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Abstract

We use a superoperator representation of the quantum kinetic equation to develop
nonequilibrium perturbation theory for an inelastic electron current through a quantum dot.

We derive a Lindblad-type kinetic equation for an embedded quantum dot (i.e. a quantum dot
connected to Lindblad dissipators through a buffer zone). The kinetic equation is converted to
non-Hermitian field theory in Liouville-Fock space. The general nonequilibrium many-body
perturbation theory is developed and applied to the quantum dot with electron—vibronic and
electron—electron interactions. Our perturbation theory becomes equivalent to a Keldysh
nonequilibrium Green’s function perturbative treatment provided that the buffer zone is large

enough to alleviate the problems associated with approximations of the Lindblad kinetic

equation.

(Some figures may appear in colour only in the online journal)

1. Introduction

Study of the electron transport through nanoscopic systems
remains one of the most active areas of contemporary
condensed matter physics. Most of the theoretical research has
been done so far with the use of the Keldysh nonequilibrium
Green’s functions (NEGF) [1] and scattering-theory-based
approaches [2]. NEGF applications to electron transport
were pioneered by Caroli ef al [3] in the early 1970s. The
Keldysh NEGF become particularly useful in the development
of systematic perturbation theories for electron—vibronic
and electron—electron interactions in the current-carrying
nanosystem. In particular, nonequilibrium effects originated
from electron—vibration coupling have attracted a lot of
attention recently because of their importance in single-
molecule electronics [4—8]. Various kinds of perturbation
theories to deal with electronic correlations have also been
recently developed [9-14].

1 On leave of absence from: Bogoliubov Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia.

0953-8984/12/225304+12$33.00

The electron transport through the system of interacting
electrons (either with themselves or with some vibrational
fields) involves two different energy scales: one energy scale
is related to the tunneling coupling between the nanosystem
and macroscopic leads and the second one is the strength
of the interactions inside the nanosystems. NEGF usually
treats the tunneling interaction exactly, but it has to rely
on various types of perturbative calculations to account for
correlations. On the other hand, the approaches based on
kinetic equations are able to treat the correlations inside the
nanosystem very accurately (even exactly in the case of simple
model systems) but the tunneling part is usually taken into
account in the second- or sometimes higher-order perturbation
theory [15-21]. This immediately rules out the application
of kinetic equations to one of the most interesting transport
regimes when there is no energy scale separation between
coupling to the electrode and the correlations in the systems
(in other words, to the case when the tunneling time for
electrons becomes comparable to the characteristic time for
the development of correlations in the dot).

© 2012 IOP Publishing Ltd Printed in the UK & the USA
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Our approach to the use of kinetic equations for
electron transport is different and will be elaborated in
detail in section 2. We begin with a relatively simple
kinetic equation of the Lindblad type, but we make it
exact for the nonequilibrium steady state by the introduction
of the finite buffer zones between the quantum dot and
macroscopic leads (so-called embedding of the quantum
dot) [22-24]. To fully link transport kinetic equations with
the many-body methods we transform it to Liouville—Fock
(or super-Fock) space and it becomes equivalent to effective
non-Hermitian field theory with the right vacuum vector,
which corresponds to a nonequilibrium steady state density
matrix. This combination of the embedding and the use
of Liouville-Fock space enables us to overcome the usual
limitations of the kinetic-equation-based approaches. The
main goal of this paper is mostly methodological. Namely,
we develop nonequilibrium perturbation theory in terms
of electron—vibronic and electron—electron interactions and
test our theory against the NEGF results obtained for
out-of-equilibrium local Holstein and Anderson models.

The rest of the paper is organized as follows. In
section 2, we derive the Lindblad equation for an embedded
quantum dot and discuss the underlying approximations.
In section 2, we also describe the superoperator formalism
and convert the kinetic equation to non-Hermitian field
theory in Liouville—Fock space. Section 3 presents the main
equations of nonequilibrium many-body perturbation theory,
applications to local Holstein and Anderson models, and a
comparison with NEGF. Conclusions are given in section 4.
We use natural units throughout the paper: 7 = kg = |e| = 1,
where —|e| is the electron charge.

