Analysis of $B \rightarrow K^{(*)}\nu\bar{\nu}$ decays (based on 10.1134/S1547477122060218 and 2212.xxxx)

Bednyakov A., Mukhaeva A.

Joint Institute for Nuclear Research, Bogolyubov Laboratory of Theoretical Physics (BLTP)

7 December, 2022

A B +
 A B +
 A

1/18

7 December, 2022

Outline

1 Motivation

2 WEFT Hamiltonian

(3) $U\nu_R MSSM$ description

4 Phenomenological analysis

- Model independent analysis
- Model dependent analysis

5 Results

3

(日)(日)

FCNC transitions

• Tensions in FCNC decay rate ratios $R_{K^{(*)}} \equiv \frac{BR(B \to K^{(*)} \mu \mu)}{BR(B \to K^{(*)} ee)}$

~ 3.1σ in R_K [Aaij:2021vac] and ~ 2.5σ in R_{K^*} [JHEP(2017)055] • The mass difference of the neutral $B_s - \bar{B}_s$ meson system [Amhis:2019ckw]

$$\Delta M_s^{exp} = (17.757 \pm 0.021) \text{ ps}^{-1},$$

$$\Delta M_s^{SM} = (18.4^{+0.7}_{-1.2}) \text{ ps}^{-1}$$

$b \to s \nu \bar{\nu}$ decays

• $B \to K^{(*)} \nu \bar{\nu}$ theoretically much cleaner than $B \to K^* l^+ l^-$;

• Experimentally quite challenging due to two missing neutrinos — No signal has been observed so far. • Inclusive tagging technique from Belle II has higher efficiency $\sim 4\%$

Mukhaeva A. (JINR, BLTP)

・ロト ・ 同ト ・ ヨト ・ ヨト

Effective Electroweak Hamiltonian for $b \to s$ FCNCs

• Theoretically, calculations are convenient to do within the Effective Electroweak Hamiltonian approach

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha_{EM}}{4\pi} V_{tb} V_{ts}^* \left(C_L^{SM} \delta_{\alpha\beta} O_L^{\alpha\beta} + \sum_{\alpha\beta} \left(\sum_{i=L^{(\prime)},R^{(\prime)}} C_i^{\alpha\beta} O_i^{\alpha\beta} + \sum_{j=9^{(\prime)},10^{(\prime)}} O_j^{\alpha\beta} C_j^{\alpha\beta} \right) \right)$$
(1)

• G_F – Fermi constant $V_{tb}V_{ts}^*$ – CKM matrix element $C_i(\mu)$ – Wilson coefficients $O_i(\mu)$ – Four-fermion operators for $b \to s$ transition

Operator Basis

• For most phenomenological applications, only operators $O_i(\mu)$ of the dimension d = 6 are relevant

$$O_{L}^{\alpha\beta} = (\bar{s}_{L}\gamma^{\mu}b_{L})(\bar{\nu}^{\alpha}\gamma_{\mu}(1-\gamma_{5})\nu^{\beta}), \qquad O_{R}^{\alpha\beta} = (\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{\nu}^{\alpha}\gamma_{\mu}(1-\gamma_{5})\nu^{\beta}),
O_{L}^{'\alpha\beta} = (\bar{s}_{L}\gamma^{\mu}b_{L})(\bar{\nu}^{\alpha}\gamma_{\mu}(1+\gamma_{5})\nu^{\beta}), \qquad O_{R}^{'\alpha\beta} = (\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{\nu}^{\alpha}\gamma_{\mu}(1+\gamma_{5})\nu^{\beta}),
O_{9}^{\alpha\beta} = (\bar{s}_{L}\gamma^{\mu}b_{L})(\bar{l}^{\alpha}\gamma_{\mu}l^{\beta}), \qquad O_{10}^{\alpha\beta} = (\bar{s}_{L}\gamma^{\mu}b_{L})(\bar{l}^{\alpha}\gamma_{\mu}\gamma_{5}l^{\beta}),
O_{9}^{'\alpha\beta} = (\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{l}^{\alpha}\gamma_{\mu}l^{\beta}), \qquad O_{10}^{\alpha\beta} = (\bar{s}_{R}\gamma^{\mu}b_{R})(\bar{l}^{\alpha}\gamma_{\mu}\gamma_{5}l^{\beta}).$$
(2)

