Dileptons at NICA: challenges and opportunities

Seminar celebrating the 75th Anniversary of Professor Vladimir Kekelidze October 21, 2022

Itzhak Tserruya

<u>Outline</u>

NICA facility

- Motivation and physics mission
- > A niche in the energy landscape

Dileptons:

What did we learn from SPS and RHIC dilepton measurements

Prospects and challenges

Summary

NICA

Dedicated heavy ion facility

 Shall provide high intensity beams: heavy ions: Au⁷⁹⁺ Vs_{NN} = 2 - 11 GeV, L ~ 10²⁷ cm⁻² s⁻¹ polarized p and d: Vs up to 27 GeV, L ~ 10³² cm⁻² s⁻¹

Nuclear Matter Equation of State

 Explore the QCD phase diagram in the region of high µ_B (baryon dominated) matter

Search for the conjectured critical point and first order phase transition

 NICA's energy range brackets expected onset of deconfinement and chiral symmetry restoration phase transition(s)

Itzhak Tserruya

QCD matter at NICA energies

J. Cleymans et al., PLB 615, 50 (2005)

PRC 75, 034902 (2007)

NICA energy range brackets
 the transition from baryon to
 meson dominated matter

Sizable densities up to O(10ρ₀)
 Long lifetime

Synergy with Multi-Messanger Astronomy

- Model calculations show that in heavy-ion collisions in the NICA energy range, nuclear matter reaches densities and temperatures similar to those occurring in a neutron star merger.
- Heavy-ion collisions at NICA and neutron star mergers probe similar regions of the QCD phase diagram.
- Simulations, shows that the GW signal could provide clear signature of a first order quark-hadron phase transition. Such finding would necessarily imply the existence of a CEP in the QCD phase diagram.

PRL, 122, 061102 (2019)

Hypernuclei and Strangeness

Global polarization of Λ and anti-Λ

- Insights into initial conditions and dynamics of QGP
- Expected to be high at the NICA energies
- Sub-threshold production of multistrange (anti-)hyperons via sequential collisions.

- Access the hyperon-nucleon interaction.
- Valuable insight into what the cores of neutron stars could be like.

Maximum production of hypernuclei in the NICA energy range.

MPD Physics Programme

Organized and developed in 5 Physics Working Groups

Global observables

- Total event multiplicity
- Total event energy
- Centrality determination
- Total cross-section
- Event plane measurement at all rapidities
- Spectator measurement

Spectra of light flavor and hypernuclei

- Light flavor spectra
- Hyperons and hypernuclei
- Particle yields and yield ratios
- Kinematic and chemical freeze-out
- QCD Phase Diagram

Correlations and Fluctuations

- Collective flow
- Vorticity, Λ polarization
- E-by-E fluctuation of multiplicity, momentum and conserved quantities
- Femtoscopy
- Forward-Backward corr.

Electromagnetic probes

- Dilepton spectra in low and intermediate mass regions:
 - * In-medium modification of resonances
 - * Onset of deconfinement
 - * Onset of Chiral Symmetry restoration
- Photons in ECAL and central barrel

Heavy flavor

- Open charm production
- Charmonium with ECAL and central barrel
- Charmed meson through secondary vertices in ITS and HF electrons
- Threshold charm production

Dileptons: quo vadis?

Itzhak Tserruya

Motivation

Dileptons (e⁺e⁻, µ⁺µ⁻) are sensitive probes of the two fundamental properties of the QGP:

- > Deconfinement
- Chiral Symmetry Restoration

Thermal radiation emitted in the form of real photons or virtual photons (dileptons) provides a direct fingerprint of the matter formed (QGP and HG) and a measurement of its temperature.

QGP:
$$q\overline{q} \longrightarrow \gamma^* \longrightarrow l^+l^-$$

HG: $\pi^+\pi^- \longrightarrow \rho \longrightarrow \gamma^* \longrightarrow l^+l^-$

Dilepton experiments at low energies

After ~25 years of dilepton measurements

All HI systems at all energies studied show an excess of dileptons wrt to hadronic sources

