Transverse momentum distributions for identified particles with the MPD: comparison with STAR data and predictions for Bi+Bi

> Rodrigo Guzmán Castro⁺ October 18, 2022

Cross-PWG meeting

[†]Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México MexNICA Collaboration

Instituto de Ciencias Nucleares UNAM

Motivation

The recently discovered sharp peak in the K⁺/ π^+ ratio in relativistic heavy-ion collisions is discussed in the framework of the statistical model. In this model a rapid change is expected as the hadronic gas undergoes a transition from a baryondominated to a meson-dominated gas.¹

We conclude that the measured particle ratios with 20–30% deviations agree with a hadronic freezeout scenario. These deviations seem to occur just in the transition from baryon-dominated to mesondominated freeze-out.¹

¹J. Cleymans *et al.*, Physics Letters B **615** (2005) 50-54.

10/18/22

Data sample analyzed

3 data sets generated with UrQMD 3.4v:

 Au+Au collisions at 7.7 GeV compared to real data² (90000 events)
Au+Au collisions at 9.2 GeV compared to real data³ (90000 events)
Bi+Bi collisions at 9.2 GeV to make predictions (125000 events from MPD request number 28)

²L. Adamczyk et al. [STAR], Phys. Rev. C 96, no.4, 044904 (2017).
³B. I. Abelev et al. [STAR], Phys. Rev. C 81, 024911 (2010).

Track selection criteria

	Au+Au 7.7 GeV	Au+Au 9.2 GeV	Bi+Bi 9.2 GeV
Number of events	90000	90000	<mark>125000</mark>
Koef [‡]	0.89	0.89	<mark>0.073</mark>
$\sigma_{_{\sf M}}{}^{\sharp}$	3	3	3
$\sigma_{E}^{ \sharp}$	4	4	4
Probrability cut	>0.6	>0.6	>0.6
Primary	Mother ID	Mother ID	Mother ID
Number of hits (NofH)	>13	>13	<mark>>16</mark>
X²/NofH	<8	<8	<8
P _T [GeV/c]	0.1-3.0	0.1-3.0	0.1-3.0
ŋ	<0.5	<0.5	<0.5
	<mark><0.1</mark>	<0.5	-
Centrality criteria	MPD ⁴	STAR ⁵	MPD ⁴
Events after cuts	58600 (~65%)	68704 (~76%)	90731 (~72%)

[‡]mpdPid class (n-sigma method).

⁴P. Parfenov *et al.* [MPD], Analysis Note draft (2021).

⁵B. I. Abelev et al. [STAR], Phys. Rev. C **81**, 024911 (2010).

10/18/22

Hits and χ^2 /NofH distributions

Example: Au+Au 7.7 GeV

Optimization

Example: Bi+Bi 9.2 GeV (Koef)

10/18/22

Reconstruction efficiency

Au+Au collisions

⁶V. Abgaryan et al. [MPD], Eur. Phys. J. A **58**, no.7, 140 (2022).

10/18/22

Multiplicity and centrality selection

Example: Au+Au 9.2 GeV

⁷B. I. Abelev *et al.* [STAR], Phys. Rev. C **81**, 024911 (2010).

Transverse momentum distributions Monte Carlo (MC) vs. reconstruction

Events per centrality (N_{ev/c})

	Au+Au 7.7 GeV	Au+Au 9.2 GeV
(10-20)%	11451 (~13%)	-
(20-30)%	6716 (~7%)	-
(30-40)%	6869 (~8%)	-
(40-50)%	6441 (~7%)	-
(50-60)%	6338 (~7%)	-
(60-70)%	7651 (~9%)	-
(70-80)%	7441 (~8%)	-
(0-10)%	-	8252 (~9%)
(0-60)%	-	46069 (~51%)
(10-30)%	-	15290 (~17%)
(30-60)%	-	22527 (~25%)

Transverse momentum per centrality

Au+Au 7.7 GeV (Our reconstruction)

Given the low statistics as well as the efficiency drop for $p_T \ge 1.2$ GeV/c, the fluctuations are considerable

10/18/22

STAR vs. MPD p_{T} distributions

Au+Au 7.7 GeV

The agreement is good for the most central collisions.

Similar results are obtained for the negative charged particles.

10/18/22

Transverse momentum distributions for p⁺

Similar behaviour for protons

The agreement worsens for the antiprotons

10/18/22

Cross-PWG

13

Transverse momentum distributions Monte Carlo (MC) vs. reconstruction

Similar to the 7.7 GeV case, due to the increasing contamination for $p_T \ge 1.2$ GeV/c, there are differences (especially for the K⁺)

Transverse momentum distributions for π^+

Au+Au 9.2 GeV

The agreement is good both for the most central and peripherial collisions

10/18/22

Crossing point between π^+ and p^+

10/18/22

Cross-PWG

16

Crossing point at different centralities

Reconstructed Au+Au |y| < 0.5

The crossing point appears to be at 0.77 GeV/c for both centralities for the 7.7 GeV case, while the crossing point depends on the centrality for the 9.2 GeV case (at 0.83 and 0.91 GeV/c)

10/18/22

Transverse momentum and reconstruction efficiency distributions

Bi+Bi 9.2 GeV

There seems to be a lot of contamination in the K^+ case

10/18/22

Conclusions

- 1) We have presented a study of the transverse momentum distributions of MPD data for Au+Au at 7.7 and 9.2 GeV, and their comparison with STAR data.
- 2) The results show qualitative agreement between STAR and MPD.
- 3) We observed different crossing points between distributions of pions and protons, and how they change with collision energy and centrality.
- We made a prediction for the pion, kaon and proton transverse momentum distributions that can be obtained from MPD for Bi+Bi collisions at 9.2 GeV.
- 5) Details on the evolution of the crossing point of the p_T distributions for mesons and baryons are under investigation.

If the MPD collaboration agrees, we would also like to submit an abstract for the ICPPA-2022

Thank you for your attention. Special thanks to E. Cuautle, W. Bietenholz, A. Ayala, R. García and A. Mudrokh

Transverse momentum for π⁻: STAR vs MPD

Transverse momentum for K⁻: STAR vs MPD

Au+Au 7.7 GeV

Transverse momentum for p⁻: STAR vs MPD

Transverse momentum for K⁺: STAR vs MPD

Transverse momentum for p⁺: STAR vs MPD

