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Abstract—The method of superoperators in Liouville space was applied to study spectral properties of hot
nuclei. It is shown that properly defined fermionic superoperators allow us to generalize the equation-of-
motion method to hot nuclei. Within the superoperator approach, for the nuclear model with separable par-
ticle—hole residual interaction of Landau—Migdal type, we derived the equations of thermal quasiparticle
random phase approximation, which allow the spectral densities and strength functions of charge-exchange
and charge-neutral excitations of hot nuclei to be calculated in a thermodynamically consistent way, i.e.,
without violating the principle of detailed balance. For the quasiparticle-phonon nuclear model, a thermo-
dynamically consistent way is proposed for going beyond the random phase approximation by considering the
interaction of thermal phonons. Using the Donnelly—Walecka method and the superoperator approach,
expressions for cross sections of semileptonic weak reactions with hot nuclei are obtained.
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1. INTRODUCTION

Properties of hot nuclei, in which the excitation
energy is uniformly redistributed over many degrees of
freedom, have been the subject of active experimental
and theoretical research for four decades now. Despite
the fact that atomic nuclei are isolated systems with a
relatively small number of nucleons, the concept of
nuclear temperature has been used since the mid-
1930s, when thermodynamic methods were applied to
the statistical description of the formation and decay

of compound nuclei [1—4]!. However, it was not until
the early 1980s that the improvement of heavy ion
accelerators made it possible to obtain hot nuclei with
a temperature of 7 < 5 MeV (0.862 MeV = 10'° K or
1 MeV = 11.6 Ty, where T, = 10° K) [6, 9]. Since then,
the experimental and theoretical study of hot nuclei
has been an important source of information about the
properties of atomic nuclei and nuclear matter in
extreme states [10].

The study of hot nuclei has become especially
important for the physics of giant resonances (GRs).
The discovery of an isovector giant dipole resonance
(GDR) built on highly excited (£ ~ 100 MeV) states
[11] has set the stage for systematic studies of collective
motion in hot nuclei. To date, the extensive material
has been accumulated on the GDR properties in hot

' The problem of the limits of applicability of the thermodynamic
approach to describing the properties of atomic nuclei and the
methods for determining the nucleus temperature are consid-
ered in many works (see, e.g., [5—8]).

nuclei (see references in [10, 12—15]). It was experi-
mentally found that the energy of the GDR maxi-
mum, as well as the degree of depletion of the energy-
weighted sum rule, weakly depend on the nucleus
excitation energy, while the GDR width increases with
temperature up to a certain limit. The latter circum-
stance indicates a violation of the Brink—Axel hypoth-
esis (BAH) [16, 17] on the independence of the
strength function of the resonance on the energy of the
excited state.

The theoretical description of the strength function
of multipole resonances in hot nuclei, as a rule, is
based on the temperature generalization of the meth-
ods and approximations used for cold nuclei. To date,
most calculations in this area are based either on the
linear response theory or on the Green’s function
method and are limited by the thermal random phase
approximation (TRPA) [18, 19] and its various
improvements, which allow considering the effect of
pairing correlations [20, 21], the presence of a single-
particle continuum [22], or simultaneously both
[23, 24]. The use of Skyrme forces and relativistic
forces makes it possible to perform self-consistent
TRPA calculations [21, 19].

The possibility of using Feynman’s diagram tech-
nique for Matsubara Green’s functions [25] has made
them the main tool for temperature generalization of
methods that go beyond the random phase approxi-
mation. For hot nuclei, this generalization took place
in the context of the nuclear field theory [26] and the
Theory of Finite Fermi Systems [27, 28]. Another
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approach to the study of hot nuclei, using the formal-
ism of Matsubara Green’s functions and the so-called
time-blocking approximation [29], has recently been
intensively developed in [30—32]. The fundamental
problem, which these studies seek to solve, is to eluci-
date how the damping of collective excitations in hot
nuclei works, in particular, to learn how to calculate
for T'# 0 the interaction of simple and complex con-
figurations, which is responsible for the fragmentation
of the strength of resonances, i.e., their width, in cold
nuclei. Despite progress in this area, the problem of
describing the GDR width in hot nuclei has not been
completely solved to date. So, a comparison of the
theoretical and experimental GDR widths in 120132Sn,
given in [32], showed that, in a certain temperature
range, in order to correctly describe the GDR width,
in addition to the interaction of simple and complex
configurations, it is necessary to consider other fac-
tors, such as nucleus deformation and a fluctuation in
its shape.

In addition to the temperature Green’s functions,
there are other statistical approaches that can be used
to study the properties of hot systems. One such
approach is thermofield dynamics (TFD) [33], which
has become widely used in condensed matter theory
[34]. Compared with the method of Matsubara
Green’s functions, TFD has a number of advantages
that make its formalism convenient in practical terms.
In particular, time and temperature in TFD are inde-
pendent variables, and therefore, for studying the
time-dependent processes, there is no need to use the
procedure of analytic continuation in the complex
time plane. Due to this property, using TFD, it is quite
easy to study the spectral characteristics of hot sys-
tems, i.e., the energy of excited states and a response to
an external disturbance (strength functions and spec-
tral densities). In addition, all those working tools that
are used with 7= 0 are available in TFD, namely: the
method of canonical transformations, Wick’s theo-
rem, the concept of a vacuum state, etc., which is con-
venient for constructing various approximations. The
listed advantages are a consequence of the special
operator structure of the TFD, which arises because of
doubling the degrees of freedom of the hot system due
to the introduction of its fictitious copy.

Despite the above advantages and the fact that the
TFD main provisions were formulated in the mid-
1970s, this formalism has not gained wide acceptance
in the theory of hot nuclei. With the exception of our
works, the number of publications in which TFD was
used to study the properties of hot nuclei is very lim-
ited (see references [6—19] in our work [35]). There
are two reasons for this, in our opinion. The first rea-
son is the meaning of the additional degrees of free-
dom (associated with a fictitious system), which was
not completely understood. In the TFD original ver-
sion [33], the fictitious system introduction was con-
sidered as a convenient formal technique that allows
the statistical average of an arbitrary operator to be
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expressed as an average over a specially constructed
thermal vacuum. Later, the fictitious system began to
be interpreted as hole states, which are present due to
the interaction of the system with the thermal bath
[34]. This explanation, however, does little to justify
the correspondence rules between operators acting in
the state space of the original physical system and
operators acting in the state space of the fictitious sys-
tem. In TFD, this correspondence is postulated in the
form of tilde-conjugation rules.

A mathematically rigorous interpretation of the
thermal vacuum and fictitious system was obtained
within the method of superoperators, i.e., operators in
the Liouville space [36]. Adequate correspondence
was shown between the thermal vacuum and an oper-
ator of the hot system density matrix, while the dou-
bling of the degrees of freedom was justified as a con-
sequence of the use of two sets of operators in Liouville
space: the first one acts on the density matrix on the
left, and the second, on the right. Although the view-
point of superoperator method on thermofield
dynamics later became widespread along with the
C*-algebraic approach [37] (see also [38]), this, never-
theless, did not contribute to the wide application of
the superoperator method to the study of the hot
nuclei properties. An obstacle in this direction is the
second of the above reasons, namely the complexity of
the so-called thermal state condition, which relates
the action of the left and right superoperators on the
thermal vacuum and, in fact, determines the system
temperature. Both in TFD [33] and in the version of
the superoperator method in [36] for fermionic sys-
tems, this relation is nontrivial and in a complex way
depends on the structure of superoperators. There-
fore, in our opinion, the generalization of methods
that are used to study properties of the ground and
excited states of cold nuclei has not received the due
development for the case of hot nuclei. In particular,
within the method of superoperators, the temperature
analog of the equation of motion method [39—41] was
not formulated, using which in a thermodynamically
consistent manner, i.e., without violating the principle

of detailed balance?, the response of a hot nucleus to
an external disturbance could be calculated.

Thus, it is of great interest to generalize the super-
operator method in such a way as to make the theoret-
ical description of spectral characteristics of hot
nuclei, on the one hand, not much different from the
calculations for cold nuclei, and, on the other hand, to
ensure it to be thermodynamically consistent in the
above sense. It turned out that this generalization is
possible if the fermionic superoperators are defined in
the same way as was done in the works by one of the

21 the case of a self-adjoint operator J= gT, the principle of
detailed balance relates the excitation and deexcitation rates of

hot systems, Sg (—E,T) = ¢ */T Sq(E,T).
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authors on studying the electron transport through
correlated quantum systems [42—46].

As already noted, the presence of a large amount of
experimental data has made the GDR thermal proper-
ties the main object of study in the theory of hot
nuclei. However, from the viewpoint of astrophysical
applications, the temperature properties of other
modes of nuclear excitations, in particular, charge-
exchange and charge-neutral Gamow—Teller (GT)
resonances, are of considerable interest. It is known
that GT transitions dominate in many nuclear reac-
tions caused by the weak interaction and playing an
important role at the late stage of the evolution of mas-
sive stars and the explosion of supernovae [47—49].
Among these reactions are the capture of electrons
and neutrinos by atomic nuclei,  decay, scattering of
neutrinos, etc. The astrophysical manifestations of the
listed weak reactions include the initiation of the grav-
itational collapse of the massive star core, the neu-
tronization of matter during the collapse, the neutrino
trapping at high densities, the energy transfer by neu-
trino radiation and the neutrino heating of the shock
wave, as well as the synthesis of heavy elements at the
final stage of the explosion. In addition, weak reac-
tions with nuclei affect the neutrino spectrum, which
reflects the processes occurring in the interior of a star
and is therefore important for verification of various
models of explosion. The rates and cross sections of var-
ious weak nuclear reactions are used as input data for
computer simulations of supernovae [50].

The temperature of the medium in which weak
reactions occur in stars varies from hundreds of keV to
several MeV at the final stage of collapse. As was
shown by Hoyle [51], under conditions of a dense mat-
ter of a star, a fairly rapid exchange of energy occurs
between matter and y quanta, as a result of which a
thermodynamic equilibrium is established between
atomic nuclei and electromagnetic radiation. Actually,
it is in the hot matter of a star that atomic nuclei can be
considered as hot quantum systems, since the electro-
magnetic radiation acts as an external macroscopic
thermal bath, upon interaction with which the nuclei
heat up, that is, their excited levels are thermally pop-
ulated according to the Boltzmann distribution.

The thermal population of nuclear levels can sig-
nificantly affect the behavior of weak nuclear reac-
tions, as well as the spectrum of neutrinos produced.
So, for charge-exchange reactions (capture of an elec-
tron or neutrino), the reaction threshold, associated
with the mass difference between the parent and
daughter nuclei, decreases or completely disappears.
In addition, exothermic processes become possible, in
which the energy of the excited nucleus is transferred
to the outgoing lepton. All this leads to an increase in
cross sections and reaction rates. The influence of
temperature effects on the course of explosive nucleo-
synthesis of heavy and superheavy nuclei in superno-
vae is discussed [52]. It is important to emphasize that
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the results of computer simulations of supernovae
largely depend on the input data on weak nuclear reac-
tions used [53—61]. Therefore, it would not be a big
exaggeration to say that the sensitivity of the results of
supernova simulations to data on weak nuclear reac-
tions largely means the sensitivity to the properties of
hot nuclei.

From a microscopic viewpoint, there are two
approaches to calculating the contribution of GT tran-
sitions to the cross sections and rates of weak reactions
with hot nuclei. The first one involves the Boltzmann
averaging of the contributions from thermally excited
nuclear states. This requires knowledge of the strength
function of GT transitions for both the ground and
excited nuclear states. To date, this approach has been
most fully implemented in the context of large-scale
shell model (LSSM) calculations for the nuclei of the
beginning and middle of the pf -shell (nuclei of the
iron group) [62—65]. It is these nuclei that dominate in
the stellar core at the initial stage of collapse. However,
for heavier neutron-rich nuclei, which dominate in the
composition of the core at densities exceeding
10" g/cm?, the LSSM calculations are impossible for
today, since their implementation requires too large a
configuration space and is beyond the capabilities of
modern computers. For the same reason, and also
because of the rapid increase in the number of ther-
mally excited levels with temperature, the LSSM cal-
culations use the Brink—Axel hypothesis (BAH) in
order to consider the contribution of thermally excited
nuclear states to the total cross section and reaction
rate. However, since the experimentally observed tem-
perature-induced increase in the width of GDR [14],
as well as changes in its low-energy part [66], in the
pygmy resonance, indicate a violation of the BAH,
then there is no reason to believe that the BAH is valid
for the strength function of GT transitions. The joint
use of the BAH and the so-called inverse resonance
method in LSSM calculations leads to an underesti-
mation of the contribution of GT transitions from
excited states, which, in particular, is expressed in vio-
lation of the detailed balance principle and the Ikeda
sum rule.

The second method for calculating the rates and
cross sections of weak reactions with hot nuclei is
based on a statistical approach to the nuclear many-
body problem. Within this approach, the temperature-
dependent strength function of GT transitions is first
calculated, and then the rates and cross sections of
weak reactions are expressed in terms of it. This
approach, based on thermal RPA (TRPA), was first
used in [67] to study the effect of thermal unblocking
of GT, transitions in neutron-rich nuclei. Further,
various versions of the self-consistent TRPA were used
to calculate the electron capture rates and cross sec-
tions [68—71]. These calculations, however, have the
disadvantage that they consider only the part of GT
transitions, which corresponds to the energy transfer
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to a nucleus. Therefore, the strength function of GT
transitions calculated in the TRPA method does not
satisfy the principle of detailed balance, while the
cross sections demonstrate the presence of a reaction
threshold even at high temperatures (see, e.g., Fig. 1 in
[70] or Fig. 3 in [69]).

The implementation of the statistical approach
within the nuclear shell model became possible with
the development of the shell-model Monte Carlo
(SMMC) quantum algorithm [72]. Its application to

the calculation of the strength function of GT, transi-
tions in the iron-group nuclei clearly demonstrated
the dependence of the strength function on tempera-
ture and, consequently, the BAH violation. However,
the SMMC method has a number of limitations asso-
ciated with the procedure of statistical modeling and
numerical inverse Laplace transform.

Thus, the problem of reliable calculation of the
rates and cross sections of weak nuclear reactions in
stellar matter is still far from its final solution. There-
fore, from the viewpoint of astrophysical applications
of the theory of hot nuclei, today it is important to cre-
ate an approach that allows calculating the rates and
cross sections of reactions without involving the
Brink—Axel hypothesis and without violating the prin-
ciple of detailed balance. Since at various stages of the
evolution of a star, a wide variety of atomic nuclei are
formed in its matter, including those whose character-
istics are currently unknown, then this approach
should not be extremely expensive in terms of comput-
ing resources, should have no restrictions on the mass
of nuclei and should have sufficient predictive power.

