От физики на HERA к физике на BM@N

М.Капишин (ЛФВЭ)

Эксперимент Н1

Ŵ

Коллайдер HERA: р (920 ГэВ) х е± (27.6 ГэВ), √s = 320 ГэВ

Единственный в мире *ер* коллайдер: 1992-2000 (HERA I), 2004-2007 (HERA II)

Эксперимент Н1

Цель эксперимента: изучение структуры протона в процессах глубоко-неупругого *ер* рассеяния

Кинематическая область HERA: x-Q²

Глубоко-неупругое ер рассеяние

 $Q^2 \sim 1/R^2$

 $Q^2 \approx s \cdot x \cdot y$

 $x \approx Q^2 / (Q^2 + W^2)$

0<x<1 $y = (p \cdot q)/(p \cdot k) - 'неупругость' реакции, доля$ энергии е[±], переданная виртуальному $W^2 = (q+p)^2 - q$ фотону 0<у<1 квадрат энергии в системе центра масс $s = (k+p)^2$ реакции ү*р квадрат энергии в системе центра масс e[±]p

 $Q^2 = -q^2 -$ отрицательная величина от

квадрата 4-х импульса виртуального

 \rightarrow дает вклад при Q²~M₇² ~ 10⁴ ГэВ²

фотона (q²<0), 'виртуальность' фотона

обмен Z_0 бозоном подавлен ~1/(Q²+M₇²)

 $x = Q^2/(2p \cdot q) - масштабная переменная$

Бъеркена, доля продольного импульса

Structure functions in NC and CC processes

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^2} = \frac{2\pi\alpha^2}{x} \left[\frac{1}{Q^2}\right]^2 \left[Y_+\tilde{F}_2 \mp Y_-x\tilde{F}_3 - y^2\tilde{F}_L\right]$$

$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^2} = \frac{G_F^2}{4\pi x} \left[\frac{M_W^2}{M_W^2 + Q^2}\right]^2 \left[Y_+\tilde{W}_2^{\pm} \mp Y_-x\tilde{W}_3^{\pm} - y^2\tilde{W}_L^{\pm}\right]$$

$$Y_{\pm} = 1 \pm (1 - y)^2$$

 $\tilde{F}_2 \propto \sum (xq_i + x\bar{q}_i)$ Dominant contributionThe NC reduced cross section defined as: $x\tilde{F}_3 \propto \sum (xq_i - x\bar{q}_i)$ Only sensitive at high Q² ~ Mz² $\tilde{\sigma}_{NC}^{\pm} = \frac{Q^2 x}{2\alpha \pi^2} \frac{1}{Y_+} \frac{d^2 \sigma^{\pm}}{dx dQ^2}$ $\tilde{F}_L \propto \alpha_s \cdot xg(x,Q^2)$ Only sensitive at low Q² and high y $\tilde{\sigma}_{NC}^{\pm} \sim \tilde{F}_2 \mp \frac{Y_-}{Y_+} x\tilde{F}_3$

The CC reduced cross section defined as:

$$\sigma_{CC}^{\pm} = \frac{2\pi x}{G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \frac{d\sigma_{CC}^{\pm}}{dx dQ^2}$$
$$\frac{d\sigma_{CC}^{\pm}}{dx dQ^2} = \frac{1}{2} \left[Y_+ W_2^{\pm} \mp Y_- x W_3^{\pm} - y^2 W_L^{\pm} \right]$$

similarly for pure weak CC analogues: W_2^{\pm} , xW_3^{\pm} and W_L^{\pm}

xF₃, F_L and CC measurements and HERA PDF

Вклад группы ОИЯИ в Н1

ЛФЧ: организация совещания коллаборации Н1 в Дубне в 1997

Спектрометр лидирующих протонов FPS, Plug детектор, анализ экспериментальных данных:

М.Капишин, В.Спасков, Ан.Морозов, Д.Никитин, В.Пальчик (ЛИТ) Также принимали участие: Ю.К.Потребеников, О.Гаврищук, Ан.Аствацатуров, А.Кутов, В.Панасик

Разработка и создание задней пропорциональной камеры BPC: А.Вишневский, С.Васильев,