2. Lindblad Kinetic equation for embedded quantum
system in Liouville-Fock space

2.1. Lindblad kinetic equation for embedded quantum dot

We begin by considering a quantum system (e.g. quantum
dot, molecule, etc) connected to two electrodes, left and
right, with different chemical potentials. Each electrode is
partitioned into two parts (figure 1): the macroscopically large
lead (environment) and the finite buffer zone between the
system and the environment. So the Hamiltonian of the whole
system is

‘H = Hs + Hsg + Hg + Hpg + HE. (D

We assume that the environment and the buffer zones are
described by the noninteracting Hamiltonians

Hg = Z Skaa;maka, Hg = Z Sbozazaaboz- 2
ko ba

Here i, denote the continuum single-particle spectra of the
left (@ = L) and right (¢« = R) lead states, and a;ﬂa (aka)
create (annihilate) an electron in the lead state ko. The buffer
zones have discrete energy spectrum &5y With corresponding
creation and annihilation operators a}:a and apy. The system
Hamiltonian is taken in the most general form:

Hs =) e,alag + H, 3)
s

Buffer
zone

Buffer
zone

Quantum

dot

Environment
Environment

Figure 1. Schematic illustration of quantum dot embedding. The
electrodes are divided into macroscopic ‘environment’ and buffer
zone. The projection of the environment results in the Lindblad
kinetic equation for the reduced density matrix of the buffer and
quantum dot. Each buffer zone contains a finite number of discrete
single-particle levels.

where a_l' (ag) create (annihilate) electrons in the single-
particle state &; in the dot and Hg contains two-particle
electron—electron correlations and/or electron—vibration cou-
pling. The buffer—environment and quantum dot-buffer
couplings have the standard tunneling form:

Hpg = ) (Vka@y ke + h.c.), “4)
bka

Hsg = ) (tspadj,as +h.c). (5)
sba

Now we introduce an embedded system which consists
of the quantum system itself and the buffer zones. We
have recently demonstrated that if we take the buffer zones
sufficiently large the density matrix of the embedded system
obeys the kinetic equation of Lindblad type. The technical
details of the derivations and underlying approximations can
be found in the appendix to [24]. Here we give only a sketch of
the derivation with the emphasis on important physics relevant
to our subsequent discussion.

The starting point is the Liouville equation for the total
density matrix yx (¢) in the interaction picture:

x1(@) = —ilvr(0), x1()]. (6)

Here the buffer—environment coupling Hpg is treated as
an interaction Hamiltonian, i.e. H = h + Hgg and v;(t) =
el Hppe™ " To derive the Lindblad master for the reduced
density matrix of the embedded system, p;(f) = Trg x;(¢), we
take the trace over the environment in equation (6) and make
the following approximations.

(1) The total density matrix can be factorized as x;(f) =
pr(H)pg, where pg is the density matrix of the
environment taken in the equilibrium grand canonical
ensemble form (Born approximation).

(i) The environment relaxation time is very fast, so we
can use the local-time (Markov) approximation for the
reduced density matrix.

(iii) The single-particle states in the buffer zone propagate as
free states:

eihl‘abaefiht — efisbutaba + O(]/\/N) (7)

where N is the number of discrete single-particle levels
of the buffer zone.
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(iv) Rapidly oscillating terms proportional to expli(epy —
epa)] for epy # epq are neglected (rotating wave
approximation).

Under these approximations, the Liouville equation (6)
reduces to a master equation for the reduced density matrix
in Lindblad form. In the Schrodinger representation it can be
written as

d
% = —i[H, p(t)] + Tp(2). ®)

Here the Hamiltonian H includes the Lamb shift of the
single-particle levels of the buffer zones:

H = Hs + Hsp + Hp + Z Abaazaabas )
ba

and the non-Hermitian dissipator is given by the standard
Lindblad form:

Mp(t) =Y Y CLpauptLjy, — L}y, Lbau, pO)). (10)
ba pu=1,2

The operators Lpy; and Lpyy are referred to as the
Lindblad operators, which represent the buffer—environment
interaction. They have the following form:

Lpo1 = v/ Tpa1apa, Lpar = +/ FbaZ‘lza (11)

with T'pe1 = Voo (1 — fow), Tba2 = Voafba. Here fpo = [1 +
ePera—ia) |1 gnd Vb (Apy) 1s the imaginary (real) part of
the environment self-energy Zk|vbka |2 /(Eba — Eke +107T).

The Lindblad master equation describes the time
evolution of the open embedded quantum system preserving
the probability and the positivity of the density matrix.
Open boundary conditions are taken into account by the
non-Hermitian dissipative part of equation (8), I1p(#), which
represents the influence of environment on the buffer zone.
The applied bias potential enters into equation (8) via
fermionic occupation numbers fp, which depend on the
temperature (8 = 1/7T) and the chemical potential 1, in the
left and right electrodes.

2.2. Liouwville—Fock space

Let us convert the Lindblad master equation (8) to a
non-Hermitian field theory suitable for perturbative many-
body calculations. To this aim we need to introduce the
concept of creation and annihilation superoperators acting
on the Liouville-Fock space [25-27, 22]. Our introduction
of the Liouville-Fock space closely follows the work of
Schmutz [25]. It is general and not restricted to a particular
choice of the kinetic equation.

