

FOR NUCLEAR RESEARCH

FUNDAMENTAL ISSUES about AUTOMATION of MPD EXPERIMENT at COLLIDER NICA

Baldin Nikita, Dubna, October 2022

SALUTATION

I am Nikita Baldin

I have the **education** of an accelerator technology automation engineer Moscow Engineering Physical Institute (MEPhI).

More than 10 years I worked for large **system integrators** of full-scale DCS in the power plant industry in Russia.

project in science that I did was automation of cryogenic liquefaction plants at the **NICA project in home institute JINR** Dubna, Russia.

project in science that I did was DCS (detector control system) of ITS (inner tracker system) at ALICE experiment

In CERN

Geneve, Switzerland. ALICE

Quantitative measures:

270 crates *more 60 cabinets

1.200 network-attached devices

3.000.000 parameters

*ATLAS 12.000.000

CURRENT DCS DESIGN SOLUTIONS FOR MPD

Letter of intent for MPD

CDR for MPD facility

TDR for TPC and other detectors

TDR for DAQ

No CDR and TDR for other automation: DCS, DSS, ECS

LIFE CYCLES OF AUTOMATED SYSTEMS

CERN STYLE DECOMPOSITION

NICA

9

Experiment Detector Detector Data Acquisition Control Safety Control **System** System System System DCS **ECS** DSS DAQ Status equipment Run start/stop Interlocks RAW data science • • Run coordination Parameters technology Setpoints Quality control ٠ **Process protection** Correct data Run processing process ٠ • • Locks and blocks Equipment modes Nikita Baldin

CONSTITUTION OF AUTOMATED SYSTEMS

Nikita Baldin 10

V-model

Nikita Baldin **11**

SUMMARY

Automation of an experimental facility - a massive task

- over 1000 hardware units
- over 100.000 lines of software code
- linking software tools, configuring protocols

At the moment there are no design solutions worked out

- no CDR
- no TDR
- no any diagrams, etc.

Types of automated systems and their components

- Goals and objectives: experimental data, operability, safety, quality, optimality
- Systems types: DCS, DSS, DAQ, ECS
- Components: hardware, software, algorithmic, informational, organizational

A step-by-step approach to creating automation systems

- Conduct a survey of the automation object
- Define the requirements for the automation system
- Develop design solutions (CDR, TDR)

ANNOUNCES

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Nikita Baldin automation lead engineer nabaldin@jinr.ru +7(926)5630684

SURFACE FUCTIONALITY OF SYSTEMS

OR NUCLEAR RESEAR

EXAMPLE OF DIAGRAMS