This work is the first of a series of three articles
devoted to the superoperator method application to
the study of the properties of hot nuclei and to the cal-
culation of the cross sections and rates of weak nuclear
reactions with them under conditions that occur during
the explosion of collapsing supernovae. The aim of this
work is to create on the basis of superoperator method a
thermodynamically consistent approach to studying the
spectral characteristics of hot nuclei. Specific calcula-
tions for cold nuclei and hot nuclei in the matter of a star
will be given in the next two articles.

The article structure is as follows. Section 3 pres-
ents the formalism of the superoperator method in the
Liouville space and shows its relationship with the
thermofield dynamics. The advantages of the used
definition of fermionic creation and annihilation
superoperators are discussed. In Sections 4 and 5,
based on the formalism of superoperators and the
equation of motion method, the general procedure for
calculating the spectral densities and strength func-
tions in hot nuclei is described. Section 6 gives a gen-
eral view of the nuclear Hamiltonian with a separable
residual interaction in the Landau—Migdal form,
which is used in calculations. The corresponding ther-
mal Hamiltonian is constructed. In Sections 7 and 8,
the probabilities of single-particle transitions are cal-

PHYSICS OF PARTICLES AND NUCLEI

DZHIOEYV, VDOVIN

culated in the approximation of independent thermal
quasiparticles and the problem of the temperature
evolution of charge-neutral and charge-exchange
strength functions is considered qualitatively. In Sec-
tions 9 and 11, for charge-neutral and charge-
exchange excitations, equations of the thermal quasi-
particle random phase approximation (TQRPA) are
obtained for the nuclear Hamiltonian with a separable
residual particle—hole interaction in the Landau—
Migdal form. In Section 10, for the Hamiltonian of the
quasiparticle-phonon nuclear model, a thermody-
namically consistent way of going beyond the ran-
dom-phase approximation is described, which con-
siders the interaction of thermal phonons. In the last
section 12, based on the Donnelly—Walecka method
and the procedure for calculating the spectral densities
of multipole operators that was developed using the
superoperator method, general expressions are
obtained for calculating the cross sections for weak
reactions with hot nuclei in the context of the statisti-
cal approach. The expressions for cross sections were
obtained both considering the nonzero momentum
transferred to the nucleus and in the long-wavelength
approximation, when the allowed Fermi and
Gamow—Teller transitions dominate in the cross sec-
tion for weak reactions. Appendix A provides the der-
ivation of some relations from Section 3, while in
Appendices B and C, the derivation and explicit form
of the TQRPA secular equations used in calculations
of the structure and energy of charge-neutral and
charge-exchange single-phonon excitations in hot
nuclei are given.

2. SPECTRUM OF HOT SYSTEMS

In quantum mechanics, the problem of finding the
spectrum of a cold system (7 = 0) can be solved in
two ways. According to the first one, the ground and
excited states of the system are determined by solution
to the stationary Schrodinger equation

Hli)=E]li, i=0,1,2..., (1)

i.e., they correspond to the eigenfunctions of the Ham-
iltonian H , whereas its eigenvalues determine the entire
energy spectrum of excited states, starting from the
ground state | 0). If we are only interested in those states
that are excited under the action of the external pertur-
bation operator J , then the problem of finding them
can be reduced to calculating the distribution function
of the transition strength (strength function)

Sq(E) =Y KFITIOWSE-E, + E), (2
f

whose poles (i.e., singularities) just determine the
spectrum of excited states with respect to the ground
state.

For a hot system, the role of the ground state is
played by the equilibrium mixed state, which is
Vol. 53
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described by the density matrix p(7"), and whose
structure includes all solutions to Schrodinger equa-
tion (1). To define the notion of an excited state of a
hot system, consider the strength functionat 77 # 0

Sz(E,T) =Y (D /1T SE - E, + E). (3)
inf

The strength function includes statistical averag-
ing over all possible initial thermally-excited states,
the probability to be in which is determined by the

Boltzmann distribution function p,(T) = e_E"/T/ Z(T)

Z(T) = Z[_ efE"/T). By analogy with the case T = 0,
we will call the poles of strength function (3) as the
spectrum of a hot system. We emphasize thatat 7" # 0,
the spectrum consists of both positive and negative
energies. Therefore, the phrase “excited states” at
T # 0 implies states that are different from the equilib-
rium one.

In the Green’s function method and the theory of
linear response, the calculation of strength function
(3) is reduced to finding the response function
Rgq(E,T), the imaginary part of which determines
Sq(E,T)

Sy(E,T) = _il%ﬁlngg(E, 7). (4)

Formally, Ryq(E,T) is a solution to the Bethe—
Salpeter equation

R=R"+RUR, (3)

which includes a free response function R" and a ver-
tex part U that considers the interaction. In the sim-
plest approximation, U contains only one interaction
vertex, and in this case, solution (5) corresponds to the
thermal random phase approximation [73].

Next, we will show that, using the method of super-
operators, it is possible to construct a temperature
generalization of the Schrodinger equation (1). The
solutions to this equation determine the poles of
strength function (3) and thus correspond to the
excited states (spectrum) of the hot system. In other
words, the superoperator method makes it possible to
generalize to finite temperatures the nuclear models
that are based on the use of nuclear wave functions.

3. FORMALISM OF SUPEROPERATORS
We begin the statement of the superoperator
method with general definitions [36, 74—76]. Con-

sider a Hilbert space £ whose elements are the state
vectors of a system under consideration. The Liouville

space X is the set of linear operators acting in § with
the scalar product and the norm defined according to

(4] B)) = Te{A"B}, |4l = ((A]A))". (6)
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Following [76], we use the Dirac notation || A4))
and ((A|| to distinguish between elements of the
spaces $ and . In this notation, the statistical average

({(A)) of the operator A can be written as a matrix ele-
ment

() =Trtdpt = {(a"[lo)) = {(plla"))- )

Here we have considered that the density matrix p
is a Hermitian operator and Tr{Ap} = Tr{pA}.

In ¥-space, the von Neumann equation for the
density matrix (s = 1)

. d
= =[H 8
latp(t) [H,p(n)] ¢))

takes the form

2o =1 Hpw) ~llpwH). )

In the following sections, we formulate the rules
that allow the last relation to be rewritten as the
Schrodinger equation

Lp) = Llp)).

where & is a specially constructed Liouville superop-
erator (Liouvillian), i.e., an operator acting on vectors
in the Liouville space or, equivalently, on operators in
the Hilbert space. We will show how to obtain the

explicit form of the Liouvillian & from the Hamilto-

(10)

nian of the system H (aT,a), written in terms of cre-
ation and annihilation operators.

3.1. Basis in Liouville Space

Let the set of vectors {|n)} form a complete ortho-
normal basis in the original Hilbert space $:

Yinnl=1, (mln) =3, (11)

and, consequently, for an arbitrary linear operator in
9, the following decomposition is valid:

A=A, Imnl A, = mlAn). (12)

Consider the set of ket—bra operators | m){n| |>. To
each operator |m){nl| we associate in the Liouville
space a ket vector || mn) = || | m) (n >> and a bra vector

3 If the set 1l m?} consists of the eigenstates of the Hamiltonian H,
then | m){n| are the eigenstates of the Liouville superoperator

Flm)nl) = E,, | mnl, (13)

where E,,, = E,, — E,. Moreover |m){n| and the Hermitian-

adjoint operator |n){m| are matched by eigenvalues equal in
absolute value but having opposite sign.
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{(mnll =|| Im){nl)). With this definition, the vectors
[|mn)) form a complete orthonormal basis in :

((mn” m' n>> = Tr{(m)n))] | m> <n' |}
= <m| m')(n'| l’l> = 6mm'8nn'5

ZHmn))«mnH =1,

(14)

(15)

where I is the identity superoperator in the Liouville
space. If NV is the dimension of the space §, then the

dimension of the space & is N°.
Consider the scalar products of a vector || 4)) and
basis vectors || mn)):

<<mn ||A>> =Triln ml A} = (mlAln) =
{(Almn )y = Tela®lm) nlt = (nlA'lm) = 4%,

Therefore, using completeness property (15), foran
arbitrary A, considered as a vector in the ¥-space, we
obtain an expansion in basis vectors || mn)):

||A ZHmn mn|A z
(A= 2 {(Almm)( mnII—ZAmn {(mn]].

mn
The expansions are consistent with the definition
of the scalar product (6):

(16)

o|[mn)),

A7)

(4] B)) = D A,B,, = Tr{4'B}. (18)
In addition, from (17) it follows that
[lea)) = e[| 4)). {(ed]| = e*( (19)

where ¢ is the complex number.
Let us also define the bra- and ket-vectors corre-
sponding to the unit operator / (11) in the §-space:

1) = 2 llmm). (11]= 2 (nnll- - @O

With their help, the operation Tr{...} is written as
the matrix element
;
{{a]2)).

Tr{d} = (1 | A)) = (21)

In particular, for statistical average (7) of the oper-
ator A, we obtain
;
((a'pl 1),

({a) =

(7] 4p)) =
as well as

(A)) = (1]|pa)) = {paT 1)). (23)

The normalization condition for the density matrix

can be written as
Trp} = {(7][p)) = (7)) =

(22)

(24)
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3.2. Superoperators of Creation and Annihilation

Here, as basis vectors {| n)} in the Hilbert space £
of a many-particle quantum system, we will consider
the eigenfunctions of the particle number operator:

_
ln) =aj ..

.allO), ala;ln) =nln), n:an, (25)
7

where the creation and annihilation operators aj, a;
satisfy the commutation relations

la,alls =&, lanals =la,als = 0. (26)

For fermions ¢ = +1, while for bosons ¢ = —1.

In the Liouville space formed by the basis vectors
|| mn)), we define the creation and annihilation super-
operators that act on the Hilbert space operators §
from the left*:

d;|lmn)) = ||a;| m)(n

Since

W, @l llmn) = ||al| m)(na])).27)

(ki |a| mn)) = (Kcla;| m) 8,

(k] ) = (ka|m) 5,

then the action of the superoperators &;, d; on the bra

(28)

vector (( mn|| is determined according to the rule

{(mnl|a; = {{a]| m){n].
((mn]| @} = {(a| m)(n]].
The superoperators d I .
of each other, since

(Kt 5]} mm}) = ((mnl | 1))=,

and they inherit the original commutation relations (26),
i.e.,

(29)

d; are Hermitian conjugate

(30)

[ a;, J](S - 61]; [ a;, /]G [aj‘a_’j]c =0.

(3D

+

In addition, a ;a, is the particle number superoper-

ator

aja,||mn)) = m||mn)),

mnllala, = m, (. )

4 The definition of left superoperators dT , d that we use does not
differ from the definition in the paper by Schmutz [36]. How-
ever, for right fermionic superoperators, as will be shown below,
we use a more convenient definition. Also note that in [36] the
left superoperators were denoted with the symbol “hat,” while
the right ones, with the symbol “tilde.”
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From (27), (29) and the property a; = a,;I = Ia; it
immediately follows’
at _|t
) JM»,

3W»=Ha»
(11l1a, = (||, ((71]a} = (a]l-

In other words, the vectors of Liouville space cor-
responding to the creation and annihilation operators
can be represented as the action of the superoperators

ﬁj-, d;, on the unit vector || 7)).

(33)

Let us show that this statement is true for an arbi-

trary operator A. Let 4 = A(aT,a) be an operator in
$-space written as a polynomial of creation and anni-

hilation operators.

Ad',a) = (34)

i T
Z cpl---Pm§l]1...qn ap] R apmaq] e aq”.
mn,pq

The convention is that an operator A(aT, a) is called
Jfermion-like (boson-like) if each term in expansion
(34) contains an odd (even) number of fermionic
operators. We will assume that expansion (34) does
not contain simultaneously both fermion-like and
boson-like terms. By successively applying (27) and
(29) and taking property (19) into account, it is easy to
verify that

Al|mn)) = || A|m)(n])),
((mn||4 = [ A"[m)(n]),

where the left superoperator is constructed from (34)

(35)

by replacing operators a;,a . with left superoperators
ald;, ie., A= A@", a).
Using (35) and the definition of scalar product (6),

we obtain an expression for matrix elements of 4

Kkt Al mm) = (k| A m)§,,. (36)

We also define the superoperator (A4) that is Her-
mitian-conjugate of A:
((kt|\ Ay | mn)) = Cmnl Al kD)=,

Then it follows from the
Cmnl Al k) * = Ckil 4" mn)) that A =4".

(37)
equality

5 Another way to prove relations (33) is to consider the scalar prod-
ucts of the right and left sides with basis vectors. For example:

((mnll;]| 1)) = ;((m"\\af\ k) (k)
Z mla;| k) Sy = (mlas| m) = ((mrlay)),

from where follows G||1))=||a;)). The other relations are
proved similarly.
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Using the properties (35) corresponding to the

operator (34), the ket and bra vectors in the $-space
can be represented as

|4)) = 4]|1)). {(4]|=(1]|4" (38)
From here, considering property (21) of the vectors

[|7)) and (1

Tria} = ((11l4l1)).

Therefore, as it should be, Tr{4} =
like A.

(39)

0 for a fermion-

For the product of operators, we have AB = AB

and (AB)" = B 4" ¢. Therefore
lAB)=ABY =B,
(4B =((1]|B"4" = ((B]|4".

We emphasize that these rules are consistent with
relation (19), as well as with the definition of the scalar
product in the Liouville space (6)

(a1 8) = (7]} 45| 1)
= (1]14'8)) = ((8"4]1)).

where we used (39). Using properties (40), the statis-
tical mean (22) of the operator A can be represented
as a matrix element of the corresponding left super-

operator
{rl4lp)) = (pllAl 1))-

{(4)) =

Using the left superoperators defined according to
(27) and (29), the ket vector || Hp(#))) in von Neumann
equation (9) can be written as H||p(z))), where
H=H@a
to the Hamiltonian H = H (aT,a). However, in order
to be able to write Eq. (9) in the form of Schrodinger

equation (10), we need to define the superoperator H
acting on the density matrix from the right, i.e., such

that H||p(¢))) = ||p(t)H)). The idea arises to define the
right superoperators of creation and annihilation in a
manner similar to that considered above, i.e., put

a;llmn) = |||m><n|aj>>,
aj || mn)) =||| m)(nla;),
((mn [|a, = (( m){n|a,]l,
((mnl|a] = ({m)(n|a]]
It is easy to show that, with this definition, a; and

5; are Hermitian conjugate of each other and satisfy

(41)

(42)

,d) is the left superoperator corresponding

(43)

6 Really, (4B)" = (4B)" = B)T = BT4T = BT 4.
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the commutation rules (26). In addition, the following
relations are valid for them:

a|[n) =[la), @) =]la),
(rlla; ={all. (7lla) = (a]

while a “T a
ticles

| mn) = | ). (|, = m, (.45

However, with this definition, the left and right
superoperators commute with each other, regardless of
whether they refer to fermions or bosons:

[@,a"), =1d,a ., =a,d;]., =1a,al., =0. (46)

In other words, the above defined set of left and
right superoperators of creation and annihilation
inherits original commutation rules (26) only for a
bosonic system. For fermionic systems, however, the
permutation relations for superoperators differ from
the original ones.

