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Abstract—We combine the thermal QRPA approach with the Skyrme energy density functional theory
(Skyrme–TQRPA) for modelling the process of electron capture on nuclei in supernova environment.
For a sample nucleus, 56Fe, the Skyrme–TQRPA approach is applied to analyze thermal effects on the
strength function of GT+ transitions which dominate electron capture at Ee ≤ 30 MeV. Several Skyrme
interactions are used in order to verify the sensitivity of the obtained results to the Skyrme force parameters.
Finite-temperature cross sections are calculated and the results are compared with those of the other model
calculations.
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1. INTRODUCTION

Now it is well established that weak-interaction
processes with nuclei play an important role in the
dynamics of the collapsing core of a massive star that
leads to a supernova explosion [1, 2]. During the
pre-collapse phase, the competition between electron
capture (EC) and β decay determines the electron-
to-baryon ratio (Ye) in the pre-supernova star and
hence its Chandrasekhar mass proportional to Y 2

e .
When the collapse proceeds, electron capture reduces
the number of electrons available for the pressure
support, while β decay acts in the opposite direction.
Until the core reaches densities of ρ ∼ 1011 g cm−3,
neutrinos produced in this reaction leave the star
freely, carrying away energy and helping to maintain a
low entropy. As a result, nucleons resides primarily in
nuclei. However, with increasing densities neutrino
interactions with matter become important and in-
fluence the energy transfer from the core to the outer
layers. So, the supernova simulations should include
all potentially important weak-interaction processes
and reliable estimates of these rates and cross sec-
tions would contribute to a better understanding of
the explosion mechanism.

∗The text was submitted by the authors in English.
1)Bogoliubov Laboratory of Theoretical Physics, JINR,

Dubna, Russia.
2)Institute for Nuclear Research and Nuclear Energy, Bulgar-

ian Academy of Sciences, Sofia, Bulgaria.
**E-mail: dzhioev@theor.jinr.ru

***E-mail: vdovin@theor.jinr.ru
****E-mail: stoyanov@inrne.bas.bg

In the present work, we focus our attention on
electron capture. In the stellar environment electron
energies are typically less than 30 MeV and at early
stage of collapse EC is dominated by Gamow–Teller
(GT+) transitions in iron-group nuclei (A = 45−65).
Therefore the Gamow–Teller strength functions in
iron-group nuclei are of special importance. The task
is complicated by the fact that under extreme condi-
tions that hold in the supernova environment, GT+

transitions from thermally-populated excited states
of the parent nucleus may contribute significantly
to EC. Unfortunately, to obtain information about
GT+ transitions from excited states in the terrestrial
laboratory is not possible. Therefore, to describe EC
probabilities in supernovae we should rely on theoret-
ical (model) calculations.

Presently, the most reliable EC calculations for
iron-group nuclei are performed by using large-scale
shell-model (LSSM) diagonalization approach [3,
4]. For iron-group nuclei, present state-of-the-
art shell model calculations provides a detailed GT
strength distribution for the nuclear ground and
excited states. However, for typical supernova
temperatures T ≈ 1 MeV too many states can be
thermally populated and this makes state-by-state
evolution of the individual GT+ strength distributions
computationally unfeasible. To overcome this prob-
lem the Brink hypothesis is applied, i.e., it is assumed
that GT+ strength distributions on nuclear excited
states are the same as for the nuclear ground state.
Thermal effects are treated by the so-called back-
resonance contribution (see [4] for more details).
However, the validity of Brink hypothesis for the GT+

strength function is not obvious and, even more,
the shell-model Monte-Carlo studies performed at
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finite temperatures [5] and the recent shell-model
calculations [6] showed that the hypothesis failed.

To predict EC rates and cross sections for hot
nuclei, a so-called thermal quasiparticle random-
phase approximation (TQRPA) was proposed re-
cently in the framework of a statistical approach to the
nuclear many-body problem at finite temperature [7,
8]. In this approach, rather than computing indi-
vidual strength distributions for the nuclear ground
and excited states, one determines an “average”
temperature-dependent strength function. In [7,
8], calculations were performed for 54,56Fe and for
neutron-rich germanium isotopes. The latter can be
considered as the average nucleus at later stages of
collapse [9]. It was found that the TQRPA does not
support the Brink hypothesis and leads to noticeable
thermal effects on the GT+ strength function. As
a result, for the Ge isotopes the low-energy cross
sections are sensitive to temperature. Later on,
the method was also applied to study neutrino–
nucleus reactions in supernova environments [10, 11]
and similar thermal effects on the low-energy cross
section were found.

In [7, 8], the TQRPA calculations were based on
the Hamiltonian of the Quasiparticle-Phonon model
(QPM) [12] with a phenomenological Saxon–Woods
mean-field potential and schematic particle–hole in-
teractions. The parameters of the QPM Hamiltonian
were adjusted locally, i.e., to properties of the nucleus
under consideration. This feature strongly reduces
the predictive power of the theory.

In this paper, we extend our studies and perform
self-consistent calculations combining the TQRPA
approach with the Skyrme energy density functional
theory. Use of the Skyrme forces makes more reliable
theoretical predictions of the nuclear properties far
from stability valley which play an important role in
the process of stellar collapse.