SPS: CERES Pioneering Dilepton Results

<dN_{ee}/dm_{ee}>/<N_{ch}>(100 MeV/c²)⁻¹ CERES/NA45 $(d^2N_{ee}/d\eta dm)$ / ($dN_{ch}/d\eta$) (100 MeV/c²) Pb-Au 158 A GeV CERES/NA45 S-Au 200 GeV/u $\sigma_{trid}/\sigma_{tot} \approx 7\%$ 10 2.1 < n < 2.65p>200 MeV/c p, > 200 MeV/c ⊖_{aa}>35 mrad $\Theta_{ee} > 35 \text{ mrad}$ 10 $\langle dN_{ch}/d\eta \rangle = 125$ 2.1<n<2.65 First CERES result Last CERES result (a) PRL 75, 1272 (1995) PLB 666, 425 (2008) 10-6 10 (renowned paper: 550 citations) 10 10 charm 10 10 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1 m_{ee} (GeV/c²) m. (GeV/c²) 10 Pb-Au 158 AGeV CERES/NA45 Pb-Au 40 AGeV σ/σ_{αeo}≈ 28% <dN₀₀/dm₀₀>/<N_{ch}> (100 MeV/c²)⁻¹ $<dN_{ob}/d\eta>=245$ σ/σ_∞≈ 30 % □ Strong enhancement of 10⁻⁵ 2.1<n<2.65 <dN_,/dη>=210 combined 95/96 data 10 2.1<n<2.65 low-mass e⁺e⁻ pairs in all p,>0.2 GeV/c p,>200 MeV/c Θ_{aa} >35 mrad ⊖_∞>35 mrad A-A systems studied 10 10 First evidence of thermal eev ee ġ radiation from the HG 10 $\pi^+\pi^- \longrightarrow \rho \longrightarrow \gamma^* \longrightarrow e^+e^-$ 10-8 10 0 0.6 0.8 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 m_{ee} (GeV/c²) m_{ee} (GeV/c²) PRL 91, 042301 (2003) Eur. Phys J. C41, 475 (2005)

 cdN_{ee}/dm_{ee} </br/>(100 MeV/c²)⁻¹

SPS: NA60 dimuon results

Clear excess observed at all centralities in In+In at 158 AGeV

Itzhak Tserruya

RHIC: STAR dileptons

 Systematic study of the dielectron continuum studied in Au+Au collisions at:

200, 62.4, 39, 27 and 19.6 GeV

Low mass excess observed at all energies

Additional results expected from the BES-II

15

RHIC: PHENIX dileptons

PRC 93, 014904 (2016)

□ HBD upgrade:

- Improved hadron rejection: $30\% \rightarrow 5\%$
- Improved signal sensitivity

□ New improved analysis

- Neural network for e-id
- Flow modulation incorporated in the mixed event using an exact analytical method
- Absolutely normalized correlated BG

Minimum bias data/cocktail

0.3-0.76 (GeV/c²)	Data/cocktail ±stat ±syst ±model
PHENIX 2010	$2.3 \pm 0.4 \pm 0.4 \pm 0.2$ (Pythia) $1.7 \pm 0.3 \pm 0.3 \pm 0.2$ (MC@NLO)
STAR	$1.76 \pm 0.06 \pm 0.26 \pm 0.29$

Consistent results between PHENIX and STAR

SIS 18: HADES dileptons

Nature Physics 15, 1040 (2019)

17

After ~25 years of dilepton measurements

- All HI systems at all energies studied show an excess of dileptons wrt to hadronic sources
- Excess consistently reproduced by microscopic many body model (Rapp et al.)

All results reproduced by one single model

 \Box Vacuum ρ meson fails to reproduce the data.

 \Box Good agreement with models based on ρ meson in-medium broadening – Linked to CSR

After ~25 years of dilepton measurements

- All HI systems at all energies studied show an excess of dileptons wrt to hadronic sources
- Excess consistently reproduced by microscopic many body model (Rapp et al.)
- LMR:
 - Thermal radiation from HG $\pi^+\pi^- \rightarrow \rho \rightarrow \mu^+\mu^-$
 - Tracks the medium lifetime

□ IMR:

- ➢ Thermal radiation from QGP $qq → \mu^+\mu^-$
- Provides a measurement of <T>
- Emerging picture for the realization of CSR: the ρ meson broadens in the medium, the a₁ mass drops and becomes degenerate with the ρ.

Hohler and Rapp PLB 73, 103 (2014)

One of the few effects exclusively observed in AA collisions

What is missing (I)?

- □ Confirmation of QGP thermal radiation in the IMR.
 - IMR thermal radiation observed only at SPS by one experiment NA60
 - Difficulties in identifying the QGP thermal radiation at the higher RHIC energies due to a sizable contribution from semi-leptonic decays of charmed mesons
 - Should be easier at NICA energies: charm cross section negligible

V. Kekelidze 75th Anniversary

What is missing (II)?

- Onset of deconfinement? Onset of CSR? Energy scan of dilepton exces
 - Integrated yield in the LMR tracks the fireball lifetime
 - Inverse slope of the mass spectrum in the IMR provides a measurement of <T>
 First order phase transition?
 - Thermal radiation down to $\sqrt{s_{NN}} 6$ GeV ?
- \Box v₂ of thermal radiation

Inclusive dielectron v₂ STAR PRC 90, 64904 (2014)

- Very challenging measurement
- Could provide an independent confirmation about the origin of the thermal radiation

Rapp and Hees, PLB 753, 586 (2016)

□ NICA experiments well suited for dilepton studies

MPD and BM@N Experiments

MPD Stage I

BM@N set-up for HI runs

MPD Experiment

Interaction rate

Challenge: overwhelming yield of combinatorial background dileptons from π⁰ Dalitz decays and γ conversions

Efforts underway to reduce the CB.

- NICA dedicated HI facility for comprehensive exploration of high µ_B matter with potential of discoveries
- Exciting dilepton prospects at NICA energies MPD well suited for dilepton studies
- □ Looking forward to the start of the NICA physics program