In order for the set of superoperators to inherit
commutation relations (26), and also in order to be
able to subsequently apply canonical transformations
mixing left and right fermionic superoperators (the so-
called Bogolyubov thermal transform), the latter must
be defined so that they anticommute with left ones. To
this end, we use the method from [76] and modify it.
For generality, we will simultaneously consider fermi-
onic and bosonic superoperators. We leave the defini-
tion of the left superoperators unchanged (see (27)),
and for the right superoperators we set

;|| mn)) = om, || m)(n|a)).

?z}”mn» = B(m,n)|||m)nla;)),
where oum,n), (m,n) are complex numbers depend-
ing on m = zjm ;and n = Zjn ;. We require the fol-
lowing conditions to be met:

(44)

; is the superoperator for the number of par-

(47)

(1) The right creation and annihilation operators
obey the original permutation relations (26).

s — . .
(2) Operators a; and a; are Hermitian-conjugate of

each other, e.g., <<m1n1 ||Ei;~r||m2n2>> = ((mymy ||| | mm))*.
(3) Bosonic (fermionic) left and right creation and

annihilation operators commute (anticommute) with
each other.

(4) & || 1)) = c||a;)), where ¢ is a complex number.

In Appendix A, we show that the mentioned condi-
tions determine the functions oum,n) and P(m,n) to
within a phase factor:

B(m,n) = c(-0)""",

m+n+l

om,n) = c*(—0) and cc* =1.

DZHIOEYV, VDOVIN

For bosonic (o = —1) right superoperators, defini-
tion (43) corresponds to the choice of ¢ =+1.
Schmutz [36] chose the phase factor ¢ = +1 also to
determine the right fermionic superoperators. The
disadvantages of such a definition are discussed below.
We, however, following our papers [42—46], will use
¢ =i in the definition of right fermionic superopera-
tors. The transition from the right fermionic superop-
erators of [36] to those that we use is carried out
according to the rules:

Definition used by Schmutz Our definition
a; & ia; .(49)
a - —ia)

With this choice of the phase factor, the right fer-
mionic superoperators act on the basis ket vectors of
the Liouville space according to the rule

a o) =0 alal)).
&l mn)) = =" || o)

Let us determine how the right fermionic superop-
erators act on the basis bra vectors. For this, we note
that

(K | mm) = i=1)""8,,, nla]| 1)
= —i(=1)*"'3,,, (n|al| 1), 51
(et ) = =178y, (| )
= —i(=1)""8y,, (n|a | 1).

Whence it follows

(@, = =1 m) ]|
(] = i1 () (n] ] ]

In addition, a a; satisfies property (45), i.e.,
the particle number superoperator.

Using the right and left fermionic creation super-
operators, the basis vectors in the Liouville space can
be represented as

(52)

it is

[|mn)) = D,,[[00)), ((mn]|= ((00]|D},,, (53)
where 9, sz, Zz’j, aJr .ﬁqn and
. n2 n= 2k +1
o, = (i) "=k, (54)

— _i’
BRESH
The ket vector ||00)) is the vacuum for &, and a,,

while « dT. Since

(|nn)) = =i)'a}a; ...} aj []00)), (55)
then || 7)) can be presented as
(48) |]1)) = exp(—lZa 7)][00)). (56)
PHYSICS OF PARTICLES AND NUCLEI ~ Vol. 53 No.5 2022
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By successively applying (50) and (52) and consid-
ering property (19), it is easy to verify that for fermion-

like operator A(aT, a) (34), the following equalities are
valid

A||mn)y = i=1"" [l m)nl A7),

(]| A = i1 ( m (] A 0

b

where the right superoperator is constructed from

A(aT, a) by replacing a;, a; with &‘JT,& ;- and by the com-
plex conjugation of all numerical coefficients, i.e.,

A=A a",a), where the complex conjugation

acts only on ¢ -numbers. For a boson-like operator, we
have

Al mn)) = [|m){n] A7),
((mn]| 4 = {{ m){n|4]|.
Regardless of whether A is fermion-like or boson-

like, the matrix elements of the right superoperator A
can be written in the following form (cf. (36)):

(58)

(ki Al mn) = 64,6, (nla'ln) Om- (59)

This expression for matrix elements also directly
follows from the relation (78) obtained below. As in
the case of left superoperators, from the equality

CmnlAl k) * = «kl ||;1’r|| mn», it that
A" = 4"

follows

Based on properties (57) and equality (38), we
obtain

[4)) = Al 1)) = 0.4 1)),

(60)
(All= (1] 4" = % ((1]] 4,

where 6, = —i(+1) for the fermion-like (boson-like)

operator A(aT, a). Thus, an arbitrary vector in the
Liouville space can be represented either as the action
of the left superoperator on the unit vector || 7)) or as
the action of the right superoperator. From (60) it also
follows

(A-c, A1) =0, (I||(A"-c,A=0 (61)

and
Triay = ((11411)) = (1 14"01)),

where we considered that Tr{4} = 0 for a fermion-
like A.

(62)
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For a product of right superoperators, we have

AB = AB and (1711_’?)T = B"4". Therefore, based on
(60) and (40), it can be written

| 5) =] 4)
=6,B"A"||1)) = 6.6 B || 4)),
(B3 = (5] ©

= 6", (1||AB = 640, (4] B.

Note that 6,67 =i if both A4 and B are fermion-

like operators, and G, BGj = 0 if one of the operators
is boson-like. With the use of (40) and (63), the prod-
uct of operators can be represented as an action of a
right or left superoperator on a vector in the Liouville
space. It is important that due to the introduction of
right and left superoperators, any of the factors can be
represented as a vector.

Equalities (63) are consistent with definition (6) of
scalar product in the Liouville space:

(4] B)) = o, (rlABT 1)

= 6%40,46,45 (1] B4"))
= (1] 4"B)) = 0,074, (4B 1)

= (B4l D).

Here we have considered that the matrix elements
are equal to zero if AB is a fermion-like operator.

Since the density matrix is a boson-like operator,
then the statistical average ((4)) = Tr{4p} is nonzero

only for a boson-like operator 4. Therefore, from (23)
and (63), it follows that

(a)) = (1 1a"p)) = (plla'll r)). (65)

Thus, the statistical average of an operator A can be
represented either as a matrix element of the right
superoperator or as a matrix element of the left super-
operator (see (42)).

It should be particularly emphasized that relations (60)
and (63) for fermionic superoperators are satisfied
only if the right superoperators of creation and annihi-
lation are defined according to (50). If the right fermi-
onic superoperators are defined “according to
Schmutz” [36] (i.e., in (48) we put ¢ = 1), then rela-
tions of the form of (60) can be obtained only for an

operator A(a',a) such that the value (=1)""*"""=/2 g
the same for all terms of expansion (34). In this case,

A1) = oA 1, (66)

where = m —n (see Eq. 2.31 in [36]). In addition,
when determining the right fermionic superoperators
according to Schmutz, the relations similar to (63)
hold only for A and B such that the value

(64)
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(=) D=2 ymatnn)matia) g the same for all
terms of the expansion of the operators A and B. So,
e.g., if B preserves the number of particles (i.e.,
my = ny), then ||AB)) = ETHA»). However, if the
right superoperators of creation and annihilation are
defined according to (50), then the equality
||AB)) = B'|| A)) holds for all boson-like B. There-
fore, definition (50) of right fermionic superoperators,
which we use, expands the range of applicability of
relations like (60) and (63). In addition, it will be
shown below that the definition of right fermionic
superoperators according to (50) greatly facilitates the

application of the equation of motion method to the
study of the spectral characteristics of a hot system.

Using the above relations for the product of operators,
we can write ||p(f)H)) = H ||p(t))), where we consider
that the Hamiltonian A (aT, a) is a boson-like Hermitian
operator, and, consequently, A "—H=H (éT,é). Now
we can write the explicit form of the Liouville superop-
erator & in Schrodinger equation (10) for the vector
|| p(7))) as follows:

$=H-H (67)

and & = &', i.e., is a Hermitian superoperator.

Let us point out some properties of . First of all,
we show that &£ is the time-translation operator in the
Liouville space. Indeed, if A(¢) is the Heisenberg rep-
resentation of the operator A4, then the corresponding
Heisenberg representation of the left superoperator
can be written as

Z(t) _ einA'e—th _ eiéEtA'e—i&Bt’ (68)
where we considered that [H,A]=0 because the

Hamiltonian A is a boson-like operator. The Heisen-
berg representation of the right superoperator is
obtained similarly:

iYLt Aje—iSEz.

A(t) = e (69)

Therefore, the Heisenberg representation of the

operator 6, which is an arbitrary linear combination
of the product of left and right superoperators, is

(6(1‘) — eiiff(@e—iil,
which proves the original statement.

It follows from (60) that || 7)) and (( || are, respec-
tively, the right and left eigenstates of the Liouvillian
& with zero eigenvalue:

||y =o0. (1] =0

(70)

(71)
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Whence it follows that Eq. (10) preserves the den-
sity matrix norm:

97rip) = {(112)0(0)) = =i (7|pc) = 0. (72

If we consider the density matrix as a bra vector in
Liouville space, then the corresponding Schrodinger
equation has the form

—mg«pmn = (p|| <. (73)

where we considered property (19). It follows from
(10) and (73) that the vectors ||p)) and ((p|| corre-
sponding to the stationary (i.e., time-independent)
density matrix are also eigenstates &£ with zero eigen-
value

Llle) =0 {(pl|<£ =0. (74)
So, we have shown that, in the context of the super-

operator formalism, finding statistical averages
reduces to solving Schrodinger equation (10) (or (73))

for a given initial condition’ and then calculating the
matrix elements from left superoperator (42) or right
superoperator (65). When passing from the von Neu-
mann equation to the Schrédinger equation, the num-
ber of creation and annihilation operators doubles.
Due to this doubling, the mixed state of the system,
described by the density matrix p, is described by a

pure state || p)) in the Liouville space.

In our works [42—46], the superoperator formalism
was applied to the study of electron transport through
correlated quantum systems. It was shown that the
equation for the density matrix in the form of the
Schrodinger equation can be obtained also in the case
when the evolution of an open quantum system is

described using the Lindblad equation®. However, in
this case, the corresponding evolution superoperator is

not Hermitian, i.e., " # &£.

7 For a time-independent Liouvillian, the formal solution of Eq.
(10) has the form

[[p@)) =e [Ip(z9))).
8 In [42—46], in order to obtain the superoperator representation
of the Lindblad equation for the density matrix of an open quan-
tum system, relations (63) were used in the following way

—iSE(r—rO)

1 4pB)) = 648" ||p)). (75)

Products of the form ApB are contained in the part of Lindblad
equation that describes the processes of dissipation in the system
[77].
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3.3. Tilde Conjugation Operation

By direct verification, it can be found that the right
and left fermionic annihilation superoperators defined

above satisfy the property®

(k1| mm)) = 1.1, (1K )| o))

where G,,,, is defined according to (54). The same
relation holds for right and left fermionic creation
superoperators. Moreover, relation (76) remains valid
if the right and left superoperators in it are inter-
changed.

(76)

Consider an arbitrary superoperator 6, which is a
polynomial in the right and left superoperators of cre-
ation and annihilation:

€ ="6a",a,a,a. (77)

Using relation (76) and property (15) of complete-
ness of basis vectors || mn)), it is easy to obtain that

(kt|1Clmn) = 6,6,y ik € )™

: (78)
= Gt/ €T 160),

where @ = € is the so-called superoperator tilde-

conjugate of ‘6. The tilde conjugation operation
changes all right (left) superoperators to left (right)
ones, while c-numbers are converted by it to complex

conjugates. It has obvious properties!”
(0,6, + 0(2(62)~ = 067561 + 0(2!‘662;
(€6, =%%,, (€ =@,
@ =<

With the use of the above rules, each superoperator

(79)

@ =6a",a,a,a) is assigned a tilde conjugate super-
operator @, such that for arbitrary ||mn)) and || k1)),
equality (78) is true. Since 4 = (1?1)~ and A4 = (;1)~,

? From (50) it follows that

({kclajlpmm) = i1 {1k | )

However, since only matrix elements with k + / = m + n — 1 dif-
fer from zero, then

2 2
G +1Omen = (+) D iyt

— (+I.)(k+l+m+n)(k+l—m—n) — (+I.)—2(m+n)+l — l.(_l)(m+n).
0The Jatter rule, the double tilde rule, is consistent with (78),
since

(&l @) ln)) = Gss0an (KB )
= (Kl @)lmn)).
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then, applying the tilde conjugation operation to
Liouvillian (67), we obtain an important property

$=-2. (80)
Relation (78) establishes a relation between the

matrix elements of the left 4 = A(d@ T,ﬁ) and right

A= A(*)(&T,ﬁ) superoperators. From it, in particular,
expression (59) for kAl mn)) follows.

The tilde conjugation operation is closely related to
the Liouville conjugation operation C, [78].

C.||mn)) =||nm)), C, =C;. (81)

Indeed, if we represent the basis ket vector || mn)) as

[|mn)) =9D,,||00)), where the superoperator %, is
defined according to (53), then the tilde conjugate ket
vector can be written as

[mn)) = ©,,][00) = &,.. || i) (82)
Similarly for the basis bra vector
{{mn]| = ((00)|F,, = 6, ((nm]| (83)

Thus, for even m + n, the Liouville conjugation
operation coincides with the tilde conjugation of the
basis vector. For odd m + n, an additional phase factor
+i appears.