• SM FCNC contribution

$$C_L^{SM} = -2X_t/s_w^2 = -12.7, \qquad C_9^{SM} = 4.211 \qquad C_{10}^{SM} = -4.103$$

• Correlation between $C_{9,10} \leftrightarrow C_L$ and $C'_{9,10} \leftrightarrow C_R$

イロト イボト イヨト 一日

Observable	SM prediction	Exp. constraint	Belle II	Belle II
	LQCD+LCSR	(90% CL)	$5ab^{-1}$	$50 a b^{-1}$
$\mathcal{B}(B^0 \to K^0 \nu \bar{\nu}) \cdot 10^{-6}$	4.1 ± 0.5	< 26		
$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) \cdot 10^{-6}$	4.6 ± 0.5	$11 \pm 4, < 19$	30%	11%
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu}) \cdot 10^{-6}$	9.6 ± 0.9	< 18	26%	9.6%
$\beta (B^+ \to K^{*+} \nu \bar{\nu}) \cdot 10^{-6}$	9.6 ± 0.9	< 61	25%	9.3%
$F_L(B \to K^* \nu \bar{\nu})$	0.47 ± 0.03			0.079
$R_K^{\nu\bar{\nu}}(B^+)$	1	2.4 ± 0.9		
$R_{K^*}^{\nu\bar{\nu}}(B^0)$	1	< 1.9		

Ta6лица: The last two columns list the Belle II sensitivities to exclusive B-meson decays to a $K^{(*)}$ meson [Belle-II:2018jsg] if the respective SM predictions are assumed. We estimate $R_{K^{(*)}}$ from the values in the second and third columns for the corresponding modes. The current constraint for $B^+ \to K^+ \nu \bar{\nu}$ is the world average for the branching fraction presented in [Dattola:2021cmw].

イロト 不得 トイヨト イヨト ニヨー

$U\nu_R MSSM$ description

• U(1)' extension of MSSM with gauge structure:

```
SU(3) \times SU(2) \times U(1) \times U(1)'
```

- MSSM chiral multiplets + singlet superfield S (allows one to break U(1)' spontaneously and generate mass for the corresponding Z' boson);
- Three right-handed chiral superfields $\nu_{1,2,3}^c$;

• Non-universal charges for ACCs:

field	Q'	field	Q'	field	Q'
$Q_{1,2}$	0	$U_{1,2}^{c}$	0	$D_{1,2}^{c}$	0
Q_3	+1	U_3^c	-1	D_3^c	-1
$L_{1,2}$	-1	$E_{1,2}^{c}$	+1	$\nu_{1,2}^{c}$	+1
L_3	0	E_3^c	+1	ν_3^c	0
H_d	-1	H_u	0	S	+1

$U\nu_B MSSM$ description

Superpotential:

$$W = \sum_{i,j=1,2} Y_{u}^{ij} Q_{i} H_{u} U_{j}^{c} + Y_{u}^{33} Q_{3} H_{u} U_{3}^{c} - (Q_{3} H_{d}) (Y_{d}^{31} D_{1}^{c} + Y_{d}^{32} D_{2}^{c}) + \sum_{i,j=1,2} Y_{\nu}^{ij} L_{i} H_{u} \nu_{j}^{c} + M_{3}^{\nu} \nu_{3}^{c} \nu_{3}^{c} + Y_{\nu}^{33} L_{3} H_{u} \nu_{3}^{c} - (L_{3} H_{d}) \left(Y_{e}^{31} E_{1}^{c} + Y_{e}^{32} E_{2}^{c} + Y_{e}^{33} E_{a}^{3}\right) + \lambda_{s} S H_{u} H_{d}$$
(3)