The present calculations are performed within the
finite-rank separable approximation, which expands
the Skyrme residual interaction into a sum of sep-
arable terms in a systematic manner [13–15]. The
factorization considerably reduces the computational
effort of the TQRPA while maintaining high accuracy
and even allows one to go beyond the TQRPA.
It should be mentioned that in [16, 17] a finite-
temperature RPA (FTRPA) model based on Skyrme
functionals has been already applied to study EC in
supernovae. Moreover, a similar approach, extended
to the relativistic framework (FTRRPA), has been
employed in [18]. However, in the cited papers
thermal effects are treated not quite consistently.
Below we discuss the subject in more detail and
compare our results with those of [16–18].

The paper is organized as follows. In Section 2, we
briefly outline the TQRPA formalism and the method

of separabilization of the Skyrme residual interaction.
In Section 3, the GT+ thermal strength functions
and electron capture cross sections are presented for
the sample nuclei 56Fe. The results are compared
with those obtained with the QPM Hamiltonian and
within the FTRPA and FTRRPA frameworks. In
Section 4, we draw conclusions and give an outlook
for future studies. The derivation of the charge-
exchange TQRPA equations for the finite-rank sep-
arable Skyrme interaction is given in Appendix.

2. FORMALISM

2.1. Thermal Strength Function

During the core-collapse phase of a supernova ex-
plosion the temperature in the core is sufficiently high
(a few 109 K) to establish an equilibrium of reactions
mediated by the strong and electromagnetic inter-
actions [2]. Neglecting weak-interaction processes,
one can consider nuclei as open quantum systems in
thermal equilibrium with the heat and particle reser-
voir and, hence, they can be described as a thermal
grand canonical ensemble with temperature T and
proton and neutron chemical potentials λp and λn,
respectively. Following [9, 19], to study EC on a hot
nucleus we introduce a thermal strength function as a
grand canonical average of transition matrix elements
of the GT+ operator between states i and f in the
parent and daughter nuclei

SGT+
(E,T )

=
∑

Z,N

∑

i,f

Sif (GT+)δ(E − Eif )P (i, AZ
N ). (1)

Here, Sif (GT+) = |〈f,AZ−1
N+1|σt+|i, AZ

N 〉|2 and Eif =
Ef − Ei + Q are, respectively, the transition strength
and the transition energy, while P (i, AZ

N ) determines
the probability to find the initial state i in the grand
canonical ensemble. The Q value is the difference
between the masses of the daughter and parent
nuclei, Q = Md − Mp, and it determines the reaction
threshold at T = 0. Transition energy corresponds to
the energy difference between the incoming electron
and the outgoing neutrino, Eif = Ee − Eν . At
finite temperature, Eif can take negative values due
to transitions from higher-energy thermally excited
states to lower-energy states.

For the EC cross section one has

σ(Ee, T ) =
(GF gA)2

2π
F (Z,Ee) (2)

×
∫

(E − Ee)2SGT+
(E,T )dE

= σen(Ee, T ) + σex(Ee, T ).
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Here, GF is the weak interaction coupling constant,
gA is the axial coupling constant, and F (Z,Ee) is
the Fermi function that accounts for the Coulomb
distortion of the electron wave function near the nu-
cleus (see, e.g., [4]). In Eq. (2), for further consid-
eration, the total cross section is split into two parts:
σen(Ee, T ) describes the endoergic process which re-
quires an energy input and includes only upward
transitions (Eif > 0), while σex(Ee, T ) accounts for
downward transitions (Eif < 0) from thermally ex-
cited states and corresponds to the exoergic process
when EC releases energy. At T �= 0, the latter pro-
cess is possible for arbitrary small incident electron
energies, i.e., there is no reaction threshold at finite
temperatures.

To compute the thermal strength function we ap-
ply the thermal quasiparticle random-phase approxi-
mation (TQRPA) which is based on the thermo-field
dynamics (TFD) formalism. The concept of TFD is
expounded in [20–22], and here we just briefly outline
the key points relevant for the present discussion. In
TFD, a hot nucleus is described by the state vector
in the doubled Hilbert space which is a direct product
of the original space and its isomorphic tilde space.
Such doubling of the system degrees of freedom al-
lows us to consider excitation and de-excitation pro-
cesses at finite temperature. The correspondence
between operators A acting in the original Hilbert
space and their tilde-partners Ã is given by the tilde-
conjugation rules [20–22]. The important point is
that the time evolution in the doubled Hilbert space
is generated by the thermal Hamiltonian

H = H − H̃, (3)

where H̃ = H(ã†, ã) is the tilde-partner of the orig-
inal nuclear Hamiltonian H(a†, a). The zero-energy
eigenstate |0(T )〉 of the thermal Hamiltonian H,
which satisfies the thermal state condition

A|0(T )〉 = σAeH/2T Ã†|0(T )〉, (4)

is called the thermal vacuum and it describes the
equilibrium state of a hot nucleus. Nonequilibrium
states caused by an external perturbation correspond
to non-zero energy eigenstates of the thermal Hamil-
tonian. By construction, the thermal Hamiltonian
has both positive- and negative-energy (tilde) eigen-
states, H|n〉 = En|n〉 and H|ñ〉 = −En|ñ〉.