Let {|n)} be a complete orthonormal basis set in the Fock

space F:
> Il =1,
n
;

It is formed by particle number eigenstates |n) = a;

(nlm) = bum. (12)
. 'aan 0),

such that a;aj|n) = nj|n). Here |0) is the vacuum state

and a}L, a; are creation and annihilation operators for

single-particle state j. Without loss of generality we focus on
fermions, so we assume that a; and a; satisfy the canonical
anti-commutation relations.

The set of linear operators {A@@", a)} acting on F form
a linear vector space, which is called the Liouville-Fock
space associated with F. We denote an element of the
Liouville-Fock space by |A). The scalar product of two
elements of the Liouville-Fock space is defined as

(A1lA2) = Tr(A]Ay). (13)

In the Liouville-Fock space we introduce a complete
orthonormal basis {|m, n) = ||m)(n|)}, which satisfies

Z lmn)(mn| =1. (14)

(mn|m/n/) = Sy S »

Here (mn| = |mn)" = ([|m)(n|1"| = (jn)(m|| and I is the
identity operator in the Liouville-Fock space. Then, for an
arbitrary element of the Liouville-Fock space we have

A) =" Ay Imn), (15)

where A, = (m|Aln) = (mn|A). In particular, the identity
operator / in equation (12) corresponds to

n =Y Inn).

The scalar product of a vector |A) with (I| is equivalent to the
trace operation in the Fock space:

(11A) = Tr(A),

(16)

a7)

and for the density matrix we have (I|p) = 1.

As was suggested by Schmutz [25] we introduce
superoperators a, a through their action on the basis vectors
|mn):

& lmn) = i(=)* [|m)(nla]),
(18)

aj lmn) = |a;lm)(nl),

where u =) j(mj +n;j) = m+ n. By analyzing the Hermitian
conjugate of the matrix elements of a, a, we find
al [mny = i(— D" ||m)(nla).

19)

al lmn) = |af lm)(n]),

It follows from (18) and (19) that superoperators a,a'
simulate the action of @ and @ on |m)(n| from the left, while
@,a" simulate the action of a' and a on |m)(n| from the
right. Here we would like to emphasize that our definition
of tilde superoperators @, @' differs from Schmutz’s definition
by phase factors —i and +i, respectively. The reason for
introducing these factors is that the so-called tilde substitution
rule (see below) becomes simpler. We also note that the
alternative definition for superoperators is used in [27], where
the ‘right’ creation and annihilation superoperators are not
Hermitian conjugate to each other.

As follows from (18) and (19), the superoperators
&j, aj, &;, &; obey the fermionic anti-commutation relations:

(@, a} = {a, a} = 8, (20)
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while other anti-commutators vanish:
21

It also follows from (18) and (19) that @ |00) = a |00) = 0 and
the Liouville-Fock space basis vectors are generated from the
vacuum |00) by application of the creation superoperators

@i, aj} = {ar, &) = {a. @} = {@. a} = 0.

~t ot

n2a ~
mn) = (—i)" & - a ---a |00). (22)

Moreover, basis vectors |mn) are ‘super-fermion’ number
eigenstates:

al; lmn) = m; mn), ala lmn) = njlmn). (23)

Using the definition of superoperators we can rewrite the
identity (16) in the following form:

II) = exp (—1Zajaj) |00).

Note that, because of the different definition of tilde
superoperators, the obtained expression for |/) differs from
Schmutz’s analogous expression [25] by the phase factor (—1i)
in the exponent. From (18), (19) and (24) we find that the

superoperators 21; and a; are connected to their tilde conjugate

(24)

&}L and a; by the relations

aj |1y = —iaj |I), al |y = —ia; |I).

] (25)

For an operator A = A(a',a) given by the power
series of creation and annihilation operators we define two
superoperators:

A=A"a", a).

A=A@G", &), (26)

Here, the * means the complex conjugate of the c-number
coefficients. The relation between non-tilde and tilde
superoperators is given by the following tilde conjugation
rules:

(c1A1 + cAg) = A + 3A,,

A s o 27
(A1A2) = A1A2, (A) = A.
Applying tilde conjugation to |mn) we find
) = (+i)" nm), (28)

where u = m + n. Therefore |I)~ = |I), ie. |I) is

tilde-invariant. Generally, if A = A(a’,a) is a Hermitian

bosonic operator then |A)N= |A). )
According to the definition of the superoperator A, if A =

> Amnlm)(n| then A = 3" A, |mk)(nk| and we obtain

Ay = AlI), Ay = A D),
|A1A2) = A1Ay 1) = Ay |A).