• The gauge field Z' couples to quarks and leptons as

$$\mathcal{L} \ni g_E Z'_{\alpha} \left[\bar{b} \gamma_{\alpha} b + \bar{t} \gamma_{\alpha} t \right] - g_E Z'_{\alpha} \left[\sum_{i=1,2} \left(\left[\bar{l}_{iL} \gamma_{\alpha} l_{iL} + \bar{\nu}_{iL} \gamma_{\alpha} \nu_{iL} \right] + \bar{\nu}_{iR} \gamma_{\alpha} \nu_{iR} \right) - \sum_{i=1,3} \bar{l}_{iR} \gamma_{\alpha} l_{iR} \right].$$

$$(4)$$

Non-holomorphic soft SUSY-breaking terms:

$$-\mathcal{L}_{soft}^{nh} = \sum_{i=1}^{2} \sum_{j=1}^{3} C_{E}^{ij} (H_{u}^{*}\tilde{l}_{i}) \tilde{E}_{j}^{c} + C_{D}^{33} H_{u}^{*} \tilde{q}_{3} \tilde{d}_{3}^{c} + H_{u}^{*} \sum_{i,j=1,2} C_{D}^{ij} \tilde{q}_{i} \tilde{d}_{j}^{c} + H_{d}^{*} \left(\tilde{q}_{1} C_{U}^{13} + \tilde{q}_{2} C_{U}^{23} \right) \tilde{u}_{3}^{c} + H_{d}^{*} \left(\tilde{l}_{1} C_{\nu}^{13} + \tilde{l}_{2} C_{\nu}^{23} \right) \tilde{\nu}_{3}^{c} + \text{h.c.}.$$
(5)

Mukhaeva A. (JINR, BLTP)

ъ

Numerical equations for $b \to s \nu \bar{\nu}$ transition

$$\begin{aligned} R_{K}^{\nu\bar{\nu}} &= \left[1 - 0.1041 \sum_{\alpha} \operatorname{Re} \left(C_{L}^{\alpha\alpha} + C_{R}^{\alpha\alpha} \right) \right. \\ &+ 0.0081 \sum_{\alpha\beta} \left\{ \left. \left| \frac{C_{L}^{\alpha\beta} + C_{R}^{\alpha\beta} \right|^{2}}{\operatorname{LH neutrino}} + \left| \frac{C_{L}^{\prime\,\alpha\beta} + C_{R}^{\prime\,\alpha\beta} \right|^{2}}{\operatorname{RH neutrino}} \right\} \right], \end{aligned} \tag{6}$$

$$\begin{aligned} R_{K^{*}}^{\nu\bar{\nu}} &= \left[1 - 0.1041 \sum_{\alpha} \operatorname{Re} \left(C_{L}^{\alpha\alpha} \right) + 0.0692 \sum_{\alpha} \operatorname{Re} \left(C_{R}^{\alpha\alpha} \right) \right. \\ &+ 0.00135 \sum_{\alpha\beta} \left\{ \left. \left| \frac{C_{R}^{\alpha\beta} + C_{L}^{\alpha\beta} \right|^{2}}{\operatorname{LH neutrino}} \right|^{2} + \left| \frac{C_{R}^{\prime\,\alpha\beta} + C_{L}^{\prime\,\alpha\beta} \right|^{2}}{\operatorname{RH neutrino}} \right\} \\ &+ 0.00675 \sum_{\alpha\beta} \left\{ \left. \left| \frac{C_{R}^{\alpha\beta} - C_{L}^{\alpha\beta} \right|^{2}}{\operatorname{LH neutrino}} \right|^{2} + \left| \frac{C_{R}^{\prime\,\alpha\beta} - C_{L}^{\prime\,\alpha\beta} \right|^{2}}{\operatorname{RH neutrino}} \right], \end{aligned} \tag{7}$$

$$\begin{aligned} R_{F_{L}}^{\nu\bar{\nu}} \cdot R_{K^{*}}^{\nu\bar{\nu}} &= \left[1 + 0.1041 \sum_{\alpha} \operatorname{Re} \left(C_{R}^{\alpha\alpha} - C_{L}^{\alpha\alpha} \right) \right. \\ &+ 0.0081 \sum_{\alpha\beta} \left[\left| C_{L}^{\alpha\beta} - C_{R}^{\alpha\beta} \right|^{2} + \left| C_{L}^{\prime\,\alpha\beta} - C_{R}^{\prime\,\alpha\beta} \right|^{2} \right] \right]. \end{aligned} \tag{8}$$

Mukhaeva A. (JINR, BLTP)

7 December, 2022 11/18

э.

イロト イヨト イヨト イヨト

Model independent analysis: Single operator contribution

Puc.: Variations of flavor diagonal individual NP Wilson coefficients (assuming contributions from all three generations are equal) are shown for the observables $R_K^{\nu\bar{\nu}}$ and $R_{K^*}^{\nu\bar{\nu}}$ in the left and right panels, respectively. The orange band in the left panel show the $\pm 1\sigma$ signal strength quoted in Tab.1, whereas the black dashed line in the right panel is the upper bound given in Tab.1.