Using (82) and (83), relations (78) can be written in
a more compact form

(k161 mn) = (ki |l mn))* = (mnl€T1&D).  (84)

These equalities can be generalized to the case of
arbitrary vectors. Indeed, let ||O)) be a vector in the
Liouville space:

10))= X0 lmn). 0,0 = (ma0)). 55
We define the tilde conjugate vector | | 0>> as
109 = 20 mn)) = 200G |mn)). (86)

ie., {(mnlO) = 0,05, It follows directly from this
definition that the double tilde conjugation does not
change the vector

10)) = 30,6, ]| mn)) = || 0Y). (87)
In addition, from (84) it follows
(0, 1610, = ((6,1%6,)* = ((6,IE"6,)). (88)

Let us consider as € the unit superoperator I = I
(15). Then from (88) it follows that
<<01||02>> = <<61||62>>* = <<0~2" 61>>- (89)
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We will call a vector ||6>> as tilde-invariant if
100 =116} ... () = (mn &) torany
If A is a Hermitian boson-like operator, then || 4)) is
tilde-invariant, since ((mnll A) = <<mn|| ;1» =A,,-
The vacuum [|00)) is tilde-invariant by definition.
Other examples of tilde-invariant vectors are ||/ )) and

||p))."" For tilde-invariant vectors, relations (88) take
the form

(0, I€ll0,)) = ({8, I@l0,)* = (8, I€"0,)). (90)

Consider a ket vector ||0)) = 0||8)), where ||6)) is
the tilde-invariant vector and O is the superoperator of

the form of (77). Let us show that ||0)) = 0||8)),

where O is the superoperator tilde-conjugate of 0. For
arbitrary || mn)), we have

{(mnlCll6)) = ((mnlO16))* = ((mn| 0))*

= Gy ((nm|O))" = ©,,.,0,,, = ((mn] 0)),

which just proves the required equality. The resulting
equality admits a double interpretation: (i) the action
of the superoperator O, tilde-conjugate of O, on ||6))
gives a vector | | 0», tilde-conjugate of || 0)); (ii) a vec-
tor ||0>> can be represented as the result of the action
of the superoperator 0 , tilde-conjugate of 0, on || 9»

We especially emphasize that equalities (90) are
valid for an arbitrary ‘6 and its tilde-conjugate partner

% only if the right superoperators of creation and
annihilation are defined according to (50). If the right
superoperators of creation and annihilation are
defined according to Schmutz, then relations (90) do

not hold in the general case. This is easy to verify if ‘6
is presented in the form

€= cAB, (92)
where ]1[ (Ez) are monomials of the left (right) creation
and annihilation superoperators, and ||6)) are taken as
||1>> Denote nA[ :mA‘__nAi, NA,- =mAi+l’lAi,
Mg =my —ng, Ny =my +ny (see (34)). Then from
(66) it follows that

(nAi+1)nA/,/2

(114B]1)) = -1 (-1)
)" (A B )
= 0™ (4B 1),

(nB[ Hme/Q

93)

U Erom the tilde invariance of the density matrix, it follows that

P = -F evenin the case when £ = L7 [42—46].
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where we used the fact that the matrix elements on the

left and right are nonzero only for n, =m;,". The
value of multiplier in front of the right matrix element

depends on the specific form of 4, and B;. Conse-
quently, when defining right superoperators according

to Schmutz, relation (90) between 6 and % is not sat-
isfied'3.

3.4. Relationship of the Superoperator Method
with the Thermofield Dynamics

Until now, we have not used in any way the fact that
the density matrix of the equilibrium state at tempera-
ture 7" has a well-defined form

p(Ty = Z(Ty ‘e "7, 95)

where Z(T') = Tr{e_H/ T} is the statistical sum. We
define an exponential function of the equilibrium den-
sity matrix:

p(N)* = Z(T) e /", (96)

Obviously, p(7T)" is also a boson-like Hermitian
operator and p(7)*p(T)"™* = p(T'). Moreover, p(T)
commutes with the Hamiltonian. Using the cyclic
property of the trace Tr{ABC} = Tr{CAB} and rela-
tions (42) and (65), the statistical average of the oper-
ator A can be written as the matrix element

((AN=(m Ao = (oA o). o7

In this sense, the vector ||/p(T))) = p(T)"? ||7)) in
Liouville space describes the equilibrium state of the
system at temperature 7. The relation (97), i.e., the
possibility to represent the equilibrium average value
of an operator A4 as a matrix element with respect to
some state lies at the basis of thermofield dynamics
[33, 34].

We list the properties of the equilibrium state

[Vp@)):

+ Let the vectors |n) form a complete set of eigen-
states of the Hamiltonian H, and let £, be the corre-

. Mp+np /2
(T1AB 1) =1 B B "Tr(4BT) = 0,

then N4 + Np iseven, while my + ng = ny, + mp.

(94)

Bif right superoperators of creation and annihilation are defined
according to (50), then

S N/ Ng N
(114.8]1)) = G405, ) 7 (1|48 )"
For a fermion-like 4;B;, the left and right matrix elements are

NN
zero. Otherwise. 01073‘_(—1) 478 _ 1.
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sponding eigenvalues. Then | | \/p(T)» can be written in
the following form

o) = e e

* The vector | | vp(T )>> is tilde invariant. Therefore,

for an arbitrary superoperator 6 = €(a T, a, df,&), the
equality (see (90)) holds:

(Vo) 161 (7))
= (Vo) el o) *= (Vo e | Vo).

If € is a fermion-like superoperator, then matrix
elements (99) are equal to zero.

- Since || H\p(T)) = ||\p(T)H)), then (see (63))
LlNp@) =0, (o)< =o0.

+ Given that H is a boson-like superoperator and
therefore commutes with any right superoperator,
using (63) it can be shown that the following equalities

hold for an arbitrary A':

Al[p)) = 0™ AT || (D)),
(Vo] 4 = o3 {(pDl| ATe™ .

Whence, for Heisenberg superoperators (68) and
(69) it follows

AD|Np(D)) = 0,47 - i/21)||p(T))),
(o) Aty = & (JpD|| A" (¢ + i/21).

» Using the previous properties, for the equilib-
rium correlation function of two Heisenberg operators

({(A(t)B(t"))) we obtain the following relation':

-E,/2T

|| nn)) (98)

99)

(100)

(101)

(102)

Y etus prove the first equality:

AN = 452 | 1)) = 0.4 24T 1)
=0y, pl/ZATﬁ 1/2. 1/2H1>>=GA6$/2T2THM>>~

We have taken into account that 4 commutes with ﬁl/ 2

/2 .

and that
in the equilibrium case the operator inverse to p
p_l/2 (see (96)).
BConsider the following chain of equalities
(Vo Ba Vo))
=0yp <<WHE’T0')Z*(»HM>> = 0450405
x (Jp(D)||Ba' — i/21)A(¢ + i/ 2T)|\p(T)))
= 645646 5 (NP(D)||Ba) Az + i/ T)|p(T))).

If AB is the fermion-like operator, then matrix elements are

is equal to

zero. Otherwise GABG’;GB =1, which proves (103).
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(4B = (Vo) A0 BEN(T)))
= (Vo | Be) At + i/ T)||p(T))) (103)

= ((B(t"A(t +i/T))),

which is usually called the Kubo—Martin—Schwinger
(KMS) condition [79, 80]. The KMS condition
uniquely determines the state of system, which is
described by equilibrium density matrix (95) [81,
2.2.5]. In the equilibrium case, the correlation func-
tions in (103) depend only on the difference r — ¢', i.e.,
((A@)B(1"))) = ((A(r — 1')B(0))). Therefore, in what fol-
lows, we set t' = 0.

The correspondence between the superoperator
method and thermofield dynamics (TFD) was first
noted by Schmutz [36]. In its original formulation [33,
34], thermofield dynamics is based on the observation
that the statistical average of an operator A can be rep-
resented as a matrix element (0(7)|A|0(T)), where

|0(T)) is a vector in the extended Hilbert space $ @ 9,
which is defined as the tensor product of the original
Hilbert space $ of the quantum system under consid-
eration and the Hilbert space £ of the fictitious system
identical to the original one. All quantities related to
the fictitious system are marked with a tilde. The iden-
tity of two quantum systems, the original physical and
fictitious ones, implies that they have the same spec-
trum. In other words, if the physical system is

described by the Hamiltonian H and Hln) = E,|n),
then the fictitious system is characterized by the Ham-
iltonian H, such that H|a) = E, ). The basis in
$ ® $ is the tensor product| m) ® | /) = |mi). Repre-
senting |0(7")) in the form of a decomposition

(104)

1 —E,J2T |~
07)) = — "
|0(T)) ZD Zn:e |ni),

we obtain

_ 1 —E,/T _
(0()lA0(T)) = 70 ;e (nlAln) = ((4)), (105)
where we used the fact that (il 7y = §,,, while the
physical operator A acts only on vectors in the space
$. The presence of a tensor product |n) ®17) in the
definition of a vector |0(7")) allows pick up diagonal
matrix elements during the calculation of
(O(T)1Al0(T)).

In the original paper by Takahashi and Umezawa
[33], the vector |0(T)) was called the thermal vacuum,
while the operator % = H — H was called the thermal
Hamiltonian. Note that, by construction, the thermal

vacuum is an eigenstate of the thermal Hamiltonian
with a zero eigenvalue

#H|o(T)) = 0. (106)
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In thermofield dynamics, the correspondence
between operators in the original and fictitious Hilbert
spaces is given by the tilde operation

(AB) = AB, (aA+bB) = a*A + b*B,
(A =paa,

where a,b are the c-numbers, and p, = +1(-1) for a
boson-like (fermion-like) operator. In addition to the
mentioned rules, the so-called thermal state condition
appears in the thermofield dynamics, which deter-
mines the structure of the thermal vacuum at a tem-
perature 7' (cf. (101))

(107)

AT = (DEVHT Aoy, (108)

where F is the operator of the number of fermions
[34, Eq. 4.2.31]. In TFD, the Kubo—Martin—
Schwinger relation for the correlation functions fol-
lows from the thermal state condition.

In [33, 34], the appearance of a fictitious tilde-sys-
tem was regarded as a consequence of the interaction
of a physical system under consideration with a ther-
mal bath. The presence of a thermal bath leads to the
existence of a certain number of excited quanta in the
system. Therefore, the energy absorption can occur in
two ways: either due to the excitation of additional
quanta, or due to the destruction of holes that exist
due to the thermal bath. The second process is
described as the destruction of the tilde quantum with
negative energy. In other words, the particles (holes) of
the tilde system were interpreted as holes (particles) of
the physical system.

Schmutz [36] has shown that the doubling of
degrees of freedom arises naturally in the transition
from the description of system dynamics in Hilbert
space to the description of dynamics in Liouville
space. The correspondence between the Schmutz
superoperator notation and the notation used in ther-
mofield dynamics is as follows: A <> A and 4 < A

and |l mn)) < |mi). We recall, however, that Schmutz
put ¢ = +1 in (48) when defining the right fermionic
creation and annihilation superoperators. With this

definition, the vector ||\/p(T )» satisfies the thermal
state condition in the form (108).

An alternative interpretation of thermofield
dynamics was proposed by Ojima [37], who estab-
lished the equivalence of the axiomatic approach in
quantum field theory, associated with the use of C*-
algebra, and thermofield dynamics. In particular, he
showed the relation between the tilde operation and
the modular involution operation J, JA4J = A. How-
ever, to do this, he needed to redefine the fermionic
creation and annihilation operators associated with

the fictitious system, according to the rule a;, — ia;

and G, — —id. Note that this redefinition completely
coincides with the redefinition of the right fermionic
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Schmutz superoperators, which we previously
obtained (see (49)). As was shown in [37], owing to

this redefinition, the relation (4) = A4 holds for both
boson-like and fermion-like operators, while the ther-
mal state condition takes a simpler form (cf. (108))
AlOT) = o,e™ AT |0T)), (109)
where 6, = +1(-i) for a boson-like (fermion-like)
operator. As can be seen, when defining tilde fermi-
onic operators according to Ojima’s work, the double
tilde conjugation rule and the thermal state condition
take exactly the same form that we obtained using the
superoperator formalism (see (79) and (101)).

Despite the convenience of definition of tilde oper-
ators “in the sense of Ojima,” for a long time the appli-
cation of TFD to the study of the properties of hot
nuclei was limited to the original version of the theory
(see, e.g., [82—84]). The advantage of using the rede-
fined tilde fermionic operators was first demonstrated
in our work [35]. It was shown that by using them it is
possible to obtain the correct asymptotic limit for pho-
non amplitudes when the strength of the residual
interaction tends to zero. Later, in our papers [42—46],
the redefinition of tilde (i.e., right) fermion operators
was substantiated in the context of the superoperator
method and demonstrated its merits in studying the
properties of nonequilibrium open quantum systems.

For the sake of convenience and using the fact that
the first work on thermofield dynamics [33] was pub-
lished earlier than the work by Schmutz [36], we will
henceforth use the TFD notation and terminology. In
order to avoid misunderstandings, we give a “dictio-
nary” of correspondences between the two notation
options:

A o A
A « A
(110)
V() > [0(T))
4 VR

In other words, instead of the phrase “left (right)
superoperator” we will use the term “physical (tilde)
operator”; instead of “equilibrium state” we will use
“thermal vacuum,” while instead of “Liouville super-
operator” we will use “thermal Hamiltonian.” In this
case, all the properties of the equilibrium state

||\/p(T )», mentioned at the beginning of this para-
graph, become the properties of thermal vacuum

|0(T)). In addition, rules (79) of tilde conjugation also
remain valid.

We emphasize once again that we consider the
thermofield dynamics as one of the options for imple-
menting the superoperator method. Initially, the TFD
was not based on the formalism of superoperators, and
the introduction of an additional Hilbert space associ-
ated with a fictitious system was an artificial technique
Vol. 53
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in order to ensure the fulfillment of condition (105).
The relation between TFD and the superoperator
method was established by Schmutz, who showed that
TFD is consistent with the choice ¢ = +1 in defining
right fermionic superoperators (48). The choice ¢ =i
as the phase factor was substantiated in our papers
[42—46]. It turned out that a simple change in the
phase factor leads to a number of useful relations (see,
e.g., (63) and (90)), which do not exist in TFD, and
the use of which allows the thermal state condition to
be written in a simpler form (cf. (108) and (109)), and
also makes it possible to use the equation-of-motion
method in the study of the spectral characteristics of
hot systems.

4. CALCULATION OF SPECTRAL DENSITIES
AND STRENGTH FUNCTIONS

Let us apply the above formalism to the calculation
of the spectral characteristics of hot nuclei. We will

assume that the distribution function p,(7") in (3) cor-
responds to the grand canonical ensemble. For highly
excited nuclear compound-states, the transition from
the microcanonical distribution to the grand canoni-
cal distribution is based on the use of the saddle point
method when calculating the integrals characterizing
the statistical averages [85, v. 1, p. 275] (see also
[73, 86, 87]). For hot nuclei in the stellar matter, the
argument in favor of using the distribution function of
the grand canonical ensemble is the presence of a ther-
mal bath (photon gas) and a reservoir of particles, a
role of which is played by the nucleon gas surrounding
the nuclei.

Let H be the nuclear Hamiltonian while
€, = €.(Z, N) be its eigenvalues, which depend on the
number of nucleons in a nucleus. The total energy of
the nucleus, £, =€, + M,Z + M,N , includes a mass
of free nucleons. We define the transition energy from
state i to state f as AE, = E, — E;. For charge-neutral

transitions, when the number of nucleons of each type
does not change, this energy is equal to

AE, =€, €, (111)

In the charge-exchange n — p or p — n transi-
tions, the number of nucleons of each type changes by
one and, consequently,

AE, =€, —€,+AM,, (112)

Here, AM,, = M, — M, =1.29 MeV is the differ-
ence between the neutron and proton masses, and the
upper (lower) sign corresponds to the p — n (n — p)
transition. The transition energy from excited nuclear
states can be either positive or negative. In what fol-
lows, we will agree to designate transitions with posi-

tive energy as T-transitions (upward transitions), and

transitions with negative energy as L -transitions
(downward transitions).
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For a statistical ensemble of nuclei that are in a
thermal equilibrium with a bath of energy and particles
at atemperature 7', the probability of finding a nucleus

ﬁA in the ith excited state is given by the distribution
function of the grand canonical ensemble

PELZN) = exp{—%f _“"g _“”Z} /Z(T), (113)

where Z(T') is the partition function while , , are the
chemical potentials of neutrons and protons. For arbi-
trary operators 4 and B, we define the spectral density
of the corresponding correlation function

S45(E,T)
= > p(&,. Z, N){ 1B flADN*SE - AE,). (11D

ZNif

For charge-neutral operators, matrix elements are
calculated between states with the same number of
nucleons of each type. In the case of charge-exchange
operators, the number of nucleons of each type in the

initial and final states differs by one!®. For 4 = B,

expression (114) passes into the definition of a strength
function.