(29)
(30)

Therefore, the expectation value of an operator A = A(a', a)
in the state with the density matrix p = p(a’,a) can
be calculated as the matrix element of the corresponding
superoperator A = A(a',4) sandwiched between (I| and

lpy = pII):

(A) = Tr(Ap) = (I|Ap) = (I|A|p). 3D

Using (25) we can show that the following tilde substitution
rule is valid:

Al = oAAT |I). (32)

Here o4 = +1 if A is a bosonic operator and o4 = —i if A
is a fermionic operator. Moreover, taking into account that
non-tilde and tilde fermion superoperators anti-commute we
find that

Ay A7) =iA] |A)), (33)
if both A1 and A, are fermionic operators, and
A1 |A2) = oa,AL 1A)) (34)

otherwise. It should be noted that the Schmutz tilde
substitution rule [25] is cumbersome and it takes the simple
form like (32) only if all terms in the power series of A(a', a)
have the common quantity m — n. Here m(n) is the number of
creation (annihilation) operators.

The general prescription to obtain the equation for |p(7))
from the kinetic equation for p(#) is the following. First, we
transform the kinetic equation for p = p(a', a) into the kinetic
equation for p = p(a', &) by formally replacing all operators
a®, a by superoperators a', a. Then, we multiply the kinetic
equation from the right on vector |I) and use (32)-(34) to
convert the kinetic equation to the Schrodinger-like equation
for the vector |p (1)) = p() |I):

d
i 1) = L@t a,a’, a lp@), (35)

where L is the Liouvillian which depends on both non-tilde
and tilde superoperators. In particular, the Liouvillian for the
Lindblad master equation (8) becomes

L:I:I—f{—iZl'lha,
ba

(36)

where
Mbo = (Coat — Dou2) (@] b + e ibe)
: - A St oAt
— 20(Tpa1apatpe + Uba2ay,ay,) + 2Tpa2. (37)

In the derivation of (36) and (37) we took into account that
p = p(a', a) is a bosonic superoperator which commutes with
all tilde superoperators. Due to the Lindblad dissipators, the
Liouville superoperator (36) is non-Hermitian. In addition,
as |p) is tilde-invariant, the Liouvillian obeys the property
(L) = —L.

Taking the time derivative of (/[p(¢)) = 1 we find that
(IIL =0, i.e. (I| the left zero-eigenvalue eigenstate of the
Liouvillian superoperator. Since also (/| is the vacuum for
21; — iaj and szT + ia;j superoperators, it is appropriate to call
(I] the left vacuum vector. For the electron transport problem
we focus on nonequilibrium steady state where the current
through the quantum dot is given by

Vo) = Tt(Uapo0) = I1alpoo)-

Here J, is the current superoperator and the stationary,
steady state solution of (35), |pco), is the right zero-
eigenvalue eigenstate (right vacuum vector) of the Liouville

(38)
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superoperator:

L{ps) = 0.

In section 3, we show how one can find |ps) perturbatively
starting from the free-field approximation for the nonequilib-
rium density matrix.

(39)

3. Perturbative calculations of the steady state
density matrix and electron current

3.1. Nonequilibrium many-body perturbation theory

Let us make the important remark on the notation used in the
rest of the paper: only creation/annihilation operators written
by letters a, d (such as, for example, ap, and az a) are related
to each other by the Hermitian conjugation; all other creation,
¢, b%, ", and annihilation ¢, b, y, operators are ‘canonically
conjugated’ to each other, i.e. for example, ¢’ does not mean
(o) although cc’ £ ¢fe = 1 (2—bosons/fermions). We will
also use the same notation for the non-tilde superoperators
4! and a; as the ordinary operators a and aj, bearing in
mind that all operators acting in the Liouville-Fock space are
superoperators.

We start by rewriting the Liouvillian (36) as

L=L9+1, (40)
where L is the quadratic unperturbed part of L, and
L' = H — Hj (41

is a perturbation. Then using the equation of motion method:

lc], LOT = —Q,c], [en, LO] = Q (42)

nCn,

we exactly diagonalize[22] L@ in terms of nonequilibrium
quasiparticle creation and annihilation operators:

LO — Z(Q clen — QEE). (43)
T2 Con are obtained from ¢! ,cy, by the tilde
conjugation rules.

The nonequilibrium quasiparticle creation and annihila-
tion operators are connected to a',a,at,a by canonical (but
not unitary) transformations:

C;rl = Z wn,sbz + Z Iﬂn,bablw
(44)
Cn = Z(wn sbs + 1§0n S‘b ) + Z(I//n pabpa + l(pn babza)

Here &

where

bl =al —

s 1day, by = ay,

bpe = (1 — foa)apa +

Nonequilibrium quasiparticle creation and annihilation op-
erators obey the fermionic anti-commutation relations. In
particular, from {c;, cj;,} = 8, and {cp, ¢,y} = 0 we find the

ifbaaba-

following orthonormality conditions for amplitudes:
an Vs + van ba V' boc = S
Z(wn o gan Wy
+ 2 Wn, ba®yy oy —
ba

(45)

©n, ba w:/’ ba) =0.