		Current bound		Future Sensitivity $(50ab^{-1})$	
WC	Value	NP scale (TeV)	Observable	Value	NP scale (TeV)
$C_L^{\alpha\alpha} > 0$	26(16)	6.7(8.6)	$B \to K$	15	8.0
	19	8	$B \to K^*$	10	0.9
$C_L^{\alpha\alpha} < 0$	13(4)	8.5(17)	$B \to K$	9	20
	6	14	$B \to K^*$	5	20
$C_R^{\alpha\alpha} > 0$	26(16)	6.7(8.6)	$B \to K$	29	19
	7	13	$B \to K^*$	0.2	
$C_R^{\alpha\alpha} < 0$	13(4)	8.5(17)	$B \to K$	11 7	10
	16	8.6	$B \to K^*$	11.7	10
$C_{L(R)}^{\alpha\neq\beta}, C_{L(R)}^{\prime\alpha\beta}$	18(8)	8 (12)	$B \to K$	6.1	12.0
	10	11	$B \to K^*$	0.1	10.9

Ta6лица: Bounds imposed on the absolute value of the respective Wilson coefficients if only one of them gets (sizeable) contributions from new physics at a time, both for the current situation and for the projections for the $50ab^{-1}$ Belle II data set. In the latter case we assume that future measurement would confirm the SM predictions and $R_{K^{(*)}} > 1.3$ is excluded at $\approx 3\sigma$. We also provide rough estimates for the corresponding new physics scale and the observables from which the respective bound arises. Note that, we give upper (lower) current bounds on WCs for $B \to K$, originating from $B^+ \to K^+ \nu \bar{\nu}$ world average.

= nar

Two operator contribution: Parameter space which is compatible with the $1(3)\sigma$ current (future) bounds on $B^+ \to K^+ \nu \bar{\nu}$ and $B^0 \to K^* \nu \bar{\nu}$

14/18

Model dependent analysis: Predictions

Obs	SM	Exp	FIT
$R_K(B^+)^{[1.1,6.0]}$	1 ± 0.01 [1], [2]	$0.846^{+0.044}_{-0.041}$ [3]	0.845 ± 0.05
$R_K^*(B^0)^{[1.1,6.0]}$	1 ± 0.01 [1], [2]	$\begin{array}{c} 0.96\substack{+0.45\\-0.29}\pm0.11\ [4]\\ 0.69\substack{+0.113\\-0.069}\pm0.05\ [5] \end{array}$	0.93 ± 0.03
$P_{5}^{\prime [4,6]}$	-0.757 ± 0.077 [6]	$-0.439 \pm 0.111 \pm 0.036[7]$	-0.52 ± 0.14
$\Delta M_{B_s}, \mathrm{ps}^{-1}$	18.77 ± 0.76 [8]	17.765 ± 0.004 [9]	18.51 ± 2.30
$BR(B_s \to \mu\mu) \cdot 10^{-9}$	3.68 ± 0.14 [10]	$3.09^{+0.46+0.15}_{-0.43-0.11}[11]$	3.69 ± 0.16
$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) \times 10^{-6}$	4.6 ± 0.5 [12]	$11 \pm 4[13], < 19[14]$	5.05 ± 0.80
$\mathcal{B}(B^0 \to K^0 \nu \bar{\nu}) \times 10^{-6}$	4.1 ± 0.5 [15]	< 26 [14]	4.67 ± 0.92
$\mathcal{B}(B^0 \to K^{0*} \nu \bar{\nu}) \times 10^{-6}$	9.6 ± 0.9 [12]	< 18 [14]	10.20 ± 0.96
$\mathcal{B}(B^+ \to K^{+*} \nu \bar{\nu}) \times 10^{-6}$	9.6 ± 0.9 [12]	< 61 [14]	11.00 ± 0.90
$F_L^{B^0 \to K^* \nu \bar{\nu}}$	0.47 ± 0.03 [16]	-	0.696 ± 0.04
$R_K^{\nu\bar{\nu}}$	1	2.4 ± 0.9	1.14 ± 0.45
$R_{K^*}^{\nu\bar{\nu}}$	1	< 1.9	1.07 ± 0.66

Таблица: Model predictions for $b \to sll$ and $b \to s\nu\bar{\nu}$ observables.