Given the eigenstates of the thermal Hamiltonian,
the thermal strength function for any transition oper-
ator T can be written as

ST (E,T ) =
∑

n

{
Sn(T )δ(E − En) (5)

+ S̃n(T )δ(E + En)
}
,

where Sn(T ) and S̃n(T ) are the transition strengths
from the thermal vacuum

Sn(T ) = |〈n|T |0(T )〉|2, (6)

S̃n(T ) = |〈ñ|T |0(T )〉|2.
Obviously, in most practical cases one cannot diag-
onalize H exactly. In the present study, to obtain
the thermal GT+ strength function, we apply the
TQRPA. In this method, nonequilibrium states of a
hot nucleus are treated as phonon-like excitations on
the thermal vacuum. Thus, the problem is reduced
to the diagonalization of the thermal Hamiltonian
in terms of phonon operators such that the respec-
tive phonon vacuum obeys the thermal-state condi-
tion (4). Below we briefly outline the method, while
the details can be found in [8, 23] and in Appendix.

2.2. Proton–neutron TQRPA with Finite-Rank
Separable Approximation for the Skyrme Interaction

To obtain the thermal GT+ strength function
within the TQRPA we suppose that the nuclear
proton and neutron Hartree–Fock states are already
produced using the Skyrme energy density func-
tional. In particular, it means that we ignore the
influence of temperature on the nuclear mean field.
Following [24], this stability of the mean field with
respect to temperature is expected for T considerably
smaller than the energy difference between major
shells (�ω0 = 41A−1/3). This requirement is well sat-
isfied in nuclei with A < 100 for the maximum tem-
peratures reached during the collapse (T ∼ 5 MeV).
Thus, the model Hamiltonian has the form

H = Hmf + Hpair + Hph (7)

and it contains a spherical Skyrme–HF mean field
for nucleons, the pairing interaction and the residual
particle–hole interaction. Since we are working in
the grand-canonical ensemble, the chemical poten-
tials λn and λp are included into Hmf. The particle–
hole interaction Hph is defined in terms of second
derivatives of the Skyrme energy density functional
with respect to the one-body density [25] and can
be written in terms of the Landau–Migdal theory of
Fermi systems. Keeping only l = 0 terms in Hph,
the isovector part of the residual interaction which is
responsible for charge-exchange excitations reads

Hph = N−1
0 [F ′

0 + G′
0σ1 · σ2]τ1 · τ2δ(r1 − r2), (8)

where σ and τ are the nucleon spin and isospin opera-
tors, and N0 = 2kFm∗/π2

�
2 with kF and m∗ denoting

the Fermi momentum and nucleon effective mass,
respectively. The expressions for the Landau param-
eters F ′

0, G′
0 in terms of the Skyrme force parameters

can be found in [26]. Here we just mention that due to
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the density dependence of the Skyrme interaction, the
Landau parameters are functions of the coordinate r.

Following the method presented in [13, 14], we
apply an N-point integration Gauss formula and re-
duce the part of Hph responsible for charge-exchange
excitations to a finite-rank separable form

Hch
ph = −2

N∑

k=1

∑

JM

κ
(k)
F M

(k)†
JM M

(k)
JM (9)

− 2
N∑

k=1

∑

LJM

κ
(k)
G S

(k)†
LJMS

(k)
LJM .

The isovector interaction strengths, κ
(k)
F and κ

(k)
G , are

expressed via the Landau parameters [13, 14]. The
multipole and spin-multipole operators entering Hph

are given by3)

M̂
(k)†
JM = Ĵ−1

∑

jpjn

f
(Jk)
jpjn

[a†jp
ajn ]JM , (10)

Ŝ
(k)†
JM = Ĵ−1

∑

jpjn

g
(LJk)
jpjn

[a†jp
ajn ]JM ,

where Ĵ =
√

2J + 1 and f
(Jk)
jpjn

, g
(LJk)
jpjn

denote the re-
duced single-particle matrix elements

f
(Jk)
jpjn

= ujp(rk)ujn(rk)〈jp||iJYJ ||jn〉, (11)

g
(LJk)
jpjn

= ujp(rk)ujn(rk)〈jp||iL[YL × σ]MJ ||jn〉.

The radial wave functions uj(rk) are related to the
Hartree–Fock single-particle wave functions [13,
14], while rk are abscissas used in the N-point
integration Gauss formula.

Following the TFD, to study charge-exchange
excitations in a hot nucleus we should double the
original nuclear degrees of freedom by introducing
the tilde creation and annihilation operators ã†jm, ãjm

and then diagonalize the respective thermal Hamilto-
nian (3). Within the TQRPA, the thermal Hamilto-
nian is diagonalized in two steps. First, we introduce
thermal quasiparticles that diagonalize the mean field
and pairing parts of H

Hmf + Hpair (12)



∑

τ=n,p

∑

jm

τ
εjm(T )(β†

jmβjm − β̃†
jmβ̃jm).

Thermal quasiparticles account pairing correlations
at finite temperature and their energy and structure
are found from the finite temperature BCS equations

3)In (10) and hereinafter, [ ]JM denotes the coupling of two
single-particle angular momenta jp, jn to the angular mo-
mentum J . The bar over index j implies time inversion.

(see [8] for more detail). In accordance with the BCS
theory [27, 28], the numerical solution of these equa-
tions yields vanishing of pairing correlations above a
certain critical temperature Tcr.