By construction, (/| is the left vacuum for c};, c;rl opera-
tors. The vacuum for ¢,, ¢, operators, |,0ég)), is automatically
the zero-eigenvalue eigenstate of the unperturbed Liouvillian
L .. itis the steady state density matrix in the zeroth-order

approximation:

LO1pQ) =0, {11y =1. (46)

In other words, the zeroth-order density matrix is the density
matrix which does not contain nonequilibrium quasiparticle
excitations.

Now we introduce the continuous real parameter A, which
will be set to unity at the end of the calculations:

L=1O 1) 47)

and expand the exact steady state density matrix in powers
of A:

osc) = > W [p%). (48)

Substituting (48) into equation (39), we obtain the equation
for the pth-order correction to the zeroth-order density matrix:

Lo1pP)y = —L'1p%7") (49)

or | ,oo(f,)) = (—L, P ,0(0)) Here, L' is expressed in terms
of the nonequlhbrlum quasiparticles. Thus, starting from
1p©) we can find any pth-order corrections to it. In
addition, (/| p ) = 0 for p > 1 since | ,o ) contains excited
nonequilibrium quasiparticles.

To calculate the current through the quantum dot we
express the current superoperator:

w =1 talaj,a — alap) (50)
bs

in terms of nonequilibrium quasiparticle creation and

annihilation operators and compute its expectation value with

respect to (I| and |pso). As a result we get the following

expansion:
Jo =Y WIP. 51
p=0
Here, Jéo) is the zeroth-order current for the system without
interaction:
‘11510) = —2Im Z Isba I/fn,bot Pn,s (52)
bsn
and Jép ) is the pth-order correction to it:
TP = =20m >~ tpa ¥ po Vi sFL). (53)

bsmn
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FO

where is the expansion coefficient in

(p) —1ZF(”)cmc |,o(0) )+ (54)

and F,(f,z = (F(p))* as follows from |p ) = |po(’:>)). Thus,
the problem of computing the pth-order correction to the
unperturbed current is reduced to finding F,(np,z by solving
equation (49).

Using the same method we can obtain a perturbative
expansion for the population of a quantum dot single-particle

level:
ny = (Il alay |poc) = Y _n?, (55)
p=0
where
I’l§0) = Z wn,sﬁon,m Z wm s% sFr(npyz
n mn
(56)

The anti-commutation condition {bs, bs} = 0 imposes the

constraint on the amplitudes from which it follows that n(o)
is a real number.

3.2. Electron—vibronic coupling

As the first application of the method we consider the
Hamiltonian Hg which describes one electronic single-
particle level coupled linearly to a vibration mode (phonon)
of frequency wyq (the so-called local Holstein model):

Hs = goa’'a + wod'd + ka'a(d™ + d). (57)

For simplicity we assume that the tunneling matrix element in
equation (5) is a real number ¢ independent of indices « and b.
The electron spin does not play any role here, so we suppress
the spin index in the equations in this section. Replacing «
by Ak, we arrive at a perturbation expansion of the steady
state density matrix |pso) With respect to electron—vibronic
coupling:

0sc) = 3 W [p%). (58)

To find the zeroth-order density matrix | p(o)), we

diagonalize the fermionic part of L(?’, The resulting creation
and annihilation operators have the form (44), and amplitudes
V¥, @ satisfy the following system of equations:

0¥ — tZ 1ﬁn,bo{ = QY
ba

(59)
Eb(an,ha - ”//n = ann,ba,
(80 - Qn)§0n - IZ Pn,ba = thbal/fn,ba
ba ba (60)
(E;,ka — Q) On,ba — t0n = —lfpaVn,

where Epy = €py — 1¥po. The solution of eigenvalue problem
(59) yields the spectrum of nonequilibrium quasiparticles,
@, and —Q*, as well as y amplitudes which should be
normalized according to equation (45). To find ¢ amplitudes
we must solve linear equations (60).