По физике на FPS защитили диссертации: 1 докторскую,

Ал.Маканькин

Кто нас поддерживал в Н1

Prof. John Dainton: H1 Spokesperson in 1997-1999

Prof. Wulfrin Bartel: leader of FPS project in 1995-2000

Prof. Paul Newman: convener of H1 Diffractive group

Dr Karl-Heinz Hiller, FPS expert, DESY IfH Zeuthen

Н1 и HERA - уже история

H1 Control room во время набора данных 08.06.2005

В.Спасков около FPS в кольце HERA

Последнее оперативное совещание в H1 North Hall, июнь 2007

Спектрометр лидирующих протонов FPS

Горизонтальная станция

≻2 плоскости U/V≻4 тригг. пластины

>фиберы d =0.48мм
>5 фиб. слоев → 1 канал
ПЧФУ
>четыре 64-кан. ПЧФУ на
станцию

Входное окно Roman Pot → толщина 300 мкм

Дифракция в экспериментах HERA

Большой интервал по быстроте (Large rapidity gap, LRG) между лидирующим *p*´ и системой *X*

- большая статистика, данные интегрированы по |t|<1ГэВ²
- вклад процессов диссоциации протона ~20%
- систематические погрешности, так как протон не измеряется

→ Методы LRG и FPS имеют разные систематические погрешности

Спектрометр лидирующих протонов (Forward Proton Spectrometer FPS) 1 у

 выделение процессов без диссоциации протона
 более широкая область по х_{IP} (*IP+IR*)
 малый аксептанс детекторов
 систематические погрешности изза магнитной оптики HERA

Дифракция в глубоконеупругом ер рассеянии

НЕRA: ~10% процессов ГНР при малых *х* являются дифракционными → Исследование структуры дифракционного вакуумного обмена посредством виртуального фотона в рамках КХД

глубоконеупругое рассеяние

→ структура протона

Анализ экспериментальных данных и измерение сечения дифракционного глубоконеупругого ер рассеяния

 $\frac{d^{4}\sigma}{d\beta dQ^{2}dx_{IP}dt} = \frac{4\pi\alpha^{2}}{\beta Q^{4}}(1-y+\frac{y^{2}}{2})\sigma_{r}^{D(4)}(\beta,Q^{2},x_{IP},t)$ В Соотношение между F_{2}^{D} и F_{L}^{D} : $\sigma_{r}^{D(4)} = F_{2}^{D(4)} - \frac{y^{2}}{2(1-y+y^{2}/2)}F_{L}^{D(4)}$ $\sigma_{r}^{D} \approx F_{2}^{D}$ при малых у

 $\sigma_r^{D(3)} = \int \sigma_r^{D(4)} dt$

e

→ интегрирование по |t|<1 ГэВ² для сравнения результатов FPS с LRG и предсказаниями DPDF

• $F_2 \rightarrow$ распределение кварков в протоне

• dF₂/dlnQ² (нарушение масштабной инвариантности) → распределение глюонов в протоне

F_L → распределение
 глюонов в протоне

NLO DGLAP фит данных $F_2^{D(3)}$ (LRG)

ЭПараметризация партонных распределений на начальной шкале $Q_0^2 \sim 2$ ГэВ² и NLO DGLAP эволюция для описания данных по $F_2^{IP}(\beta, Q^2)$

DPDF синглет кварков

$$z\Sigma(z,Q_0^2) = A_q z^{B_q} (1-z)^{C_q}$$

М.Капишин 27.02.2014

DPDF глюона: Fit A

$$zg(z,Q_0^2) = A_g (1-z)^{C_g}$$

$$zg(z,Q_0^2)=A_g$$

Fit B

NLO DGLAP фит данных по F₂^D определяет дифракционные распределения синглета кварков, а также глюонов при малых долях импульса *IP*

• данные по F₂^D не чувствительны к распределению глюонов при больших долях импульса IP

вклад глюонов в дифракционный обмен составляет ~70%

σ^{,D} и σ_{jj}^D: дифракционные функции распределения партонов

 Дифракционные функции распределения синглета кварков и глюона из комбинированного DGLAP фита данных по F₂^D и сечениям дифракционного образования струй адронов

