Film digitization Background removal algorithm – part 2

Tulgaa Turtuvshin

ATLAS-JINR FCalPulse project meeting

17 October 2022

Idea of Background removal algorithm

- 1) Draw 2 lines outside of the exposure area
- 2) Define **RGB** color codes on red lines.
- 3) Remove area between the lines.
- Connect dots between the lines using polynomial function and fill the area to define background
- 5) Subtract background values from original image

1mm = 25.4 pixels

Idea of Background removal algorithm

1 min 30 sec (Red)

1 min 30 sec (Red)

X, [pixels]

1 min 30 sec (Green)

1 min 30 sec (Green)

1 min 30 sec (Blue)

X, [pixels]

1 min 30 sec (Blue)

Original data 250 250-200 200-150-15C 100-10C 50 0 J, 10, 500 J, 10, 400 200 100 50 100 200 300 400 X, pixels 0 0 0

Background distortion 25C 250 200 200-150-15C 100-10C 50 0 L, 600 L, 10, 500 L, 10, 400 200 100 50 100 200 300 400 500 600 100 200 300 400 X, [pixels 0 0 0

Data without distortion

Data without distortion & negative values (cut applied)

Background distortion Original data 250 -250 -250-250 200 20C 200-200 150-150 15C 15C 100-100 10C 10C 50-50-0 J, 10, 500 J, 10, 400 200 100 L, 600 500 101, 400 200 100 50 50 100 200 300 400 500 600 X, pixels 100 200 300 400 X, pixels 0 0 0 0 יז≮ 0 0

Data without distortion

Data without distortion & negative values (cut applied)

1 min

1 min

Data without distortion

Data without distortion & negative values (cut applied)

1 min 10 sec

Original data

Background distortion

1 min 10 sec

Data without distortion

Data without distortion & negative values (cut applied)

1 min 30 sec

Original data

Background distortion

1 min 30 sec

Data without distortion

Data without distortion & negative values (cut applied)

Data (prepared for Intensity comparisons)

Data (prepared for Intensity comparisons)

Y, [pixels]

-60

- 50

Options of intensity plots

					B1				B2			
					B3				Β4			
C1	C2	C3	C4	D1	D2	D3	D4	D5	D6	D7	D8	
				D9	D10	D11	D12	D13	D14	D15	D16	
C5	C6	C7	C8	D17	D18	D19	D20	D21	D22	D23	D24	
				D25	D26	D27	D28	D29	D30	D31	D32	
C9	C10	C11	C12	D33	D34	D35	D36	D37	D38	D39	D40	
				D41	D42	D43	D44	D45	D46	D47	D48	
C13	C14	C15	C16	D49	D50	D51	D52	D53	D54	D55	D56	
				D57	D58	D59	D60	D61	D62	D63	D64	

Option A

A-1

Option B

Option C

Option C

t, [sec]

t, [sec]

t, [sec]

t, [sec]

t, [sec]

t, [sec]

t, [sec]

t, [sec]

<u>30 40 50 60 70 8</u>

.

t, [sec]

t, [sec]

t, [sec]

15 <u>30</u> 40 50 60 70 80 90

Summary

- Background removal algorithm using polynomial function gave us reasonable results.
- Sample with 1 min 10s shows significantly increased values on intensity plots.

Thank you!