The next step is to account for the residual
particle–hole interaction and diagonalize the thermal
Hamiltonian in terms of thermal phonon creation and
annihilation operators

H 

∑

JMi

ωJi(T )(Q†
JMiQJMi − Q̃†

JMiQ̃JMi). (13)

The energies and structure of thermal charge-ex-
change phonons are obtained by the solution of
TQRPA equations. The explicit form of the proton–
neutron TQRPA equations for the finite-rank separa-
ble Skyrme forces is given in the Appendix.

Charge-exchange GT+ transitions from the ther-
mal vacuum result in Jπ = 1+ thermal phonon
states. Once the energies and structure of 1+

thermal phonons are determined, one can evaluate
the thermal strength function (5) for GT+ transitions.
The transition strengths are given by the following
reduced matrix elements4)

Si(GT+) =
∣∣〈Q1+i||σt+||0(T )〉

∣∣2, (14)

S̃i(GT+) =
∣∣〈Q̃1+i||σt+||0(T )〉

∣∣2,
while the respective transition energies are

Ei = ωJi + δnp, (15)

Ẽi = −ωJi + δnp,

where δnp = λn − λp + ΔMnp, and ΔMnp =
1.29 MeV is the neutron–proton mass difference (the
contribution δnp arises because in charge-exchange
reactions the initial and final nucleons are attached
to different nucleon systems). Thus, within the
TQRPA we have both positive- and negative-energy
transitions to thermal phonon states. The latter
contribute to exoergic EC when Eν > Ee. It should
be emphasized that in the zero-temperature limit,
transition strengths to tilde-phonon states vanish and
the TQRPA method reduces into the standard QRPA.
In particular, at T = 0 the transition energies Ei =
ωJi + λn − λp + ΔMnp correspond to the excitation
energies with respect to the parent nucleus ground
state.

In concluding this section we would like to point
out that the thermal strength function for GT− tran-
sitions can be obtained by the same method. In [7], it
was shown that within the TQRPA the total GT− and
GT+ strengths fulfill the Ikeda sum rule

S− − S+ = 3(N − Z), (16)

4)Explicit expressions for transition strengths can be found
in [7, 8].
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where S∓ =
∫

SGT∓dE. Moreover, the GT− and
GT+ strength functions are related by the detailed
balance

SGT−(−E,T ) (17)

= SGT+
(E,T ) exp

{
−E − δnp

T

}
.

Thus, for each n → p (p → n) GT transition with
energy E > 0 there is an inverse p → n (n → p) tran-
sition with energy −E and the respective transition
strengths are connected by (17). In [11], we have
shown in a model-independent way that the rela-
tion (17) is valid in the grand-canonical ensemble for
any transition operators T− and T+, which differ only
by the isospin operator.

3. RESULTS

In this section, we employ the theoretical frame-
work described above to compute EC cross sec-
tions on 56Fe at finite T . Experimental data avail-
able for this nucleus allow to test our calculations
at zero temperature. Besides, EC calculations for
56Fe in the supernova environment have been per-
formed within various theoretical approaches [16–18]
and these results can be compared with those of the
TQRPA. To reveal the sensitivity of the results to the
Skyrme interaction parametrization, we perform the
calculations for a representative set of Skyrme forces:
Sly4 [29], SGII [26], and SkM* [30]. To distinguish
the present results from those obtained with the QPM
Hamiltonian [8, 11], we will refer to them as the
Skyrme–TQRPA and the QPM–TQRPA, respec-
tively.

A short comment should be made concerning
the choice of the pairing interaction. Within the
BCS approach the phase transition in nuclei from
the superfluid to normal state occurs at critical
temperature Tcr ≈ 0.5Δ, where Δ is the ground
state pairing gap [27, 28]. Therefore, the inclusion
of particle–particle residual interactions does not
affect the strength function for temperatures T > Tcr.
However, to compute the ground state GT+ dis-
tributions and compare them with the experimental
and shell-model ones, pairing correlations are taken
into account at zero temperature. As in [8, 11], we
employ presently a BCS Hamiltonian with a constant
pairing strength. The neutron and proton pairing
strength parameters are fixed to reproduce the odd–
even mass difference. At T = 0 the resulting proton
and neutron energy gaps for 56Fe are Δp = 1.57 MeV
and Δn = 1.36 MeV, respectively. Thus, the critical
temperature when the pairing phase transition occurs
is Tcr ≈ 0.8 MeV.

3.1. GT+ Strength Function
at Zero and Finite Temperatures

In this subsection, we discuss temperature evo-
lution of the GT+ strength function in 56Fe. To
begin with, let us first consider the results of QRPA
calculations at zero temperature. In Fig. 1, we show
the ground state GT+ strength distribution, whose
measurement is feasible from (n, p) [31] reactions on
the 56Fe target. Notice that all distributions are plot-
ted as functions of the excitation energy with respect
to the parent nucleus ground state. The experimental
data from [31] are indicated by points and for conve-
nience of comparison with the QRPA results they are
multiplied by a factor of 5. The GT+ centroid energy,
6.81 MeV, predicted by the LSSM calculations [3] is
shown by an arrow (to obtain this number we have
added the mass splitting between the daughter and
parent nucleus, M(56Mn) − M(56Fe) = 4.21 MeV,
to the number in Table 1 of [3]).