NICA Heavy Ion Complex

BM@N: heavy ion energy 1-4.5 GeV/n, beams: p to Au, Intensity ~few 10⁶ /s

BM@N detector for heavy ion program (without beampipe)

BM@N

Heavy Ion Collision Experiments

EOS of symmetric and asymmetric nuclear matter

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

EOS: relation between density, pressure, temperature, energy and isospin asymmetry

 $\mathsf{E}_{\mathsf{A}}(\rho,\delta) = \mathsf{E}_{\mathsf{A}}(\rho,0) + \mathsf{E}_{\mathsf{sym}}(\rho) \cdot \delta^2$

with $\delta = (\rho_n - \rho_p)/\rho$ E/A(ρ_o) = -16 MeV

Curvature defined by nuclear incompressibility: $K = 9\rho^2 \ \delta^2(E/A)/\delta\rho^2$

Study symmetric matter EOS at ρ =3-5 ρ_0 \rightarrow elliptic flow of protons, mesons and hyperons

 \rightarrow sub-threshold production of strange mesons and hyperons

 \rightarrow extract K from data to model predictions

► Constrain symmetry energy E_{sym}

opposite isospin

 \rightarrow elliptic flow of neutrons vs protons

 \rightarrow sub-threshold production of particles with

M.Kapishin

BM@N experiment

Plan for BM@N Experimental physics run in Xe beam with CsI target for 800 hours (33 days) in October-December 2022

BM@N: Estimated hyperon yields in Xe + Cs collisions

4 A GeV Xe+Cs collisions, multiplicities from PHSD model, Beam intensity 2.5·10⁵/s, DAQ rate 2.5·10³/s, accelerator duty factor 0.25

1.8.10⁹ interactions 1.8.10¹¹ beam ions

Particle	E _{thr} NN GeV	M b<10 fm	٤ %	Yield/s b<10fm	Yield / 800 hours b<10 m		DCM-SMM
Λ	1.6	1.5	2	150	5·10 ⁷		x 0.75
Ξ	3.7	2.3·10 ⁻²	0.5	0.55	2·10⁵		x 0.5
Ω	6.9	2.6·10 ⁻⁵	0.25	3.2.10-4	110	Τ	
Anti-A	7.1	1.5·10 ⁻⁵	0.5	3.7.10-4	130	/	

Xe + CsI run configuration of hybrid central tracker: 3 Forward Si + 7 GEM stations

DCM-SMM model: Xe + Sn , T_0 = 1.5 - 3.9 AGeV

Al.Zinchenko, V.Vasendina 3 Forward Si + 7 GEM

M.Kapishin

BM@N experiment

Identification of π +, K+, p, t, He3, d/He4

Production of π^+ and K^+ mesons in 3.2 AGeV argon-nucleus interactions at the

BM@N

M.Kapishin

BM@N experiment

BM@N tracking detector installation for heavy ion run

Forward Si tracker detectors in front of GEM detectors /

GEM group + engineer group of S.Piyadin

GEM detectors on positioning mechanics in magnet

Carbon vacuum beam pipe

Vacuum boxes for beam detectors

BM@N detector preparation for heavy ion run

3 Silicon beam tracking detectors

Outer tracker: Cathode Strip Chambers \rightarrow 4 CSC of 106x106

Outer tracker group

Big CSC 220x145 cm2

BM@N experiment

Beam profile meter with Si detector and positioning mechanics

Silicon beam tracking detector in SRC setup

INR RAS group

Forward hodoscope in front of FHCAL

Forward Silicon Tracker for heavy ion run

Setup for FST tests with cosmic rays

FST modules in SRC setup

FST group of N.Zamiatin

Assembled FST half station of 7 detectors

Cosmic ray X/Y profile of FST half station

► All 48 modules and 4 FST stations with 6, 10,14,18 modules are assembled, tested and installed

BM@N: 2012 - 2022

Так стало

BM@N Collaboration: 182 participants from 10 institutions

9th BM@N Collaboration Meeting 13-16 September 2022: 128 participants (in person and remotely)

9th BM@N Collaboration Meeting , 15 September 2022: preparation for the Xe run at Lipnya Island