Furthermore, let N, be the number of vibrational quanta
with frequency w at temperature 1/8, i.e. N, = (exp(Bwp) —

1)~'. When « = 0 the density matrix is factorized as | pég) )y =
(0>> (0)> :

000 )s 1P
{11d'd1pQ) = No. (61)
It is convenient to introduce new phonon operators:
y = (1 +Ny)d—Nyd', yi=dt—a (62

and their tilde conjugated partners, such that (I| y™ = (1| 77 =
0 and y |p§,2 Y=y |p(0)) = 0. Then the quadratic part of the

Liouvillian is diagonal in terms of introduced operators:

LO =Y (Quejen — QEien) + 0oy —717) (63)
n

and the vacuum for ¢y, ¢, ¥, and y operators is the
zeroth-order approximation for the density matrix, | pég)). For
the unperturbed current we have

IO = =20m Y Y batn, (64)
bn
while the pth-order correction is
IO = —200m Y "k U F D). (65)

bmn

To find F,(,,p,z we rewrite the perturbative part of the
Liouvillian in terms of operators Cn, Y, etc:

Z{[L(l) +LP7T+ LY (y + P)lesen — te)
- IZ[LS;‘M LN 7T+ LE)y + Pkl
ZL,&?J — 7N emen +enO@ " =7, (66)
where the coefficients LY are
L)(?}r)L = k[(Ym — (Pm) + NopVmln,
L;(nzy)L = k[@m + NoV¥ml¥n, L(3) = KYm¥n,
LY = k[Wm — om0 + NoWno} — o] (67)
Lo) = k[Ym@s — omil, L = vy,
and
(68)

n® = (1a'a|pQ) =" Ve
n

is an unperturbed electron level population. The notation
‘t.c’ in equation (66) means the tilde conjugation (i.e.,
ch—=a vyt =7, Li) — (@Li)*, etc). Then, substituting
equations (63) and (66) into (49) we obtain the following
general expression for F, ,(npn)

(3) (=1 (=1
i = - —Q*{ZL 2" + @

= 2D Y+ 2 - awe ),

(69)
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where Z,,(f,z and W are coefficients in the expansion:
0L = {W<P>(y +77)

+iY (20T + @) i ehel +- } 109).

mn

(70)
Thus, to find the pth-order correction to the current
we need first to compute Z,anfl) and W®=D_ This can

be done using the same method as used to find F,(np,z As
a result, Z,Sf,i and W® are nonvanishing only for odd p.
Therefore, only even powers of p contribute to the current
expansion as it should be for the considered model. It is
interesting to note that the term W@ (y" + 77) |pég)) is
associated with the momentum transfer from the electronic
current to the quantum dot vibrational mode (current-induced

translational motion of the dot) whereas ,(,[,Qch;fn Zl ,0(0))

and (Z,S’,Q)* ¥ T il |,0 ) correspond to the current-induced
heating and coohng processes, respectively.
As an example we give here explicit expressions for the

first-order perturbation theory W) and z,S},z:

O)
wh = " 7 —

wo T Q — QF + wp

L@
(71)

Combining equations (71) and (69), we find F,(nz,z Then
inserting F,(nz,z into (65) we derive the second-order
perturbation theory correction to Jéo). This correction consists
of two parts: the first part is proportional to n®, so it
is the Hartree term, while the remaining part is the Fock
term. In section 3.4, we also verify these definitions by
comparing Hartree and Fock terms obtained within the
presented approach and the exact ones given by the NEGF
formalism.

3.3. Electronic correlations

As a next example we consider electron transport through one
spin-degenerate level with local Coulomb interaction:
Hs =20 ny + Unqn,. (72)

o
Here n, = ai a, s the number operator for electrons with spin
o in the quantum dot. In what follows, we again assume the

tunneling matrix element is independent of «, b as well as spin
o,lie.

Hsg = —t ) (), a0 +h.c)).

oba

(73)

We also assume that energy levels in the leads are
spin-degenerate.

Since the quadratic part of the corresponding Liouvillian
describes electron transport through noninteracting spin-up
and spin-down levels, it is diagonalized by the same method
as in the previous example. As a result we obtain

LO = (Quc],con — ] Eon)-

on

(74)

The vacuum of ¢4, and ¢, operators, |pég)), is the density
matrix in the zeroth-order perturbation theory and

IO = —4mY " Y patn (75)
bn
is the corresponding current.
To find the pth-order correction to (75):
JP = —4dm Y "y, Y FL), (76)

bmn

we rewrite L' = U(nyny — fiq4i1}) in terms of nonequilibrium
quasiparticles:

1 2 ~
L= (K (el o — te) +iK el el )

okl
M i @ b Far ot
D A€o, €1, Em ey = 0 + Ly ey 6 E)
klmn
t ot T oAt =
+ Lklmn(ckT €1, Cmy Cny F Cp €14Cmy Cny
— CZ¢EZTEMLC"¢ — CLELE’”TC"T)
@) Tt ~
+ 1[L,(d,)nn(ckT CQCZM Cny + c,l CL c,LlT C’u) +t.c.]
. 5 + o~ ~
+ilLd) (ch, &1, Cmyny + c}; &y empen,) e}, (77)

Here KIEI and K 151 are given by

1 2
K = unOvyyn, K2 = —un (Yo — o),
78
O = (Ul alay 102) =Y Ve, (78)
n

while the coefficients L,(d)mn are listed in [23].
Now, substituting equations (74) and (77) into equa-
tion (49) we find the following general expression for F; ,,(f,z
2
o | K