SAE.T) =Y "p(€,Z N)B(AXE - AE), (115)

ZNif

where B, (A4) =|(f 1Al i) is the probability (strength)

of the transition i — f. For T # 0 due to | -transi-
tions from thermally excited states, the spectral den-
sity and the strength function have poles (singularities)
in the negative energy region, i.e., at £ < (. Thermal
effects also lead to the appearance of low-energy poles
associated with transitions between closely spaced
excited states of a nucleus.

Using the integral representation of the delta func-
. 1
tion 8(g) = —
2

T
in terms of the correlation function. For charge-neu-
tral operators, we get

iet

e dt, we express spectral density (114)

Sp(ET) = jj—fte”’ {(4"0)BO))). (116)

In the case of charge-exchange operators, the rela-
tionship between the spectral density and the correla-

16We assume that the proton has an isospin projection —1/2,
while neutron, +1/2. Then charge-exchange operators of
n — p transitions contain the operator lowering the isospin 7_
(t_lm) =| p)), while operators of p — n transitions contain the
isospin-raising operator 7, (z.|p) =|n)). Note also that if A

corresponds to transition » — p, then A" is the p — n transi-
tion operator and vice versa.
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tion function in the grand canonical ensemble takes
the form

SwE.T) = [SL (A wso)). an)

where the upper (lower) sign corresponds to p — n

(n — p) transitions. The value A,, = Ap,, + AM,,

(Ap,, =W, —u,) in the exponent arises as a result of
using a grand canonical ensemble and changing the
number of protons and neutrons in charge-exchange
transitions. Note that when using the distribution
function of the grand canonical ensemble, the Heisen-
berg representation of operators contains chemical
potentials, i.e.,

A(I) — ei(H—u,,N—upZ)rAe—i(H—u,,N—u,,Z)t’ (118)
where N (Z) is the operator of the number of neutrons
(protons).

From the KMS condition (103) for the correlation
functions, it follows that the spectral densities satisfy
the property

Sy ET) =" S,5(E,T) (119)
for charge-neutral operators, and
Sy CET) =S, (BT (120)

for charge-exchange operators. As before, the upper

(lower) sign corresponds to the case when S, z(E,T) is
the spectral density of the p — n (n — p) transition
operators, and, therefore, SB.f. AT(E, T) is the spectral
density of the “inverse” n — p (p — n) transition
operators (see footnote 16 on page 899). Relations
(119) and (120) will be referred to below as the princi-
ple of detailed balance for spectral densities. We
emphasize that the latter equation, which relates the
spectral densities and charge-exchange operators, is
valid only in the grand canonical ensemble. In con-
trast, relation (119) is also valid in the canonical
ensemble.

Let us use (97) and write the spectral densities (116)
and (117)) in the form of the Fourier transform of the
thermal vacuum average

Su(E.T) =[S (ol wpolom) a2
for charge-neutral operators, and
SulE.T) = [T (o]’ nsofor) (122)

in the case of charge-exchange operators. Recall that,
in the original superoperator notation, 4 and B are left
superoperators, while the thermal vacuum is a vector
in the Liouville space (see (110)).

Let us derive an energy representation for the spec-
tral densities (121) and (122), based on the fact that the
time translation operator in the extended Hilbert
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space (i.e., in the Liouville space) is the thermal Ham-
iltonian ¥ (see (70)) 7. Since % = ¥, then all eigen-
values of the thermal Hamiltonian are real. In addi-
tion, to each eigenstate of the thermal Hamiltonian 7€

with positive energy
%|©k>=%k|@k>a (124)

atilde conjugate eigenstate with negative energy corre-
sponds:

%[0 ,) = -€,]0,). (125)

Indeed, since # = —H (see (80)), then consider-
ing (88) and (89), for an arbitrary vector | mn) we have

(mnl300 ) = (mnlFd0,)* = ~(mnl% 0, )*
=-é, <”/’;—’:l|@k>*= —- € <m”|©k>’
which proves (125). In what follows, the eigenstates of

the thermal Hamiltonian with positive (negative)
energy will be called the nontilde (tilde) states.

The completeness property of the eigenstates of the
thermal Hamiltonian allows the spectral density of
charge-neutral operators to be written in the form of
the following expansion

SAB(Ea T)
= > {0, IBIO))(O, |AIOT))*S(E - €,)

k
+ (0, |BIO(T)) (O, 1A10(T)) *S(E + €,)}.

A similar expansion for charge-exchange operators
has the form

(126)

(127

SAB(E’T)
= Z{(@k |BIO(T)) (O |[AIO(T))*&E - €, F A,,) (128)
k

+(0, |BIO(T)) (O, |AIO(T)) *S(E + €, F A,p)}s

where, as before, the upper (lower) sign corresponds to
p — n(n — p)transitions. We especially note the fact
that poles of the charge-exchange spectral densities
are shifted with respect to the eigenvalues of the ther-

mal Hamiltonian by A,

Formally, the Egs. (127) and (128) have the same
form as the spectral densities at zero temperature: they
contain a single summation over the eigenstates of the
(thermal) Hamiltonian, and the thermal vacuum plays
the role of the ground state. The position of poles of
the spectral density is determined by the eigenvalues of
the thermal Hamiltonian, and its intensity depends on
the amplitude of transitions from the thermal vacuum
to the eigenstates of thermal Hamiltonian. The differ-
ence from the case 7" = 0 is that the spectrum of ther-

17Since the calculations are carried out in the grand canonical
ensemble, the thermal Hamiltonian contains the chemical
potentials

H = (H -1, Z —p,N) = (H -, Z —p,N).  (123)
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mal Hamiltonian consists of both positive and nega-
tive eigenvalues and, in principle, depends on tem-
perature. The transition amplitudes also depend on
the temperature.

Acting on both sides of equality (109) on the eigen-
functions of thermal Hamiltonian and using the fact

that (0, [4lo@)) = (@, 4T0T)* (see (88)), we
obtain the following formulation of the thermal state
condition

(0, l4lo)) = 5,675 (0, laTlo))x,  (129)

from which the validity of the principle of detailed bal-
ance for spectral densities (127) and (128) follows. As
it should be, for T = 0, the amplitudes of transitions to
tilde states are equal to zero. Therefore, in cold nuclei,
the spectral densities of charge-neutral operators van-
ish for £ < 0. For T' = 0, the spectral density of oper-
ators of p —>n (n— p) transitions vanishes at
E <A, (E<-A,,),ie.,thequantity A,, (-A,,) plays
a role of an effective threshold for charge-exchange
reactions on the ground state.

Using (127) and (128), we write the energy repre-
sentation of strength functions (115) in the form

SET)
= Y UBU(AKE ~€,) + BUASE + €,y 130
k

for a charge-neutral operator, and

SAE,T) =D {B(ANE - €, FA,,)
T (131)
+ BU(AXE +€, T A,

for the charge-exchange operator. Quantities

Bu(A) = (@ 1AOD) . B(4) = (O A0 (132)

denote the strength (probability) of the transition
from the thermal vacuum to the eigenstates of thermal

Hamiltonian. The poles (singularities) £, Ey of the
strength functions will be called the transition energy.

In charge-neutral processes, the transition energy
coincides with the state energy

E, =€, E =-¢,. (133)

Therefore, the excitation of a hot nucleus in a

charge-neutral process corresponds to the T-transi-
tion to a nontilde state of the thermal Hamiltonian,

while deexcitation corresponds to the | -transition to a
tilde state. According to (129), the excitation and deexci-
tation probabilities are related by the detailed balance
principle

Bi(A) = e /"B (4. (134)
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For charge-exchange processes, the transition
energy differs from the state energy by the value of
effective threshold

EP =€, A, EP=-¢ tA,, (135)

where the sign + (-—) corresponds to the p — n
(n — p) transition. Therefore, a part of the nontilde
(tilde) states may appear at a negative (positive) tran-
sition energy. In this case, each p — n transition is
matched by an inverse » — p transition to the tilde-
conjugated state. The energies of these transitions dif-
fer in sign, E f) =- ,({”, while the probabilities are
related by the principle of detailed balance

Bi(A) = e ETWDIT R (4 (136)

We recall once again that relation (136) between
the probabilities of excitation and deexcitation of a hot
nucleus in charge-exchange transitions is valid only in
the grand canonical ensemble. In the canonical
ensemble, a similar relationship has a more complex
form and includes the ratio of the partition functions

of the parent and daughter nuclei [88, Eq. 8]*.

So, we have shown that, within the formalism of
superoperators, the problem of calculating the spectral
densities and strength functions in a hot nucleus is
reduced to finding the eigenstates (i.e., diagonaliza-
tion) of the thermal Hamiltonian. As in the case of
T = 0, this problem for most systems with interaction
can only be solved approximately. The advantage of
the formalism is that to find the eigenstates of the ther-
mal Hamiltonian, we can apply the methods used at
zero temperature: the approximation of independent
quasiparticles, the random phase approximation, etc.
At the same time, as will be shown in the next section,
the procedure for diagonalizing the thermal Hamilto-
nian has its own peculiarities related to the require-
ment that the thermal state condition (129) be satis-
fied.

At the end of this section, we present the well-
known relations for spectral densities, which directly
follow from the expansions of (127) and (128) consid-

ering that [A,ﬁ ] = 0. Namely:

S[A,H]B(Ea T)=ES,s(E,T) (137)
for charge-neutral operators, and
Sums(E,T) = (EF A,,)S45(E,T) (138)

for charge-exchange operators. In the latter equality,
the upper (lower) sign corresponds to p — n (n — p)
transitions. As is known, the indicated relation of
spectral densities, containing the operator 4 and its

8The expression for the detailed balance obtained in [88] trans-
forms into (136) if the ratio of the partition functions of the par-
ent and daughter nuclei is set equal to unity, while a difference
in the masses of the nuclei is considered equal to the effective
threshold.
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commutator with the Hamiltonian as an argument, is
the basis for constructing a chain of equations for the
two-time temperature Green’s functions [89]. Here,
this relation is given only to show its validity within the
superoperator method.

5. EQUATION-OF-MOTION METHOD
WITH T #0

To emphasize the features inherent in the diagonal-
ization of the thermal Hamiltonian, we use the equa-

tion-of-motion method [39—41]. Let the vectors |0 )
in the extended Hilbert space (i.e., in the Liouville
space) be eigenstates of the thermal Hamiltonian:

%l@k> = %k|@k>'
Let us define (super)operators O and O such that
0,) = O |0(T))
and
0,]10(T)) =0 for all k,
where |0(T)) is the thermal vacuum, i.e., #| 0(T')) = 0.
In particular, we can put O =|0,/){0(7)| and
O, =|0(T)) {0, |. Since
(3,05 110(7)) = €,0% 0T,
then, multiplying this equality from the left by an arbi-
trary vector (0(T')| 80, we arrive at an equation for O L
(0(7)[[80,1%,0711|0(T)
=€, ((1)|130,0%1|0(T)).
According to the properties proved earlier (see
pages 896 and 900) %|@k> = —%k|@k>, where
|6,) = 01| 0(T)). Besides, €, |0(T)) = 0.

(139)

The fact that O 1 also satisfies equation of motion (139)
is easy to verify if we consider that 60 is an arbitrary
operator. Using in (139) instead of 8O the tilde-conju-

gate operator 80 and applying the complex conjuga-
tion operation to both parts of the equality, with the
help of (88) we obtain

(0(1)[180,1%,07%11]0(T))
=€, ((1)]180,0%1]0(T)).

Recall that in order to distinguish between the pos-
itive and negative energy eigenstates of the thermal
Hamiltonian, the latter are marked with a tilde
(see (125)).

Until now, the consideration has not differed from
the standard presentation of the application of the
equation-of-motion method to finding the eigenstates
of the cold nucleus Hamiltonian [39—41]. Note, how-
ever, that in the case of a thermal Hamiltonian, equa-

(140)
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tion of motion (139) does not in itself lead to a unique
definition of the structure of the diagonalizing opera-
tors. Indeed, using in (139) instead of 8O the operator

55Tand applying property (88), we get

(0(1)|[80,1%, 0,11/ 0(T))

- (141)
=€, (01300 1| 0(T)).

Therefore, the solution to the equation of motion
for a given €, is an arbitrary linear combination

9% = x0% + 0, . However, the thermal vacuum can-
not simultaneously be a vacuum state both for the
operators 0, and for the operators 2 ,. Therefore,
from all the set of solutions (139), it is necessary to sin-
gle out those whose vacuum state satisfies the thermal
state condition at a given temperature. To this end, we
require the fulfillment of the thermal state condition
in the form (129), from which it follows that

e ST (N(T)|[0 , Al | OCT))

K (142)
= 0,(0(7)|[4,0% 1. |0o(T)

for an arbitrary physical operator 4. The anticommu-

tator [..], corresponds to the case when O, and A4 are
both fermion-like operators.

Formally, the equation of motion (139) together
with the thermal state condition in the form (142)
makes it possible to find the exact eigenstates of the
thermal Hamiltonian. In practical calculations, how-
ever, we are looking for a solution to the equation of
motion in the form of an expansion in a limited set of
some basic operators d0. However, even in this case,
solution (139) requires knowledge of the vacuum state
of the operators O . This condition can be satisfied by
solving the equation of motion using iterations. How-
ever, since the presence of a double commutator on
the left-hand side of (139) reduces the sensitivity of the

equation of motion solution to the choice of |0(T)),
then its approximation |y,(7"))!° can be used as a ther-

mal vacuum. The mandatory requirement for |\|10(T ))
is its tilde invariance.

To guarantee the orthogonality of the thermal
Hamiltonian eigenfunctions in the approximate solu-
tion to the equation of motion, the double commuta-
tor on the right-hand side of (139) should be replaced
by a symmetric double commutator [39—41]. As a

Y Recall that it is precisely this situation is realized in the deriva-
tion of the RPA equations, when the Hartree—Fock vacuum is
used as the ground state in the equation of motion instead of
the phonon vacuum [41].
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result, we arrive at the equation of motion in the fol-
lowing form

(wo(T)|[80,%,0° 1| wo(T))

(143)
= € (Wo(D[180,07 1| wo(T)),
where
[A,B,C]=%{[A,[B,C]]+[[A,B],C]}- (144)
If @7;( is a fermion-like operator, then in (143)

instead of commutators, anticommutators are used.