3

Correlations between $b \to sll$ and $b \to s\nu\bar{\nu}$

Mukhaeva A. (JINR, BLTP)

7 December, 2022 16

16 / 18

Correlations between $b \to sll$ and $b \to s\nu\bar{\nu}$

Results

- $B \to K^{(*)} \nu \bar{\nu}$ are important probe for new physics
- Experimental challenges might be overcome with inclusive tag technique@Belle II expecting signal soon?!
- We have studied how new physics contributing to $b \to s \nu \bar{\nu}$ transition is constrained by current bounds on the branching ratios of $B \to K \nu \bar{\nu}$, $B \to K^* \nu \bar{\nu}$ and what improvements can be expected from the projected measurement of these processes at Belle II
- Have found regions in the space of WC compatible with current and future experimental bounds
- $\bullet\,$ Analysed dineutrino decays in SUSY model with additional U(1) group
- Considered correlations between $b \to sll$ and $b \to s \nu \bar{\nu}$ transitions

Thank you for your attention!

Marzia Bordone, Gino Isidori, and Andrea Pattori. On the Standard Model predictions for R_K and R_{K^*} . Eur. Phys. J. C, 76(8):440, 2016.

Gudrun Hiller and Frank Kruger. More model-independent analysis of $b \rightarrow s$ processes. *Phys. Rev. D*, 69:074020, 2004.

Roel Aaij et al. Test of lepton universality in beauty-quark decays. Nature Phys., 18(3):277–282, 2022.

A. Abdesselam et al. Test of Lepton-Flavor Universality in $B \to K^* \ell^+ \ell^-$ Decays at Belle. *Phys. Rev. Lett.*, 126(16):161801, 2021.

R. Aaij et al. Test of lepton universality with $B^0 \to K^{*0}\ell^+\ell^-$ decays. *JHEP*, 08:055, 2017.

Sebastien Descotes-Genon, Tobias Hurth, Joaquim Matias, and Javier Virto.

Mukhaeva A. (JINR, BLTP)

Optimizing the basis of $B \to K^*ll$ observables in the full kinematic range. *JHEP*, 05:137, 2013.

Roel Aaij et al.

Measurement of CP-Averaged Observables in the $B^0 \to K^{*0}\mu^+\mu^-$ Decay. *Phys. Rev. Lett.*, 125(1):011802, 2020.

Alexander Lenz and Gilberto Tetlalmatzi-Xolocotzi.
 Model-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesons.
 JHEP, 07:177, 2020.

Y. Amhis et al.

Averages of *b*-hadron, *c*-hadron, and τ -lepton properties as of 2021. 6 2022.

Martin Beneke, Christoph Bobeth, and Robert Szafron. Power-enhanced leading-logarithmic QED corrections to $B_q \rightarrow \mu^+ \mu^-$. *JHEP*, 10:232, 2019.

Roel Aaij et al. Analysis of Neutral B-Meson Decays into Two Muons. Phys. Rev. Lett., 128(4):041801, 2022.

Mukhaeva A. (JINR, BLTP)

7 December, 2022 18 / 18

∃ nar

W. Altmannshofer et al.

The Belle II Physics Book. *PTEP*, 2019(12):123C01, 2019. [Erratum: PTEP 2020, 029201 (2020)].

Filippo Dattola.

Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with an inclusive tagging method at the Belle II experiment.

In 55th Rencontres de Moriond on Electroweak Interactions and Unified Theories, 5 2021.

J. Grygier et al.

Search for $B \rightarrow h\nu\bar{\nu}$ decays with semileptonic tagging at Belle. *Phys. Rev. D*, 96(9):091101, 2017. [Addendum: Phys.Rev.D 97, 099902 (2018)].

 David Straub, Peter Stangl, Matthew Kirk, Jacky Kumar, and ChristophNiehoff.
 flav-io/flavio: v2.3.1.
 oct 2021.

Andrzej J. Buras, Jennifer Girrbach-Noe, Christoph Niehoff, and David M. Straub.

 $B\to K^{(*)}\nu\overline{\nu}$ decays in the Standard Model and beyond.

JHEP, 02:184, 2015.

2