1 1 1 1 3 1
+ S KOEPD kD EEDy 3 L) FeD
i ij

Ry =
‘mnij” ji

5) ~p—1 5) ~(p—1
- Z[Lmyka]m (Lm]ka]m, )]}, 79)

ijk

where 8,1 is the Kronecker delta and G,E’Zr)nn is a coefficient in

the expansion:

I F 0
{Z lemn TkCUCTmcin } |,O( )>- (30)

klmn
In turn, the equation like (79) can be derived for Gl(<ll]31n'
The exact first-order perturbation theory correction to

0
1052y is

1 1 ~
o0 = (i Y Fibciuh,
omn

(CO TN A > 0
+ Zlemn TkCUCTm w} o), 81

klmn
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where
2
Ky
Qn — SZ*’
(2)
@ Lklmn
Qk—i-Ql—Q;‘l—Q:;'

R = -
(82)

klmn —

Inserting F,(nlr), into (76) we get the first-order perturbation
theory correction Ja) to the current (75). This correction
is proportional to n® and below we will show that it
corresponds to the first-order Hartree term obtained with
NEGF formalism.

Here we note that in [23] we applied perturbation theory
to the Anderson model starting from the nonequilibrium
Hartree—Fock approximation, i.e. L’ was normal ordered and
did not contain quadratic terms. Therefore, in [23] the mixture
of two quasiparticle configurations to Ipéé)) vanished and the
first-order perturbation theory correction to the current was
ZEero.

To find the second-order correction to Jéo) we insert (82)
into (79). This yields

2 D) () (1) (1)

FO = o {Z[K F,) — (K, F;,)*]

H‘l

(3) (D ®) M 5) ~(D
ZmejF]z Z[Lmlj kjni (Lmj ijmt) ]}
ijk
(83)

Now, with the help of the obtained expression for F,Sf,g and

equation (76) we get the second-order perturbation theory
correction to Jéo)

3.4. Comparison with Keldysh NEGF perturbation theory

Let us now compare the results obtained with the present
approach with those calculated with the help of the Keldysh
NEGEF. For the case when the coupling to the left lead is
proportional to the coupling to the right lead, the electron
current through the quantum dot can be computed directly
from the retarded dot Green’s function, G'(w), using the
well-known Meir—Wingreen formula [28]. For the considered
models, assuming that the left and right leads are identical,
'L r(w) = 0.5 (w), this formula takes the form

J= 5 / 4o [i. (@) — fe@)]IT @)ING (@), (84)
Here s is the spin degeneracy of the considered models: s = 1
for the model with electron—vibration coupling and s = 2 for
the model with electron—electron interaction. We will use the
wide-band approximation for the electrode, so the imaginary
part of the electrode self-energy, which is responsible for level
broadening, is energy-independent, I'(w) = I', while its real
part vanishes.

The retarded Green’s function is the solution of the Dyson
equation:

G'(w) = Gy(w) + GH(w) T (w) G (w), (85)

where Gj(w) = (0 — & + ir)~! is the noninteracting
retarded Green’s function and X"(w) is the retarded
self-energy evaluated in the presence of electron—electron
or electron—vibration interactions. Expanding X'(w) with
respect to electron—electron or electron—vibration coupling,
Y(w) = szl)u” Elr,(a)), we obtain the perturbative expan-
sion of G"(w) and consequently of the current:

1= f do [fi.(@) — fr (@)]7 (@)
I

x Im |: o(@) + Z)J’G;(w)j|

p=1
Here J© is the current through the system without interaction
given by the standard Landauer formula.

In [22] we have shown that, for the current through a
system without interaction, J ) the exact agreement between
NEGF and the kinetic equation approach can be achieved by
increasing the density of states in the buffer zones. Below we
show that this is also true for correlated electronic systems.

In what follows, in the calculations based on the kinetic
equation we will assume that N single-particle levels in
each buffer zone are evenly distributed within the energy
bandwidth [Epyin; Emax] = [—10, 10]. This bandwidth is much
larger than any energy parameter in the system, so it
corresponds to the wide-band approximation used in NEGF
calculations. The tunneling coupling strength ¢ is computed
from I' = 27[77t2, where 7 = N/(Emax — Emin) is the density
of states in the buffer zone. We note here that the main
approximation in the derivation of the Lindblad master
equation (8) is that the single-particle states in the buffer zone
propagate in time as free states (7). It is evident from equation
(7) that the larger the buffer zone, i.e. the larger the density
of states 1, the better this approximation. This will also be
explicitly demonstrated in the numerical calculations below.
The parameter y in the Lindblad operators is chosen to be y =
2Ae¢, where ¢ is the energy spacing between the energy levels
in the buffer zone. In addition, although it is not necessary,
we use a symmetric applied voltage, R = £0.5 V, and the
temperature of the electrodes is zero, T = 0.