The approximate nature of the solution to the
equation of motion leads to the fact that the thermal
state condition (142) can be satisfied only for a certain
class of operators A. Let us pay attention to the fact
that if (142) is valid for some set of operators A4,, then
it is also valid for their linear combination. Therefore,
in order for the spectral densities of one-particle oper-
ators describing the external action on a hot nucleus to
satisfy the detailed balance principle (119), (120), we
will consider the one- and two-fermion operators of

the form a', a, afra;r, a,Taz, a,ay, as a set. It should be

emphasized that, regardless of which vacuum state is
used in (143), it is precisely the vacuum of the operators
O, that appears in the thermal state condition (142).

Before proceeding to the consideration of various
approximate methods for finding the eigenstates of a
thermal Hamiltonian, we note once again that the
requirement that the thermal state condition (142) be
satisfied at each stage of diagonalization of the thermal
Hamiltonian is a distinctive feature of the presented
approach, which makes it thermodynamically consis-
tent, since it guarantees the fulfillment of the principle
of detailed balance (119), (120) for spectral densities
and strength functions of one-particle operators.

6. MODELING
THE NUCLEAR HAMILTONIAN

We apply the above formalism for calculating spec-
tral densities and strength functions to the nuclear
Hamiltonian, which consists of the mean field for pro-
tons and neutrons H,, pairing interaction and resid-

ual nucleon—nucleon interaction H :

H=H, ;+H, +H

palr res*

(145)

In all further theoretical calculations and numeri-
cal calculations, we will assume the spherical symme-
try of the mean field potential. In this case, (27 +1)-
fold degenerate single-particle levels of the mean field
are characterized by quantum numbers n/jm , where m
is the projection of the total moment j. For the sake of
brevity of the notation, the indices n/ will be omitted
(i.e., j = nlj), while the nucleon creation and annihi-

lation operators will be denoted as aj-,,, and a,,. Using
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these notations, we write the one-particle part of the
Hamiltonian as

Hy=> ZT(EJ

T=p,n jm

— o)) (146)

where 3 means that the summation is performed
either over proton (T = p) or neutron (T = n) single-
particle states. If there is no special notation, then the
summation over j means, in addition, the summation
over the isotopic index .

Since all calculations are carried out in the grand
canonical ensemble, then the inclusion of a term con-
taining the chemical potential L, in the Hamiltonian
makes it possible to ensure that the number of particles
is conserved on average. Single-particle energies £,
either correspond to a phenomenological potential
(e.g., the Woods—Saxon potential) or are obtained as
a result of solving the Hartree—Fock equations using
the effective nucleon—nucleon interaction. Strictly
speaking, the energies of single-particle levels depend
on temperature. However, Hartree—Fock calculations
performed using the Skyrme interaction demonstrate
the mean field stability with respect to temperature
increase up to 7 =5 MeV [90, 91] (see also [12,
p. 166]). Since the temperatures at which the reactions
of interest to us proceed during a supernova explosion
do not exceed this value, we further assume that the
energies and wave functions of nuclear single-particle
states are the same as at zero temperature.

As a pairing interaction, we use monopole forces
that act only between identical nucleons

palr = 1 ZG z

T np  jimjn

(147)

a/lmlam malzmz
where the bar above quantum numbers means the
- Lhe choice

of constants G, , is based on the reproduction of an
even—odd mass difference.

time reversal operation a— = (-1)’ "a,_
jm J

As a residual interaction H,., we use the central
particle—hole interaction of two types: (i) a schematic
separable interaction, which is used in the Hamilto-
nian of the quasiparticle—phonon nuclear model [92];
(ii) interaction in the form of Landau—Migdal forces
[93], the parameters of which are expressed in terms of
the parameters of Skyrme forces [94]. The separabe-
lization procedure proposed in [95, 96] makes it pos-
sible to write the Landau—Migdal interaction as a sum
of a finite number N of separabelization terms.

Let us briefly describe the separabelization proce-
dure for the Landau—Migdal forces and, along the
way, introduce the notation used in what follows. Fol-
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lowing [94, 95], we write the Landau—Migdal forces
in the coordinate representation as follows

Hres<n:rz> = N'al[Fo(rl) +Gy(1)0,0, (148)
+ (Fy(r) + Go(r)0,0,)T,7,10(1,) -

Here N, = 2ka*/ T’h°, where ky is the Fermi
momentum and m* is the effective nucleon mass. Tra-
ditionally, residual forces in the Landau—Migdal form
are used in the study of charge-neutral and charge-
exchange excitations of the nucleus in the context of
the theory of finite Fermi systems [93, 97—99]. Matrix
elements of the interaction (148) can be represented in
the form of N separable terms using the Gaussian
integration formula for N points [100, Eq. 25.4.30]

R N
[rerar =23 w ). (149)
0 2=

The values of abscissas #, and weights w, depend on
the number N of points in the Gauss formula. In
numerical calculations, we always assumed N = 40.
Although formally, when calculating matrix elements

of H . (r,1,), integration extends up to » = e, a choice

of the sufficiently large truncation radius R = 3R,
allows the radial integral to be calculated with good
accuracy. This choice of R and the number N of
Gauss integration points makes it possible to almost
completely eliminate the errors associated with the
calculation of the matrix elements of the residual
interaction. As shown in [95], the use of the separable
form of residual interaction (148) makes it possible to
reduce solving the RPA equations to the secular equa-
tion of the order of ~ N, which greatly simplifies cal-
culations in a large configuration space and makes it
possible to perform global microscopic calculations
for a large number of nuclei.

In the second quantization representation, the
residual interaction (148) after the separabelization
procedure is written as the sum of multipole and spin-
multipole components

Hres = th +th (150)

In turn, each of the components is written as the

sum of N separable terms:

Hyy = ——Z[x“""’ + oY MGy MGy, (151)
IM
Hy, = Z[x‘”‘) + 1ol
(152)

x Z Z SimSiou-

JM L=J,J*1
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We use the following definition of multipole and
spin-multipole operators?’

(k)T —1 (O k) _ (k)
Moy =7 Q2 afz i = ‘/M“JM’
hh
(k)T _J—l (LJ; k) i ] _ _S(k) (157)
LJM - Jih ajz M — LIM>

i

where f; k) and Fii (L70) are the corresponding reduced
matrix elements

fjszk) = ijujl(rk)ujz(rk)<jl ||YJ"Jz>,

(LJ:k)
J;

. (158)
o =l (rk)ujz(rk)<jl ||[YL0]J||j2>;

which have the properties fj( hk) = (- l)jl_h” fj(;:k) and

fjijzj = (it f/(;lj “)_The value u (r, ) denotes the
radial part of the wave function of the nucleon
0,;(r) =u;(r) / r at the point with the abscissa 7, used in
the Gauss integration formula (149). The isoscalar

Y % and isovector %", %" constants of the

multipole and spin-multipole interactions are expressed
in terms of the parameters of the Landau—M igdal forces

(148). For example, y"™ = _E)(rk)RWk/(zNOrk2)-

(s;k) . (m;k) (s3k)

Expressions for x,"’,y, ~ and y, " are obtained,

respectively, by replacing F, with Fy, G, and G,.

At N =1, the multipole and spin-multipole resid-
ual interaction in the form (151), (152) becomes iden-

20 Following [85, v. 1, p. 86], we use the following definition of a

reduced matrix element t( ) =i Tyl A2)

). (153)

Then for the M th component of an arbltrary one—particle ten-
sor operator 7 , we can write

Gy [Typg| jama) = Gt CGompd M| jumy )t

Ty = Z (i ‘TJM‘j2m2>a;mlaj2m2
Jimy

Jamy ( 154)
J
=-J" Zt( )la) a1 s
where J =2J + 1, and with the use of square brackets [...] 5/,

the coupling of two angular momenta into the total angular
momentum J with the projection M is denoted:

¥
el = 3 G IM)a) . (155)
The notation [aTajf-2 lyp in (154) and (157) means
[a v = 2 (jlmljzmz\JMM;mthmZ- (156)

mm,
We also introduce the notation used in what follows

J-M
Agip = M Ay
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tical to the residual interaction used in the quasiparti-
cle—phonon nuclear model (QPM) Hamiltonian

Hy Z[XU) + Tltzxgj)]zMJTMMlM )
]

Z o + TﬂzX%LJ)]ZSLTJMSLJM, (159)
J L=JJ+l M
while the expressions for multipole and spin-multi-
pole operators are the same as (157) up to the replace-
ment of reduced matrix elements by

75 = (Gl Ry, M o).
f/(lezl) <]l ”l R, (r) [YLG]J||J2>

where R(r) is the radial dependence of the separable
forces used in the QPM.

The equations obtained below for calculating the
structure and energy of thermal phonons are also used
in our calculations with the QPM Hamiltonian. There
is, however, a fundamental difference. In (151) and
(152) all coupling constants are related to the parame-
ters of the Landau—Migdal forces, which, in turn, are
expressed in terms of the parameters of the Skyrme
forces [94]. In QPM, there is no unambiguous proce-
dure for choosing the radial dependence of separable
forces and coupling constants. Traditionally, QPM

(160)

uses the forces R(r) = rk, where A is the rank of spher-
ical harmonic ¥, in the definition of multipole and
spin-multipole operators (159), or the forces
R(r)y=d V(r)/ dr, where V (r) is the central part of the
one-particle potential. The values of the constants of

the multipole ngl and spin-multipole X(U) forces

depend on the type of R(r), and their choice is based

on experimental data and qualitative estimates [101].
The residual interaction (151), (152) contains the

scalar product of the Pauli matrices 1, and t,, acting
on the isotopic wave functions of the nucleon.

Expanding the scalar product t,t, as

(1) ,(2) + 2(2‘(1) (2)

1)(2)
THL =TT +12°87),

(161)

where 1Tylm) =+In), 1|p)=—|p) and tln) =p),

t.| p) = |n), we divide the residual interaction into the
charge-neutral part

Hao == 23757 %08 s (o)
2 JM t,p=%1 k (162)
1 5
=22 D2 2 2 SIS e
2 LT T
and the charge-exchange part
ch o = sz(m k)J‘/L(k)T (k)
IJM k
(S k) (k)T (k) (163)
SrimSLim-
TM L=T ]+ k
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In the charge-neutral part (162) the notations

6 = a0 o™ ™ = g™ + ™ (p =£1)

are introduced, and the multipole and spin-multipole
operators contain summation over either neutron
(T = n) or proton (T = p) single-particle states. The
replacement T <> —t means the substitution n <> p.
In the charge-exchange part of the residual interaction

(163) the single-particle operators J(/LT, ST contain
summation over proton-neutron states, i.e.,

Z N EZ. _inexpressions (157).
N2 JpJn

As was shown in the previous section, in order to
calculate the spectral densities and strength functions
of a hot nucleus in the context of the superoperator
method, it is necessary to diagonalize the thermal
Hamiltonian

H=H-H=%_,+% . +%..,

where A is obtained from original Hamiltonian (145)
by replacing the creation and annihilation operators

ajm, a;,, Wwith tilde partners &j.m, a,, ie., if
H = H(d',a), then H=H (@',a). The thermal Ham-
iltonian #¢ inherits the structure of original Hamilto-
nian H . Therefore, to find its eigenstates, the same
methods can be applied which are used in studying the
properties of excited states of cold nuclei. These meth-
ods are the BCS approximation for considering pair-

ing correlations, treatment of the residual interaction
within the random phase approximation, bosonic

expansions?!, etc. An essential difference, as already
noted, is the requirement that the thermal state condi-
tion (142) be satisfied. It is this condition that deter-
mines the temperature of the system and allows the
thermodynamically consistent (i.e., without violating
the principle of detailed balance) calculation of the
spectral densities and strength functions. In first works
on the application of thermofield dynamics methods
to the study of the hot nuclei properties, this fact was
ignored, and a temperature, as a parameter character-
izing the thermodynamic properties of a hot system,
was introduced into consideration by determining and
subsequent minimization of the free energy for a sys-
tem of noninteracting quasiparticles [83, 84]. As a
consequence of this approach, the thermal vacuum
satisfies the thermal state condition only in the BCS
approximation, but when the correlations caused by
the residual interaction are considered, i.e., when con-
structing the phonon thermal vacuum, the thermal
state condition is no longer satisfied. As a result, the
principle of detailed balance for spectral densities (119),
(120) and for strength functions (134), (136) is violated.
As will be shown below, within the superoperator
method, it is possible to generalize the BCS, RPA, and

(164)

pair

2 The bosonic expansion method was used to diagonalize the
thermal Hamiltonian of the Lipkin model in our works
[102, 103].
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other methods in such a way that at each stage of diag-
onalization of the thermal Hamiltonian, the thermal
vacuum satisfies the thermal state condition.

Before proceeding to the discussion of methods for
diagonalization of the thermal Hamiltonian, we use
the fact that for spherical nuclei the spectral densities
of spherical tensor operators are expressed in terms of
the reduced matrix elements

Sy (ET)=D.> p(€,Z,N)

Z N if
BT AN ) *
2J, +1

(165)

&(E - AEy),

while the strength function has the form

Sy (E,T)="> p(€,,Z,N)B(A)XE - AEy), (166)

ZNif

where B, (4;) = |(J, |4,17,)] /27, +1) is the reduced
transition probability (strength). The eigenstates of the
thermal Hamiltonian | JMk) also have spherical sym-
metry, i.e., are degenerate with respect to the angular
momentum projection. Therefore, in the expressions
for spectral densities (127), (128) and for strength
functions (130), (131) the summation over the projec-
tion M can be considered by determining the reduced
matrix element

(0 4 1A0T)) = T (O | A IO(T)),

(167)

< Jk "AJ”O(T)> = <0JMk |AJM| or )>
where J = +/2J + 1. This definition agrees with (153),
given above, if we assign zero angular momentum to
the thermal vacuum. Let us also introduce the reduced
transition probability from thermal vacuum to the

state | Jk)

Bu(4;) =0 |4, o).
B4y =0, 14,0

Obviously, with such a definition of the reduced
matrix element, all relations for the amplitudes and
transition probabilities, obtained in the previous sec-
tion (in particular, the principle of detailed balance
(134) and (136)), remain valid.

(168)

7. THERMAL QUASIPARTICLES

As in the case of zero temperature, we begin the
diagonalization of the thermal Hamiltonian (164) by
taking into account pairing correlations. To this end,

. . st .
we introduce the operators of creation BT, B andanni-

hilation 3, B of thermal quasiparticles, which reduce
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the pairing part of the thermal Hamiltonian to the
diagonal form:

%BCS = %mf + %pair
= ZZTEJ(T)(B;mBjm - BijJm)

T jm

(169)

The sign of approximate equality in (169) means
that the terms describing the monopole interaction
between thermal quasiparticles are not indicated in the
expression for 7€ 5. The vacuum of thermal quasipar-
ticles |@y(7)) under the additional condition (142) is
the thermal vacuum in the BCS approximation, while
the quantity +€ ,(T") corresponds to the energy of ther-
mal quasiparticles.

