

Studies of the reference and satellite nuclear reactions in search for light neutron-rich nuclear systems

Ivan Muzalevskii Silesian University in Opava & FLNR JINR for ACCULINNA-2 collaboration

Breakthrough results on ^{6,7}H studies

⁷H population in ${}^{2}H({}^{8}He,{}^{3}He){}^{7}H$ with ${}^{2}H({}^{10}Be,{}^{3}He){}^{9}Li$ reference reaction

[I. A. Muzalevskii, et al., "Resonant states in ⁷H: Experimental studies of the ²H(⁸He,³He) reaction", Phys. Rev. C 103, 044313 (2021)] [A.A. Bezbakh, et al., "Evidence for the First Excited State of ⁷H", Phys. Rev. Lett. 124, 022502

(2020)]

⁶H population in ²H(⁸He,⁴He)⁶H with ²H(¹⁰Be,⁴He)⁸Li reference reaction

[E. Y. Nikolskii, et al., "The ⁶H states studied in the $d(^{8}He,\alpha)$ reaction and evidence of extremely correlated character of the ⁵H ground state, Phys. Rev. Lett. 105, 064605 (2022)]

Problem

Problem

Methods

- Angular analysis
- Statistical analysis

- Correlations channel analysis
- Reference reaction analysis

Correlation analysis results

Low energy ⁶H spectrum

Excellent ²H(⁸He,⁴He)⁶H channel identification

⁵H MM spectrum is strongly correlated with ⁶H ➢ Another evidence for ⁶H⇒⁵H(g.s) + n ➢ Simulations should be performed

Reference measurements Main run; missing-mass method

Proton transfer

Deutron transfer

Reference measurementsReference run; missing-mass methodProton transferDeutron transfer

- Stable long-lived reaction products
- Registration of all reaction products
- Well-known structure
- High cross section; high statistics

> Population of ⁹Li ground and (1/2-) states

> MC simulation reproduced the experimental MM resolution

⁹Li results, reference to ⁷H

Agreement with *Cenxi Yuan et al.*, *PRC* **85**, *064324* (2012)

- d-³He channel tested
 - > MM spectrum
 - Resolution
 - Cross-section

Population of ⁸Li (3+) state. Absence of ⁸Li due to parity violation
 MC simulation reproduced the experimental MM resolution

Fresh achievements

Light exotic nuclei today

New level schemes for all isotopes ³H-⁷H ⁶H as the evidence of 5-body decay of ⁷H The unique true 4n-decay mechanism is proved to be realized for ⁷H. This is the first such case found in the nuclide map.

Thanks for attention

Evidence for the First Excited State of ⁷H

A. A. Bezbakh,^{1,2} V. Chudoba,^{1,2,*} S. A. Krupko,^{1,3} S. G. Belogurov,^{1,4} D. Biare,¹ A. S. Fomichev,^{1,5} E. M. Gazeeva,¹
A. V. Gorshkov,¹ L. V. Grigorenko,^{1,4,6} G. Kaminski,^{1,7} O. A. Kiselev,⁸ D. A. Kostyleva,^{8,9} M. Yu. Kozlov,¹⁰ B. Mauyey,^{1,11}
I. Mukha,⁸ I. A. Muzalevskii,^{1,2} E. Yu. Nikolskii,^{6,1} Yu. L. Parfenova,¹ W. Piatek,^{1,7} A. M. Quynh,^{1,12} V. N. Schetinin,¹⁰
A. Serikov,¹ S. I. Sidorchuk,¹ P. G. Sharov,^{1,2} R. S. Slepnev,¹ S. V. Stepantsov,¹ A. Swiercz,^{1,13} P. Szymkiewicz,^{1,13}
G. M. Ter-Akopian,^{1,5} R. Wolski,^{1,14} B. Zalewski,^{1,7} and M. V. Zhukov¹⁵

PHYSICAL REVIEW C 103, 044313 (2021)

Resonant states in ⁷H: Experimental studies of the ²H(⁸He, ³He) reaction

I. A. Muzalevskii^(D),^{1,2,*} A. A. Bezbakh,^{1,2} E. Yu. Nikolskii,^{3,1} V. Chudoba,^{1,2} S. A. Krupko,¹ S. G. Belogurov,^{1,4} D. Biare,¹ A. S. Fomichev,^{1,5} E. M. Gazeeva,¹ A. V. Gorshkov,¹ L. V. Grigorenko,^{1,4,3} G. Kaminski,^{1,6} O. Kiselev,⁷ D. A. Kostyleva,^{7,8} M. Yu. Kozlov,⁹ B. Mauyey,^{1,10} I. Mukha,⁷ Yu. L. Parfenova,¹ W. Piatek,^{1,6} A. M. Quynh,^{1,11} V. N. Schetinin,⁹ A. Serikov,¹ S. I. Sidorchuk,¹ P. G. Sharov,^{1,2} N. B. Shulgina,^{3,12} R. S. Slepnev,¹ S. V. Stepantsov,¹ A. Swiercz,^{1,13} P. Szymkiewicz,^{1,13} G. M. Ter-Akopian,^{1,5} R. Wolski,^{1,14} B. Zalewski,^{1,6} and M. V. Zhukov¹⁵

PHYSICAL REVIEW C 105, 064605 (2022)

⁶H states studied in the ²H(⁸He, ⁴He) reaction and evidence of an extremely correlated character of the ⁵H ground state

E. Yu. Nikolskii,^{1,2,*} I. A. Muzalevskii,^{2,3} A. A. Bezbakh,^{2,3} V. Chudoba,^{2,3} S. A. Krupko,² S. G. Belogurov,^{2,4} D. Biare,² A. S. Fomichev,^{2,5} E. M. Gazeeva,² A. V. Gorshkov,² L. V. Grigorenko^{(2,4,1} G. Kaminski,^{2,6} M. Khirk,^{7,2} O. Kiselev,⁸ D. A. Kostyleva,^{8,9} M. Yu. Kozlov,¹⁰ B. Mauyey,^{2,11} I. Mukha,⁸ Yu. L. Parfenova,² W. Piatek,^{2,6} A. M. Quynh,^{2,12} V. N. Schetinin,¹⁰ A. Serikov,² S. I. Sidorchuk,² P. G. Sharov,^{2,3} N. B. Shulgina,^{1,13} R. S. Slepnev,² S. V. Stepantsov,² A. Swiercz,^{2,14} P. Szymkiewicz,^{2,14} G. M. Ter-Akopian,^{2,5} R. Wolski,^{2,15} B. Zalewski,^{2,6} and M. V. Zhukov¹⁶

Particle identification

⁶H results

NO states below 3.5 MeV $(d\sigma/d\Omega < 5 \mu b/sr)$

Peak at 4-8 MeV (~190 μ b/sr):

- 4.5 MeV ground state
- 6.8 MeV excited state

⁷H results I. Muzalevskii et al., Phys. Rev. C 103, 044313 (2021)

⁷H ground state at 2.2(5) MeV

⁷H excited state at 5.5(3) MeV (possibly doublet at 5.5-7.5 MeV)

Peak at 11(3) MeV