Looking at Fig. 1 one can see that the struc-
ture of the GT+ strength distributions is qualita-
tively similar for all the Skyrme forces. Namely, our
Skyrme–QRPA calculations produce strength dis-
tributions mainly concentrated in a single resonance
peak. The peak is dominated by the single-particle
transition π1f7/2 → ν1f5/2. Although the resonance
is displaced in energy for the different Skyrme inter-
actions, the deviation of the main theoretical peak
from the maximum of experimental strength distri-
bution lies within 1 MeV. When comparing the res-
onance energy with the LSSM results, we notice that
the QRPA calculations with SLy4 and SkM* fairly
well reproduce the GT+ energy centroid predicted by
the shell-model calculations. Of course, the simple
QRPA calculations cannot reproduce the fragmen-
tation of the strength, that is, the spreading width.
In this respect the LSSM calculations [3] are clearly
advantageous.

Figure 1 also shows the unperturbed GT+

strength distributions obtained within the BCS ap-
proach, i.e., neglecting the particle–hole residual
interaction Hph. As evident from the figure, the
particle–hole interaction pushes the GT+ strength
to higher energies and the energy shift is the great-
est for the QPM-QRPA calculations. Moreover,
due to particle–hole correlations the GT+ strength
distribution calculated within QPM-QRPA is more
fragmented. At the same time, the BCS and QRPA
calculations with the SLy4 force produce practically
the same strength distributions. It means that for
the SLy4 Skyrme force the particle–hole residual
interaction in spin–isospin channel is very weak.
Not only the resonance energy, but also the total
GT+ strength S+ is affected by the residual inter-
action. Within the BCS, all calculations predict
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Fig. 1. Ground state GT+ strength distributions in 56Fe
calculated with the SGII, SLy4 and SkM* forces. The
excitation energies are related to the parent ground state.
For comparison, the GT+ strength calculated with the
QPM Hamiltonian is also shown [8]. The solid peaks
denote the QRPA results, and the dashed peaks represent
the unperturbed BCS distributions calculated neglecting
the residual particle–hole interaction. The total GT+

strength is denoted by S+ and the unperturbed values of
S+ are given in parentheses. Experimental data [31] are
displayed by points and for clearer presentation they are
multiplied by a factor of 5. The GT+ centroid energy from
the LSSM calculation [3] is indicated by an arrow.

rather close values of S+ ≈ 10−11. The particle–
hole correlations reduce the total GT+ strength and
this effect is most significant for the QPM based
calculations. However, despite the reduction, the
QRPA values of S+ noticeably overestimate the
experimental ones (S+ = 2.9 ± 0.3 [31]). The experi-
mentally observed quenching of the total GT strength
is usually reproduced by reducing the axial coupling
constant from its free-nucleon value gA = −1.26 to

some effective value g∗A. In what follows we will use
g∗A = −0.93, that corresponds to renormalization of
the GT matrix elements by a quenching factor 0.74.
The same quenching factor was used in the shell-
model calculations [3].

Let us now compare the results of [8, 11] where
thermal effects on the GT+ strength function were
studied within the QPM–TQRPA approach with the
present self-consistent scheme based on the Skyrme
energy density functional theory. The GT+ thermal
strength function in 56Fe is shown in Fig. 2 at T =
1 MeV. To make the thermal effects clearly defined
the ground state (T = 0) strength functions are also
shown. Note, that the strength functions are dis-
played on a logarithmic scale.

In Fig. 2, one can easily see that the Brink
hypothesis is not valid for hot nuclei and the GT+

strength function evolves with temperature. Effec-
tive interaction affects this thermal effect quantita-
tively but not qualitatively. For the upward (E > 0)
strength, the main effect is a temperature-induced
shift of the GT+ resonance towards lower energies.
This decrease is mainly attributed to the vanishing
of pairing correlations, since at temperatures above
the critical one no extra energy is needed to break
a proton Cooper pair when performing GT+ tran-
sitions. Our QPM–TQRPA and Skyrme–TQRPA
calculations show that when the temperature is in-
creased up to 1 MeV, the GT+ resonance is lowered
by about 1.5 MeV. In particular, calculations with
the SGII force demonstrate that due to pairing col-
lapse the GT+ resonance shifts below the ground-
state reaction threshold Q = M(56Mn) − M(56Fe).
However, not only vanishing of pairing correlations
causes the resonance downward shift. It was shown
in [11] that, owing to the thermal blocking of the
residual interaction, a further increase in temperature
could decrease the GT+ resonance as well. As men-
tioned in the Introduction, the observed temperature-
induced downward shift of the GT+ resonance is not
present in LSSM calculations, since they are partially
based on the Brink hypothesis. In contrast, the fi-
nite temperature relativistic QRPA calculations [18]
and shell-model Monte-Carlo calculations [5] show
similar features for the changes of the GT+ resonance
energy.

At finite temperature, GT+ transitions which are
Pauli blocked at T = 0 due to the closed neutron
subshell become unblocked due to thermal smearing
of the nuclear Fermi surface. Similarly, protons that
are thermally excited to higher orbitals can undergo
GT+ transitions. In 56Fe, such thermally unblocked
transitions lead to appearance of the downward (E <
0) component in the GT+ strength function. It is
interesting to note that both the QPM–TQRPA and
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Fig. 2. GT+ strength functions for 56Fe calculated at
T = 0 (dashed peaks) and T = 1.0 MeV (solid peaks).
The arrows indicate the ground-state reaction threshold
for the electron capture (Q = 4.21 MeV).

