results: 2. Private production — MCTracks (1M, Lambda)

Results: 2. Private production — MCTracks (1M, ALambda)

Global hyperon polarization at NICA/MPD

Good agreement for Lambda, for Anti-Lambda statistics is much smaller — larger uncertainty

Global hyperon polarization at NICA/MPD

17/57

Good agreement for Lambda, for Anti-Lambda statistics is much smaller — larger uncertainty

Global hyperon polarization at NICA/MPD

Good agreement for Lambda, for Anti-Lambda statistics is much smaller — larger uncertainty

Global hyperon polarization at NICA/MPD

19/57

Using EP angle and its resolution instead of RP angle gives consistent results

Global hyperon polarization at NICA/MPD

20/57

Results: 2. Private production — MCTracks, Lambda

- In 20-50% region persists slight underestimation for full Lambda
- Summary: results are consistent and in good agreement

Results: 2. Private production — MCTracks, ALambda

- For Anti-Lambda statistics is much smaller larger uncertainty
- Signal of polarization is now present
- Even for MCTracks, only for 0-10% and 20-50% centrality results are in good agreement
- Summary: in the full sample (15M events) we might get a result in reco polarization, albeit with rather large uncertainties

Results: 3. Private production — MC Reco Lambda (primary)

- Fitting of angular distributions for «true» Lambda from Reco
- Using exact angle (MC ϕ), reconstructed angle (reco ϕ) with RP angle
- Using reconstructed angle (reco φ) with EP angle and its resolution
- Summary: consistent results between all, except for 50-100% centrality region smaller statistics and resolution

Results: 3. Private production — MC Reco Lambda (prim, 4M)

24/57

04.10.2022

Elizaveta Nazarova

Global hyperon polarization at NICA/MPD

Results: 3. Private production — MC Reco Lambda (full)

- Fitting of angular distributions for «true» Lambda from Reco
- Using exact angle (MC ϕ), reconstructed angle (reco ϕ) with RP angle
- Using reconstructed angle (reco φ) with EP angle and its resolution
- Summary: consistent results between all, except for 50-100% centrality region smaller statistics and resolution

Results: 3. Private production — MC Reco Lambda (full, 4M)

Elizaveta Nazarova

Global hyperon polarization at NICA/MPD

26/57

Results: 3. Private production — Reco Lambda

- 4M events give rather small uncertainties and agreement with MC values
- 50-100% centrality region: lowest statistics, smallest EP resolution
- Reconstruction may be improved (either current one by varying parameters or introducing event-mixing technique)
- Summary: results are consistent for the start of the new official production \rightarrow Request 30

Results: 3. Private production — Reco Lambda (resolution effect)

Results: Official production (Request 30, QA stage) - Lambda

Results: Official production (Request 30, QA stage) - ALambda

Elizaveta Nazarova

Global hyperon polarization at NICA/MPD

Results: Official production (Request 30, QA stage) - Lambda

Preliminary (~175k events out of 1M for QA are ready)

31/57

- Revised polarization transfer
 - rotation w.r.t. reaction plane
 - Primary hyperons: spin direction randomized according to the probability (|P|)
 - Secondary Lambda: spin direction randomized dependent on the feed-down constant
- Tests on private production (1M, 2M and 4M events)
 - > (A) MCTracks & MC Reco: results are consistent and in good agreement
 - > (Λ) Reco: except 50-100% cent., results are in good agreement with MC values
 - (Λ) MCTracks: in 0-10% & 20-50% cent. results are in good agreement, need larger statisctics for accurate Reco analysis
- New official production (Request 30)
 - > QA stage, waiting for full statistics (preliminary test shows no problems)

Thank you for your attention!

Back Up

Results: 3. Lambda reconstruction

Fitting procedure:

- Global fit (Gauss + Legendre polynomials) →
 get cut-off region for bckg fit
- > Background fit in sidebands ($\pm 7\sigma$)
- > Cut-off: $< M_{\Lambda} > \pm n^* \sigma$
- ω₂ cut based on maximum significance (for each centrality bin)

$$f(x) = p_0 \exp\left(\frac{(-0.5(x-p_1))^2}{p_2^2}\right) + p_3(L_0 + p_4L_1 + p_5L_2 + p_6L_3 + p_7L_4) \qquad \omega_2 = \ln\frac{\sqrt{\chi_A^2 + \chi_{V_0}^2}}{\chi_A^2 + \chi_{V_0}^2}$$

1. Compare MCTracks with data — 2M (Lambda)

1. Compare MCTracks with data — 2M (ALambda)

1. Compare MCTracks with data — 4M (Lambda)

1. Compare MCTracks with data — 4M (ALambda)

04.10.2022

1PD

2. Mean polarization — Reco Lambda (1M vs 2M vs 4M) - 8sigma 🌈

- Reconstruction may be improved (either current one by varying parameters or introducing event-mixing technique)
- e.g.: changing the range of background fit from 7sigma to 8sigma away from the peak region

2. Fitting Reco Lambda (1M)

0

×10³

22.5

22

21.5

0

25.5 🛏

25

24.5

 $\phi \Delta D / \Lambda D$

φ ∆b/_A/b

04.10.2022

2. Fitting Reco Lambda (2M)

10.66 / 15

 Ψ_{EP}^1 - ϕ

 Ψ_{EP}^1 - ϕ

20.91 / 15

9992 ± 23.9

42/57

2. Fitting Reco Lambda (4M)

1. Primary Lambda — 1M (MCTracks)

04.10.2022

(PC

1. Full Lambda — 1M (MCTracks)

1. Primary ALambda — 1M (MCTracks)

04.10.2022

1. Full ALambda — 1M (MCTracks)

04.10.2022

1. Primary Lambda — 2M (MCTracks)

04.10.2022

1. Full Lambda — 2M (MCTracks)

1. Primary ALambda — 2M (MCTracks)

04.10.2022

1. Full ALambda — 2M (MCTracks)

04.10.2022

1. Primary Lambda — 4M (MCTracks)

1. Full Lambda — 4M (MCTracks)

1. Primary ALambda — 4M (MCTracks)

04.10.2022

1. Full ALambda — 4M (MCTracks)

2. Fitting of the reconstructed Lambda (20-50%)

Elizaveta Nazarova

Global hyperon polarization at NICA/MPD

04.10.2022

56/57

2. Fitting of the reconstructed Alambda (20-50%)

Elizaveta Nazarova

Global hyperon polarization at NICA/MPD

04.10.2022

57/57