The creation and annihilation operators of thermal

quasiparticles are related to the operators aT, a, a ,and

a, which are included in the definition of the initial
thermal Hamiltonian, through two unitary transfor-
mations. The first transformation is the standard
Bogolyubov (u, v)-transformation from particle opera-

tors to quasiparticle operators (ujz- + vjz» =1)

- T .
Ay = LlIOCJm + VIOC{rm, (170)
Ajm —ujocjm+v10£7m

A similar transformation is performed on the cre-
ation and annihilation operators of tilde particles,
thereby introducing into consideration the tilde oper-

ators of quasiparticles oc and @&, The second one,

the so-called Bogolyubov thermal (x,y)-transforma-
tion, mixes nontilde and tilde operators

+
jm =X Bjm +lijjma

jm - B ly jB jm*
The requirement

s a71)

(172)

leads to the preservation of fermionic anticommuta-
tion relations between the creation and annihilation
operators of thermal quasiparticles. We note that, in
contrast to earlier works on the application of thermo-
field dynamics to the study of the properties of hot
nuclei (see, e.g., [82, 83, 104]), we use a complex ther-
mal transformation. The complex thermal transfor-
mation arises as a consequence of our definition of the
tilde (i.e., right) creation superoperators (50), due to
which the thermal state condition (101) for fermion-

like operators contains the phase factor 6, = —i. In
the complex form, thermal transformation (171) was
first used in our work [35].

Since the fermionic quadratic form (169) is invari-
ant under the transformation

BT — xB" + i,

2 2
x;+y; =1

<+ =1), (173)
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then the requirement that the one-particle part # pcq
be diagonal does not in itself lead to an unambiguous
definition of the structure of thermal quasiparticles.
Let us obtain an additional relation between the thermal
transformation coefficients by requiring the fulfillment
of the thermal state condition in the form (142). To do
this, we consider the Bogolyubov quasiparticle cre-
T

7 (DBl n(T)
= <(p0(T) |[0c;m, ~;,,1]+| (Po(T)>»

it follows that
=ex (— 8—’) X
Y, p o)

We obtain the same relation by using for A4 the
annihilation operator o,. Thus, with normalization
(172), the thermal state condition unambiguously
relates the thermal transformation coefficients (171) to
the energy of thermal quasiparticles

ation operator o, as an operator 4. From the equality

(174)

(175)

s,/T]_l/z 2.1/2

y,=[l+e , x; ==y (176)

The vacuum of thermal quasiparticles can be repre-
sented as follows [37]

| @o(T))
=exp [_lzzrﬂf(T)(ajma;rm + djmajm):|| 00> 5 (177)

T jm

where cos®(T) = x;, while [00) is the vacuum of
Bogolyubov quasiparticles a.,, and &,,. As defined on
page 896, the vector |@,(T)) is tilde-invariant.

To determine the energy of thermal quasiparticles,
as well as to find the coefficients of (u, v)-transforma-
tion (170), we use equation of motion (143), in which
we use the vacuum of thermal quasiparticles| @,(7’)) as
the thermal vacuum. For this purpose, we write the
single-particle part of the thermal BCS Hamiltonian
in terms of thermal quasiparticles:

Hpes = ZZTSJ(B;mB/‘m —t.c.)
T jm
+ D HE; —uuyy; = @ = v)AY
(L= 20 (BB, + B — )

20,3, BB + BB

(178)

where to abbreviate the notation, the terms that are
tilde conjugate of the specified ones are denoted by
symbols “t.c.”. The energy of thermal quasiparticles and

PHYSICS OF PARTICLES AND NUCLEI  Vol. 53

No. 5

907

the correlation function, or pairing gap A, are expressed
by transformation coefficients (170) and (171):

g, = (E; — W), —vi)+2uy A,

G ) (179)
A, = 52(21 + Dy (1-2y7),
J

while the quantity Ej =E; - GT(uJZ- y2 + vfxf) deter-
mines the renormalized single-particle energy. With
allowance for the normalization uf- + vjz- =1, solving

equation of motion (143) at 80 = 4/

im>@jmleads to the
following expressions for coefficients of the (u,v)-

transformation:

(180)

If the resulting expressions for the coefficients of
the Bogolyubov transformation are substituted into
the thermal Hamiltonian (178), then it takes diagonal
form (169).

Using (179) we obtain an expression for the energy
of thermal quasiparticles

g, = (E, — )’ + A2

and the equation for the pairing gap A,

(181)

@ZT Q) +1)(A-2y})
NIRRT YN

The equation for A, should be supplemented with

the equation for the chemical potential ., which fol-
lows from the condition of conservation of the number
of particles on average

Ny = > {oy(D)a},a,] 00(D))
Jjm

=1. (182)

=""Q2j+ Dvix] +upyy) (183)
J

. E —u,)1 -2y
J \/(E} —1)’ + A

The resulting Egs. (176), (182), and (183) are the
well-known BCS equations at nonzero temperature
[105, 106]. In the context of thermofield dynamics,
these equations were obtained in [83, 84] using a
method similar to that described above, i.e., diagonal-
izing the single-particle part of # z-s. However, in
contrast to our consideration, the authors of [83, 84]
did not use the thermal state condition to determine
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the explicit form of the coefficients of the thermal
(x, y)-transformation, but found them by minimizing
a large thermodynamic potential. The diagonalization
method based on the thermal state condition was first
proposed in our paper [107]. In what follows, the

method of diagonalization of # z-5 on the basis of
thermal quasiparticles using the thermal state condi-
tion will be called thermal quasiparticle BCS
(TQBCS).

The solution of Egs. (176), (182), and (183) deter-
mines the dependence of the pairing gap A (T") and

chemical potential 1. (7") on temperature. It is known
that the solution of the BCS equations demonstrates

the disappearance of pairing correlations (A, = 0) at
temperatures exceeding 7., which is of the order of

cro
T, = 0.5A(T =0) (see Fig. 1 in [105]). The disap-
pearance of pairing correlations and the phase transi-
tion from the superfluid state to the normal one is a
consequence of the use of the grand canonical ensem-
ble and the simplifications applied during the deriva-
tion of the TQBCS equations, i.e., the replacement of
the original thermal Hamiltonian by the Hamiltonian
of noninteracting quasiparticles. When studying the
statistical properties of highly excited compound states
of isolated nuclei, the use of the grand canonical
ensemble is usually just the first step towards the more
consistent calculations. Calculations using the parti-
cle-number projection demonstrate that the phase
transition in nuclei is smooth; i.e., pairing correla-
tions, though are weakened, but are preserved at

T =T, [108, 109]. Note, however, that the study of
collective nuclear excitations in such calculations is a
laborious task. To simplify the calculations, the
approximate particle-number projection method
using the TFD formalism was proposed in [110].

For hot nuclei in stellar matter, it is the use of
approximate methods when considering pairing cor-
relations that causes a sharp phase transition, since the
use of the grand canonical ensemble is justified due to
the presence of a bath of nucleons. As noted in [86,
p. 68], the approximations used in the derivation of
the BCS equations for 7 # 0 leadlead to the fact that,
at a temperature above the critical one, multi-quasi-
particle states without pairing correlation are most
likely excited in the system. For macroscopic super-
conductors, it is the most probable configurations that
determine the state of the system. In the case of micro-
scopic systems, such as atomic nuclei, configurations
with pairing correlations different from the most prob-
able ones may significantly contribute to the average
characteristics of the system, which leads to the
absence of a sharp phase transition (see Fig. 28 in [86]
and its discussion). However, since the average value
of the pairing gap is small above the phase transition
temperature, (A < 0.1 MeV), then the preserved pair-
ing correlations have little effect on the properties of
the hot nucleus [86].
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After diagonalization, the one-particle part # pcg
of the thermal Hamiltonian given by expression (169)
describes a system of noninteracting thermal quasi-
particles with energy +e(7")depending on tempera-
ture. The vacuum of thermal quasiparticles determines
the equilibrium state of the hot nucleus in the TQBCS
approximation. To find the average value of any phys-
ical quantity (energy, occupation numbers, etc.), it is
necessary to express the corresponding operator in
terms of thermal quasiparticles, and then to calculate
the vacuum average. In particular, for the average
number of Bogolyubov quasiparticles in the state jm,

we obtain??

<(p0(T)|O°I'm0‘jm| (Po(T)> =y =[l+e

i.e., thermal transformation coefficients y; are ther-
mal occupation numbers for quasiparticle states in
Fermi—Dirac statistics. The average number of nucle-
ons in the state jm is

g;/T

I, (184)

n; = (Qo(T)|al,] 06(T)) = V7 +vix2. (185)

The value on the right-hand side of this relation
determines the smearing of the proton or neutron
Fermi surface in the nucleus, which is due to both
pairing correlations and thermal effects.

Excited nonequilibrium states that arise in a hot
system under the influence of an external perturbation
are described in the TQBCS approximation as thermal
quasiparticle excitations over a thermal vacuum. States

with one excited thermal quasiparticle have the form?3

Bim) = Bl | 06T, |Bjm) = BL: [ 9o(T)).

To clarify the physical meaning of thermal qua-
siparticle excitations, we consider the following rela-
tions

(186)

(B o] o) = 2,
(B 0 @D = 7.
Thus, as a result of adding one Bogolyubov quasi-

particle to the thermal vacuum, a thermal quasiparti-
cle with positive energy is produced with the probabil-

(187)

ity sz., and as a result of the annihilation of a Bogoly-
ubov quasiparticle, a thermal quasiparticle with nega-

tive energy is produced with the probability yf. The

2211 the absence of pairing correlations, we consider particles and
holes as quasiparticles.

23The second relation uses the fact that it is B%n that is trans-
formed as a spherical tensor operator of rank ] during the rota-
tion of the coordinate system. To verify this, it suffices to
express the nucleon creation operator in terms of thermal qua-

siparticles a}m = xj(uj[ij»m + VB - iyj(vaj,—m - uijm).
Vol. 53
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factors yf and xf appear as a consequence of the Pauli

principle: the factor yf corresponds to the probability
of the process in which the Bogolyubov quasiparticle is

annihilated from the state containing yjz- quasiparti-

cles, and the factor sz. =1- yj% corresponds to the
probability of the process in which a quasiparticle is

added to the state already containing yf. quasiparticles.

Let us now consider the eigenstates of the thermal
Hamiltonian J€,c, consisting of two thermal quasi-
particles coupled to the total angular momentum J
with the projection M. As will be shown in the next
section, these states are excited in a hot system under
the influence of an external perturbation caused by a
single-particle multipole operator. For fixed quantum
numbers j; and j,, the following four types of two
thermal quasiparticle states are possible:

|BjIBj2;JM> = [B;l j 1wt | @0(T)),

w=¢g, +g, =, (1882)
A J?
BB, IM) = BEBL Ll 0o(D)), ©=—€); (188b)
| BJIB/Q;JM> = [B;,B%]JM |(P0(T)>, (188¢)
).
®= 8jl _8 = 8J1J2
B.B.: =R’ — O
BB /M) = BB}, L [ 90(T)), @ =€) (188d)

On the right, the energy of the state relative to the
thermal vacuum is indicated. In what follows, we will
distinguish between the charge-neutral and charge-
exchange two thermal quasiparticle states. In the first

case, the states j; and j, have the same isospin projec-
tion, i.e., T, =T, . Inthe second case, the states j, and
J» have opposite isospin projections, T, = —T, . Note
that in the presence of pairing correlations, the

charge-exchange two thermal quasiparticle states are a

zZ+1
superposition of excitations in nuclei +1A and 3, A4.

An analysis of the structure of states (188) shows
that each two thermal quasiparticle state corresponds
to a tilde-conjugate state with the energy opposite in
sign. As follows from the correspondence between the
thermal and Bogolyubov quasiparticles presented
above, the excitation of two non-tilde thermal quasi-
particles describes a process in which two Bogolyubov
quasiparticles are added to the thermal vacuum, while
the creation of two tilde thermal quasiparticles corre-
sponds to the inverse process of annihilation of two
thermally excited Bogolyubov quasiparticles. The
addition of one non-tilde and one tilde thermal quasi-
particle corresponds to the scattering of the Bogoly-
ubov quasiparticle from one state to another. From
here, in particular, it follows that if the component

PHYSICS OF PARTICLES AND NUCLEI  Vol. 53

No. 5

909

associated with the nucleus ,Z\,jrl]A dominates in the
charge-exchange two thermal quasiparticle state, then

the component associated with the nucleus ﬁt‘l A dom-
inates in the tilde-conjugate state.

We also give expressions for # ¢ in terms of the
creation and annihilation operators of two thermal
quasiparticle states. To do this, we calculate the com-

mutators of € 5 with the creation operators of a pair
of thermal quasiparticles:

(% pess [BLBE 11 = €52 18R (189)

> ]JMa

(9 ses [BL B L] = € (190)

,l J [B 7 ]JM

and so on. Based on these relations, €z can be rep-
resented in a diagonal form with respect to the creation
and annihilation operators of a pair of thermal quasi-
particles:

H pes = —ZZZ B!

+ TRt T
jZ]JM[le jz]JM

JM T 1112
Rt qf
Il/z[li) J: ]JM[B' ]JM} . (191)
+ >t 1B B LB B, L
IM jpjn

/p/n[[-)’ Bjn]JM[B/ijn]jM} —(t.c.).

Recall that symbol (t.c.) denotes the terms tilde
conjugate of all presented.