Skyrme–TQRPA calculations predict roughly the
same energy region where the thermally unblocked
GT+ strength appears at T = 1 MeV. The single-
particle transitions which mainly contribute to this
strength are π2p3/2 → ν2p3/2,1/2 particle–particle
and π1f7/2 → ν1f7/2 hole–hole transitions. Here
particle (hole) denotes a state above (below) the
Fermi level.

It should be emphasized that the appearance
of downward transitions in the TQRPA thermal
strength function stems from the doubling of the
system degrees of freedom within the TFD. For
56Fe, this downward strength corresponds to the
transitions to tilde-phonon states, i.e., to negative-
energy solutions of the TQRPA equations. No
such negative-energy transitions appear within the
approaches based on the finite temperature RPA used
in [16–18]. Therefore, only upward GT+ transitions
were considered in calculations of the EC rates on
56Fe within the FTRPA and FTRRPA.

3.2. Electron Capture Cross Section

In Fig. 3, we display the calculated EC cross sec-
tions (2) as functions of the incident electron energy
Ee. The cross sections are shown at three different
temperatures, T = 0.5, 1.0, and 2.0 MeV. Moreover,
the Skyrme–TQRPA results are presented together
with those of the QPM–TQRPA calculations. As
seen from the plots, all models predict a universal
behavior of the cross section versus electron energy
and temperature. In particular, there is no reaction
threshold for EC at finite temperature and the low-
energy cross sections demonstrate a significant ther-
mal enhancement. It is clear that both these effects
are caused by the downward GT+ transitions from
thermally excited states which contribution to the
cross section increases with temperature.

The bottom panels of Fig. 3 show the ratio of
exoergic EC to the reaction cross section

β(Ee, T ) =
σex(Ee, T )
σ(Ee, T )

. (18)

As expected, the ratio β ∼ 1 for low-energy electrons
and then gradually decreases with increasing elec-
tron energy. Moreover, the higher the temperature
the wider is the range of Ee when exoergic process
dominates (i.e., β > 0.5) EC. It should be stressed
that all variants of the Skyrme forces used here give
rather similar results. The spread in the calculated
cross sections is less than an order of magnitude at
low energies and temperatures and it decreases with
the increase of T and Ee. The Skyrme–TQRPA cal-
culations systematically predict cross sections above
the values obtained within the QPM–TQRPA model.
Evidently, the discrepancy reflects the differences in
the total GT+ strength (see S+ values in Fig. 1).

In Fig. 4, the present results of the Skyrme–
TQRPA calculations at T = 1 MeV are compared
with those obtained by the FTRPA [17] and the FTR-
RPA [18] calculations. In each plot we compare the
TQRPA and FTRPA cross sections calculated with
the same Skyrme force. One can notice in the figure
that the FTRPA and FTRRPA calculations predict
the cross section rapidly dropping to zero when the
electron energy tends to some threshold value. As
was pointed above, the FTRPA and FTRRPA ap-
proaches do not include downward GT+ transitions
that contribute to the exoergic EC. For this reason
some minimal electron energy is required to trigger
the EC process. In contrast, within the TQRPA,
downward transitions dominate the low-energy cross
section at T = 1.0 MeV and make possible EC for
arbitrary small incident electron energy.

In Fig. 4, we also display the endoergic component
of the cross section calculated with the Skyrme–
TQRPA. As seen, the general behavior of σen(Ee, T )
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as a function of Ee is in agreement with the FTRPA
and TQRPA calculations. However, the TQRPA
results are much closer to those computed within
the FTRRPA framework than to the FTRPA results
obtained with the same Skyrme forces. Namely, the
FTRPA cross sections are shifted to higher electron
energies with respect to our σen(Ee, T ) and the shift
is practically the same (∼3 MeV) for all the Skyrme
forces used. It seems that the discrepancy reflects the

difference in the GT+ peak position and the reason
for this most likely lies in the different definition of
transition energies. To explain this, we recall that

in the FTRPA it is assumed5) that the RPA energy
corresponds to the excitation energy in the daughter
nucleus. In such a case, one can approximately write

5)See Eq. (4) in [17] and discussion therein.
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the transition energy to the GT+ resonance in 56Fe as

EFTRPA = E(ν1f5/2) (19)

− E(π1f7/2) + ΔHph + Q,

where Q = M(56Mn) − M(56Fe) = 4.21 MeV and
ΔHph is the energy shift induced by the residual in-
teraction. In the TQRPA framework, the transition
energy is defined by Eq. (15) and it can be written as

ETQRPA = ε(ν1f7/2) + ε(ν1f7/2) (20)

+ ΔHph + δnp = E(ν1f5/2) − E(π1f7/2)
+ ΔHph + ΔMnp.

Here, we take into account that in the absence of
pairing correlations single-particle and quasiparticle
energies are connected as ε = ±(E − λ), where the
upper sign is for particle states, and the lower sign is
for hole states. Thus, one has EFTRPA − ETQRPA =
2.92 MeV which is very close to the observed en-
ergy shift between the FTRPA cross section and our
σen(Ee, T ). It should be also mentioned that under
the FTRRPA (see Eq. (14) in [18]) the transition
energy Ee − Eν is determined by the same manner as
under the TQRPA (at T > Tcr). Therefore, it is not
surprising that the FTTRPA cross section is in a good
agrement with our σen(Ee, T ).