Initially, we consider the system with electron—vibronic
interaction and compare the second-order correction to
the current obtained in section 3.2 with that calculated
using NEGF formalism (86). We use the following model
parameters of the Hamiltonian (57): k = 1.0, wp = 1.0.

In NEGF formalism the second-order correction to the
current arises from the retarded self-energy X; which contains
contributions from Hartree and Fock diagrams, X5 = X, +
%L The Hartree self-energy is [8]

= Z)J’J(”). (86)

p=0

242
_ K0
o

Shw) = (87)
where n© is the electron level population in the zero-order
approximation:

o_ L[4, +fR@)

n' e
2 (w—g0)2 + T2

(88)
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Figure 3. The second-order perturbation theory correction to the current for the local Holstein model: Fock term.

The expression for the Fock self-energy is more complicated
and can be found elsewhere (see, for example, [29]).

In figures 2 and 3 we compare Hartree and Fock
second-order corrections to the current obtained within our

approach with different size N of buffer zone and the
exact ones. The corrections are shown as functions of the
level energy, g9, for two values of the applied voltage
V and broadening I'. It is evident from the figures that
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Figure 4. The first-order perturbation theory correction to the current for the Anderson model.

the difference between exact and Lindblad-equation-based
results become negligible as we increase the lead density
of states in the buffer zone. The reason is that increasing
the number of single-particle states in the buffer zones
we make approximation (iii), under which Lindblad master
equation (8) was derived, more justified. The deviation of the
results obtained from the Lindblad kinetic equation and NEGF
becomes smaller at the larger applied voltage or I'.

Now we compare first-order corrections to the current
for the Anderson model. We put U = 1.0 for the strength
of the Coulomb interaction. Within the NEGF formalism the
first-order correction is solely due to the Hartree diagram and
it is

JO — 412y © f d_a) (fL(w) — fr(w)) (@ — €9)

21 ((w—e0)? +T?)?

. (89)

where the population n©) is given by equation (88).

The results of numerical calculations are shown in
figure 4 for different values of I" and applied voltage V. As
we can see the results of the Lindblad equation approach and
converge to the exact results with increasing value of N and
the convergence is faster for larger values of applied voltage
and I'.

In figure 5 we show the current through the Anderson
model computed by means of the Lindblad equation by
taking into account the first- and second-order corrections.
We take N = 1600, so the obtained results correspond
to NEGF ones. As we can see from the figure, the
first- and second-order contributions shift the maximum of
the current towards the symmetric point &g = —0.5U. The
first-order correction increase the maximum current, while the

second-order correction acts in the opposite direction. We also
see from figure 5 that for a given U the relative value of the
first- and second-order corrections show little dependence on
the applied voltage V. In contrast, in [23] we have observed
that nonequilibrium post-Hartree—Fock electronic correlations
play the important role at larger applied voltages and, as
a result, the second-order correction to the current become
more pronounced with increasing V. This is due to the
difference in the structure and spectrum of nonequilibrium
quasiparticles. The quasiparticle spectrum, both ¥ and ¢
amplitudes, depend on the voltage in the post-Hartree—Fock
perturbation theory [23], whereas in the present work the
voltage enters only into ¢ amplitudes of the nonequilibrium
quasiparticles through Fermi—Dirac occupation numbers of
the buffer states.

4. Conclusions

We developed nonequilibrium many-body perturbation theory
for the steady state density matrix and electric current
through the region of interacting electrons. Our approach
is based on the super-fermion representation of quantum
kinetic equations. We considered an quantum dot connected
to the reservoir through the buffer zone (so-called embedded
quantum dot). The Lindblad-type kinetic equations were
obtained for the embedded quantum dot and the kinetic
equation was converted to the non-Hermitian field theory
in Liouville-Fock space via the tilde conjugation rules. The
free-field state was defined as vacuum for nonequilibrium
quasiparticles and this state describes the ballistic transport
with the results equivalent to the Landauer formulae. We
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applied the nonequilibrium perturbation theory to compute
corrections to nonequilibrium quasiparticle vacuum for
the system with electron—phonon and -electron—electron
correlations. The exact agreement with the Keldysh NEGF
perturbation theory was observed for the inelastic electron

0.4 T T T

---Jo
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JO+J1+J2

0.3

c
o
5
(@)
0.03 -
0.02 4
0.01 4
0.00 T T T T T T
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g+ 05U

Figure 5. The current through the Anderson model computed by taking into account the first- and second-order corrections.

current through the quantum dot.
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