4. SUMMARY AND CONCLUSIONS

In the present work the electron capture cross
sections on the hot 56Fe nucleus were calculated
in the supernova environment. The thermal effects
were treated within the thermal QRPA combined with
Skyrme energy density functional theory. The results
were compared with those obtained from the TQRPA
calculations with the QPM Hamiltonian as well as
from the finite temperature RPA and relativistic RPA
approaches (see [17] and [18], respectively).

We perform a detailed analysis of thermal effects
on the GT+ transitions which dominate the EC cross
sections for Ee ≤ 30 MeV. It was found that the
self-consistent TQRPA calculations with the Skyrme
forces predict the same thermal effects on the GT+

strength function as those found in our previous stud-
ies based on the QPM Hamiltonian. In particular,
increasing temperature shifts the GT+ resonance to
lower energies and makes possible negative-energy
transitions. The values of the resonance shift and the
energies of thermally unblocked downward transi-
tions well agree for all Skyrme–TQRPA calculations.

We calculate the EC cross sections for different
supernova temperatures. The spread in the cross
sections computed with the different Skyrme forces
is less than an order of magnitude. This finding is
the main result of the present study. Comparison with

the FTRPA and FTRRPA results [17, 18] reveals the
importance of downward GT+ transitions for the low-
energy EC cross section.

The application of the present self-consistent
method is not restricted by iron-group nuclei and it
can be applied to more massive neutron-rich nuclei,
which are beyond the present capability of the LSSM
calculations. The fragmentation of the GT+ strength
plays a significant role at low temperature and den-
sities of the supernova environment. Therefore, a
further improvement of the model is to go beyond
TQRPA and take into account higher-order correla-
tions. For the separable residual interaction this can
be done by coupling the thermal phonon states with
more complex (e.g., two-phonon) configurations. For
charge-exchange excitations at zero temperature, the
phonon coupling was considered within the QPM
model [32], and most recently with the self-consistent
Skyrme based calculations [33]. Another possible
improvement is the inclusion of the effect of nuclear
deformation. In [34], EC calculations for deformed
nuclei were performed assuming that the process is
dominates by the ground-state contribution.
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Appendix

Within the TQRPA, charge-exchange thermal
phonons are defined as a linear superposition of the
proton–neutron thermal quasiparticle pair creation
and annihilation operators

Q†
JMi =

∑

jpjn

(
ψJi

jpjn
[β†

jp
β†

jn
]JM + ψ̃Ji

jpjn
[β̃†

jp
β̃†

jn
]JM

(A.1)

+ iηJi
jpjn

[β†
jp

β̃†
jn

]JM + iη̃Ji
jpjn

[β̃†
jp

β†
jn

]JM

+ φJi
jpjn

[βjpβjn ]JM + φ̃Ji
jpjn

[β̃jp β̃jn ]JM

+ iξJi
jpjn

[βjp β̃jn ]JM + iξ̃Ji
jpjn

[β̃jpβjn ]JM
)
.

The physical meaning of different terms in this defini-
tion is explained in [8, 11]. Here we just mention that
due to negative-energy tilde thermal quasiparticles
in (A.1), the spectrum of thermal charge-exchange
phonons contains negative-energy and low-energy
states which do not exist at zero temperature. These
“new” phonon states are interpreted as thermally un-
blocked transitions between nuclear excited states.

To find the energy and the structure of the thermal
phonons we apply the equation of motion method

〈|δQ, [H, Q†]]|〉 = ω(T )〈|[δQ,Q†]|〉 (A.2)
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under two additional constraints: (a) the phonon
operators obey Bose commutation relations, and (b)
the phonon vacuum obeys the thermal state condi-
tion (4). The first constraint is equivalent to averag-
ing with respect to the BCS thermal vacuum in the
equation of motion and it leads to an orthonormality
condition for the phonon amplitudes

∑

jpjn

(
ψJi

jpjn
ψJi′

jpjn
+ ψ̃Ji

jpjn
ψ̃Ji′

jpjn
+ ηJi

jpjn
ηJi′

jpjn
(A.3)

+ η̃Ji
jpjn

η̃Ji′
jpjn

− φJi
jpjn

φJi′
jpjn

− φ̃Ji
jpjn

φ̃Ji′
jpjp

− ξJi
jpjn

ξJi′
jpjn

− ξ̃Ji
jpjn

ξ̃Ji′
jpjn

)
= δii′ .

The last assumption yields the following relations
between amplitudes:

(
ψ̃

φ̃

)Ji

jpjn

=
yjpyjn − e−ωJi/2T xjpxjn

e−ωJi/2T yjpyjn − xjpxjn

(
φ

ψ

)Ji

jpjn

,

(A.4)
(

η̃

ξ̃

)Ji

jpjn

=
yjpxjn − e−ωJi/2T xjpyjn

e−ωJi/2T yjpxjn − xjpyjn

(
ξ

η

)Ji

jpjn

.

Here, xj and yj (x2
j + y2

j = 1) are the coefficients of
the so-called thermal transformation which estab-
lishes a connection between Bogoliubov and thermal
quasiparticles. Note that yj are given by the nucleon
Fermi–Dirac function and they define a number of
thermally excited Bogoliubov quasiparticles in the
thermal vacuum (see [8] for more details).

To derive the TQRPA equations it is convenient to
introduce the following linear combinations of ampli-
tudes:

(
g

w

)Ji

jpjn

= ψJi
jpjn

± φJi
jpjm

, (A.5)

(
g̃

w̃

)Ji

jpjn

= ψ̃Ji
jpjn

± φ̃Ji
jpjn

,

(
t

s

)Ji

jpjn

= ηJi
jpjn

± ξJi
jpjn

,

(
t̃

s̃

)Ji

jpjn

= η̃Ji
jpjn

± ξ̃Ji
jpjn

.

Then from (A.4) it follows that
(

g

w

)Ji

jpjn

= (xjpxjn − e−ωJi/2T yjpyjn)
(

G

W

)Ji

jpjn

(A.6)
(

g̃

w̃

)Ji

jpjn

= ∓(yjpyjn − e−ωJi/2T xjpxjn)
(

G

W

)Ji

jpjn

(
t

s

)Ji

jpjn

= (xjpyjn − e−ωJi/2T yjpxjn)
(

T

S

)Ji

jpjn

(
t̃

s̃

)Ji

jpjn

= ∓(yjpxjn − e−ωJi/2T xjpyjn)
(

T

S

)Ji

jpjn

,

where G, W , T , and S are normalized according to
∑

jnjp

(
GJi

jpjn
W Ji′

jpjn
(1 − y2

jp
− y2

jn
) (A.7)

− T Ji
jpjn

SJi′
jpjn

(y2
jp
− y2

jn
)
)

= δii′/(1 − e−ωJi/T ).

From the equation of motion (A.2) we get the
system of TQRPA equations for unknown variables
G, W , T , and S and phonon energies

GJi
jpjn

± W Ji
jpjn

=
2Ĵ−2

ε
(+)
jpjn

∓ ωJi

(A.8)

×
2N∑

n=1

d
(Jn)
jpjn

κ
(n)
1

(
u

(+)
jpjn

DJin
+ ± u

(−)
jpjn

DJin
−

)
,

T Ji
jpjn

± SJi
jpjn

=
2Ĵ−2

ε
(−)
jpjn

∓ ωJi

×
2N∑

n=1

d
(Jn)
jpjn

κ
(n)
1

(
v
(−)
jpjn

DJin
+ ± v

(+)
jpjn

DJin
−

)
,

where

DJin
+ =

∑

jpjn

d
(Jn)
jpjn

{
u

(+)
jpjn

(1 − y2
jp
− y2

jn
)GJi

jpjn
(A.9)

− v
(−)
jpjn

(y2
jp
− y2

jn
)T Ji

jpjn

}
,

DJin
− =

∑

jpjn

d
(Jn)
jpjn

{
u

(−)
jpjn

(1 − y2
jp
− y2

jn
)W Ji

jpjn

− v
(+)
jpjn

(y2
jp
− y2

jn
)SJi

jpjn

}
.

In the above equation we have introduced the follow-
ing linear combination of the Bogoliubov (u, v) co-

efficients: u
(±)
jpjn

= ujpvjn ± vjpujn , v
(±)
jpjn

= ujpujn ±
vjpvjn . The factors d

(Jn)
jpjn

are given by

d
(Jn)
jpjn

=

{
f

(Jk)
jpjn

, if n = k

g
(JJk)
jpjn

, if n = N + k
(A.10)

for natural parity phonons (π = (−1)J ), and

d
(Jn)
jpjn

=

{
g
(J−1Jk)
jpjn

, if n = k

g
(J+1Jk)
jpjn

, if n = N + k
(A.11)

PHYSICS OF ATOMIC NUCLEI Vol. 79 No. 6 2016



THE SKYRME-TQRPA CALCULATIONS 1029

for unnatural parity phonons (π = (−1)J+1).
Because of the separable form of the residual in-

teraction the TQRPA equations can be reduced to the
set of equations for DJin

∓⎛

⎝M1 − 1
2I M2

M2 M3 − 1
2I

⎞

⎠

⎛

⎝D+

D−

⎞

⎠ = 0. (A.12)

The matrix elements of the 2N × 2N matrices Mβ

are the following:

Mnn′
1,3 =

κ
(n′)
1

Ĵ2

∑

jpjn

d
(Jn)
jpjn

d
(Jn′)
jpjn

×
{

ε
(+)
jpjn

(u(±)
jpjn

)2

(ε(+)
jpjn

)2 − ω2
Ji

(1 − y2
jp
− y2

jn
)

−
ε
(−)
jpjn

(v(∓)
jpjn

)2

(ε(−)
jpjn

)2 − ω2
Ji

(y2
jp
− y2

jn
)

}
,

Mnn′
2 =

κ
(n′)
1

Ĵ2
ωJi

∑

jnjp

d
(Jn)
jpjn

d
(Jn′)
jpjn

×
{

u
(+)
jpjn

u
(−)
jpjn

(ε(+)
jpjn

)2 − ω2
Ji

(1 − y2
jp
− y2

jn
)

−
v
(+)
jpjn

v
(−)
jpjn

(ε(−)
jpjn

)2 − ω2
Ji

(y2
jp
− y2

jn
)

}
,

where 1 ≤ n, n′ ≤ 2N . Thus, the TQRPA eigenval-
ues ωJi are the roots of the secular equation

det

⎛

⎝M1 − 1
2I M2

M2 M3 − 1
2I

⎞

⎠ = 0, (A.13)

while the phonon amplitudes corresponding the
TQRPA eigenvalue ωJi are determined by Eqs. (A.5),
(A.6), and (A.8), taking into account the normaliza-
tion condition (A.7).
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