8. REDUCED PROBABILITIES
AND STRENGTH FUNCTION
OF SINGLE-PARTICLE TRANSITIONS
IN THE APPROXIMATION OF INDEPENDENT
THERMAL QUASIPARTICLES

Let us obtain expressions for the reduced transition
probability (strength) from thermal vacuum to two
thermal quasiparticle states (188) for the single-parti-

cle tensor operator 7 ,,,

T = Z( Jim, |J JM|J2m2> Qi A jom,

Jomy (192)
1IN
-J Lik [ajlalz Lias
Jij2

where tjlljz is the reduced matrix element (153). In the
case of a charge-neutral operator, the summation
occurs over states with the same isotopic index
(t; =1,), and in the case of a charge-exchange oper-
ator, over states with opposite isotopic index
(t;, =-1,). Using transformations (170) and (171), we
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express J ;,, through operators of thermal quasiparti-
cles:

T o =37 1A i)
T (193)
. . . . * . .
Ajﬂ(]llz) + By Uida) + By (i)}

Here the following notation is introduced for linear
combinations of two thermal quasiparticle operators:

AJM(jljz) = j [B;BL]JM
tv; ujzyjlyjz[Bj] ‘Z]JM

. At
Tuux Y, [BAB?Z]JM —1V,V,. )

BB L

A i) = V05 %,%,1858,
+umnnﬁ i
+ivv, jlyh[B BT'Z]W _’”jlujzyjlsz[ﬁ% ;z]ij, (194)
By Gida) = =, BB s
t+v; ijyjlyjz[leBh]JM +

+iuv,, Ilyjz[BAB/z]JM +lvj1ujzyj]xj2[leBh]JMa
X, [B5 8%, L

uup, ¥, B i sz Lin

X [B i BL Lim-

BJM(j]jZ) =V

Jz 11

NT .
+ v, ujzleyfz[Bj'lBE]JM + w;vy;

The operators 4,,, and A;k—M describe transitions
between states in which the number of thermal quasi-
particles differs by two, while the operators B, and

B;kM describe transitions between states with the same
number of thermal quasiparticles. Since in the
TQBCS approximation the equilibrium state of the
system (thermal vacuum) does not contain thermal
quasiparticles, then transitions from thermal vacuum
under the J ,,, action are possible only to two thermal
quasiparticle states (188). The reduced transition
probability (strength) to these states is expressed in
terms of the reduced matrix element (168) of the tran-
sition operator. For example, for the strength of a
charge-neutral transition to a state|B;B,;J/), we
obtain the expression:

Jllz(J -1) - |<BJ|BJ2 J ”J J||O(T)>|

= Puv, + TV x5

N2 J2) ll Iz 'x 'xlz’

(195)

where t(J.) = (=" 2”1;;/)'. Let us show that the
reduced probabilities of transitions to tilde-conjugate
two thermal quasiparticle states satisfy the detailed
balance principle. To this end, we express a product of
two Fermi—Dirac distribution functions in terms of
the Bose—Einstein distribution function

DZHIOEYV, VDOVIN

YOV (ES), (196)

yj] )Y (€J1J2)

vy, = -y, -

Vi, = 0, = (197)

-1/2
where Y(w) = [exp (%) - 1} and it is assumed that

€, > ¢€,. Let us use these equalities and write the
strength of charge-neutral transitions to states (188) in
the following form

(J) (J)
B, (T, = \t Wy, +1,

J7h i Vil (198a)
X (1 yJ] _yjz)X (8(1_1;)2)
_ . =) 2
B;; (T ) = |tJ|JzV u, + tj(zf)” Vi (198b)
X(l_yjl —ij)Y (Sjljz)s
L I
B (1) = |/1/z” Ui = i ViV (198c¢)
X (yjz y]l )X (811/2)
(OMJ)
. ) B (198d)
| Jl!zv V - t/le /2 (ylz - y./l )Y (81112)

where X 2(co) =1+Y 2((D). From here it follows that the
strengths of transitions to two thermal quasiparticle
states, which are tilde-conjugate of each other and,
therefore, have energies opposite in sign, are linked by
the relations

(+)
JlJ (G- ) = exp(_eéljz] lllz(J J)
(199)
=)
(9T>—exp( 8’;]3 T,

/|Jz iV

which proves the fulfillment of the detailed balance
principle for charge-neutral transitions. As it should
be, at 7 = 0, the transition strength to states contain-
ing a tilde thermal quasiparticle is equal to zero.

We will also obtain expressions for the reduced
probability of charge-exchange transitions from thermal
vacuum to two thermal quasiparticle states (188). To be

specific, we set j; = j, and j, = j,. Then for the oper-

ator 9]( Yofn — p transition we get
T =D [ =32 = yHXPED,), (2000)
B 5 T =vu, T1-32 = yOPE), (200b)
LT =8y,

_ 200c
y (y,n VIXAE)s (8, >€,), (200c)
(y/ - yJV,)Y (Efnjp)’ (Ejp < 8/‘")’
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(9'( )) _ ‘ (J) ‘
(yfn VE), (€, >¢,), (200d)

0L - VOXED). € <e,).

The reduced probabilities of the operator of p — n
“inverse” transition are equal to

ar(+) (J)
Js)= //p uv,,

v [ A=y =y )x%E), (201a)

/p/n

B @) =1, | A= y] - Y. 201b)

2

B 5 T =6,
(y/n—y, XAED ), € >¢,), (201¢)
(y/,,_y/”) (€,n,p) (€, <€;),
J,,/,,(g(+)) - ‘ /(JJ: uu;,
5, =y’ (8,p,,,) €, >¢;), (201d)
05, —y)XE)), (), <€),

=)

J
7D = = (=" ). For operators T

where t and

Te, such that T [g(f)]T, the reduced probabili-
ties (200) and (201) are related by the principle of
detailed balance

+)
e
;1} (J( )) - exp( }vlzj lllz(J (+))’

O (202)

€
/]h(g(ﬂ) _ CXP( ;1:2) Jljz(O“(+))

Let’s point out some features of the expressions
obtained for the strength of transitions. If a single-par-

ticle transition between levels j; and j, is allowed by

the selection rules (i.e., tj( J) # 0), then for 7+ 0 and in
the presence of pairing correlations, transitions to all
four two thermal quasiparticle states (188) are possi-
ble. By the possibility of a transition is meant a non-
zero reduced probability. For T > T, only two of the

four given probabilities are nonzero. For particle—hole
states®, this is B,, and B-- ,
12 JiJ2

hole—hole or particle—particle type, this is B4~. and

while for states of the

B” In addition, in the absence of pairing correla—

tions, transitions from thermal vacuum to tilde-conju-
gate two thermal quasiparticle charge-exchange states
occur due to operators of the opposite isospin direc-
tion. In other words, if the transition to a given two
thermal quasiparticle state is carried out under the
action of the T — —7 operator, then the transition to a

241n what follows, we will call the hole (particle) states that are
below (above) the Fermi surface.

PHYSICS OF PARTICLES AND NUCLEI  Vol. 53

tilde-conjugate two thermal quasiparticle state is pos-
sible only under the action of the —t — 7T operator.
The expressions (198), (200), and (201) for the
transition strengths to two thermal quasiparticle states
can be interpreted in such a way that the system con-

tains YZ((D) thermally excited phonons with energy ®.
Therefore, the amplitude of the process, in which a
phonon is removed from the system, is proportional to

Y 2(0)), while the amplitude of the inverse process, in
which a phonon is added to the system, is proportional

to 1+ Yz(a))”. Thus, despite the fact that the initial
system is fermionic, when considering excited states
under the action of a single-particle operator, the
bosonic (i.e., phonon) occupation numbers arise,
which relate the transition strength to states with pos-
itive energy (a phonon is added) to the transition
strength to states with negative energy (the phonon is
removed). In this sense, a hot system of fermions
exhibits the properties of a hot phonon system. In this
case, the bosonic and fermionic distribution functions
have the same temperature.

It can be shown that for the Gamow—Teller
GT, = Z_Giti and Fermi F, = Zti operators, the
+ Ok + R
total strengths of # — p and p — n transitions calcu-

lated in TQBCS satisfy the model-independent sum
rule, which is often called the Ikeda sum rule [111]:

g _g _|3XN=-2) for GT,
" |N-Z for F,.

Indeed, for the Gamow—Teller operator we have

S —-8,=)B,,(GT.)+ B; ; (GT)

Jpin

(203)

+ B, (GT.)+ B, ;(GT.)]
- Z[ijjn(GT+) + B]. ; (GT,)
j,,j,, pln
B Z| Il [(1 y/ )(u/pV/,, - sz'pujz',,) (204)

Jpdn
+mnnm2;—%dﬂ
—u, y; +v;x;)]=3(N - 2).
In the last equality, we used the fact that
2l lor i) = 32 + 1

jp(n)

and took into consideration the conservation of the
number of particles in the TQBCS (see Eq. (183)). For

@y, +vix))

Jpj,

(205)

No. 5

BFor  bosonic  operators b lm=n+1ln+1)  and
bln) =vnln-1.
2022
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(a) (b)
0<T<T,
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Transition strength B
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G I N S )

Transition energy £

Fig. 1. Temperature evolution of the strength function of charge-neutral transitions to two thermal quasiparticle states (188) with

fixed j; and j, in a system with pairing correlations at 7' = 0. The strength B and energy £ of transitions are given in arbitrary
units. In panel c, the solid peaks correspond to particle—hole transitions, while the shaded peaks correspond to transitions

between the hole or particle states. The notation e(i)

are given in the text.

the Fermi operator, the proof of the sum rule is simi-
lar, with the only difference that

Zij ”t—”jn>|2 = 2jup t1.
Jp(m)

The energy and the reduced transition probability
to two thermal quasiparticle states (188) determine the
strength function Sg (E,T) of the operator I, in the
approximation of independent thermal quasiparticles.
Recall that for a charge-neutral operator, the transi-
tion energy coincides with the energy of a two thermal
quasiparticle state (see Eq. (133)), while in the case of
a charge-exchange operator, they differ by the effec-
tive threshold value A, , (see Eq. (135)).

Let us consider qualitatively the temperature evo-
lution of the strength function. Figure 1 schematically
shows the strength distribution of charge-neutral tran-
sitions to states (188) with fixed j, and j, for three tem-
peratures. It is assumed that in the ground state of the
system (7 =0), there are pairing correlations. At
T = 0, strength function (130) contains only one peak,

corresponding to a T-transition with energy E = 8(/{72

(Fig. 1a). The peak value is equal to reduced probabil-
ity (198a) of the excitation of two Bogolyubov quasi-
particles with energies €; and €;. Note that if both

states j; and j, are hole ( pp-transition) states or parti-
cle (hh-transition) states, then at 7 = 0, the corre-
sponding single-particle transition is unblocked due to
the presence of pairing correlations. An increase in
temperature allows transitions between states with
excited quasiparticles to be possible. Eventually, as
shown in Fig. 1b, for 0 < 7" < T, the strength func-
tion proves to be fragmented into four peaks symmet-
rically located with respect to zero energy. The peak at

(206)

PHYSICS OF PARTICLES AND NUCLEI

=€, Tey is used for the transition energy. Other explanations for the figure

the energy E = _8(132 corresponds to the process of

annihilation of two excited Bogolyubov quasiparticles
(the probability of this process is given by expression
(198b)), and the low-energy peaks at energies

E = ie(jl_;z determine the transition probabilities for an
thermally excited quasiparticle going from one state to
another (probabilities (198¢) and (198d)). In this case,
each T-transition with positive energy corresponds to
the inverse {-transition with negative energy to the
tilde-conjugate state. The probabilities of T- and |-
transitions are related by the principle of detailed bal-
ance (199). An increase in temperature leads to a
weakening of pairing correlations, and for 7> T,,
only two of the four peaks survive in the strength func-
tion (Fig. 1c). If the states j; and j, correspond to a

particle—hole transition, then peaks with energy ie(;/i

are preserved in the strength function; if both states j,

and j, are the hole or particle states, then the peaks

with energy i8532 are preserved. Consequently, in a

system with pairing, an increase in temperature
decreases the energy of pp- and hh-transitions from

the value S(L)z to the values ie&:}z. If there are no pairing
correlations in the ground state of the system, then it is
the temperature that leads to the unblocking of the
pp- and hh-transitions.

It is easy to see that an increase in temperature has
a similar effect on the strength function of charge-
exchange transitions. In particular, the fragmentation

of the strength function is maximum for 0 < 7 < T,

cro

and an increase in temperature leads to a decrease in
the energy of pp- and hh-transitions. The latter effect
Vol. 53

No.5 2022
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Fig. 2. Temperature evolution of the strength function of charge-exchange transitions to two thermal quasiparticle states (188)

with fixed j, and j, in a system with pairing correlations at 7 = 0. The strength B and energy £ of the transition are given in

arbitrary units. The solid peaks correspond to transitions to two thermal quasiparticle states with positive energy, while the shaded
peaks correspond to transitions to tilde-conjugate states with negative energy. Dashed lines show the position of the effective

threshold —A,,, (A,,) of the n — p (p — n) transitions. The following notation is introduced for the transition energies:

+ + + +
E® = e® (A, ES —® A,

plays an important role in electron capture by hot neu-
tron-rich nuclei. At the same time, there are two dif-
ferences between the strength functions of charge-
neutral and charge-exchange transitions. The first dif-
ference is due to the fact that the energy of the charge-
exchange transition and the energy of the correspond-
ing two thermal quasiparticle state differ by the value

of the effective threshold +A,, (135)%. Due to the
effective threshold in neutron-rich nuclei, for which
W, > W,, the strength function of the p — n transi-
tions shifts to a region of higher energies, while the
strength function of the » — p transitions shifts to
lower energies. Just this case is depicted in Fig. 2,
where the strength distribution of n > p and p —> n
transitions in a neutron-rich nucleus for 0 <7 < 7, is
schematically shown. Due to the shift by A,,, the
peaks of strength functions are located asymmetrically
with respect to zero energy. However, if the strength
function of the n — p transition has a peak with
energy F, then the strength function of the p — n
transition has a peak with energy —F corresponding to
the transition to the tilde-conjugate state. The second

difference lies in the fact that for T > 7., the strength

function of the charge-exchange transition contains
not two peaks, but one (see the discussion after (202)).

Summing up all of the above, we can draw the fol-
lowing conclusions about the temperature influence
on the strength function in the TQBCS approxima-
tion. (i) An increase in temperature leads to the frag-

26Recall that, in contrast to charge-neutral transitions, there is no
one-to-one correspondence between the excitation of charge-

exchange nontilde (tilde) states and T ({)-transitions.
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where A, = AW, + AM,,, > 0.

mentation of a strength function of single-particle
transitions, which is associated with the unblocking of
transitions from excited quasiparticle states. The frag-
mentation degree depends on temperature and is max-
imum for 0 < 7 < T,,. (ii) For T # 0, the unblocking

of low-energy transitions and negative-energy ! -tran-
sitions occurs. Due to these transitions, the concept of
a reaction threshold disappears for a hot nucleus. (iii)
The thermal smearing of the Fermi surface, as well as
pairing correlations, leads to the unblocking of the pp -
and hh-transitions, but the transition energies are dif-
ferent. With thermal unlocking, this energy is given by
the difference of quasiparticle energies, while with the
unblocking due to pairing correlations, it is deter-
mined by their sum.

9. CHARGE-NEUTRAL PHONONS
IN HOT NUCLEI

According to (191), in the TQBCS approximation,
the elementary modes of excitation of a hot system are
two thermal quasiparticle states (188). At the next
stage of the approximate diagonalization of the ther-
mal Hamiltonian, the interaction between these
states, which is due to the residual particle—hole inter-
action, is considered. Consider first the interaction
between charge-neutral states. The multipole and
spin-multipole operators (157) included in the defini-
tions of the residual interaction 7€ ,, , (162), being writ-
ten in terms of thermal quasi-particles, have the same
form as the single-particle transition operator (193). The
properties of the reduced matrix -elements

(J5k) _ h=h+J (k) (LJ3k) _ ittt (LK)
fj1j2 - (_ 1) szjl and f/1/2 - (_1) sz/1
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allow expressions (157) to be rewritten in the compact
form:

(k)T(’C)—J Zz (J:k)
1112

T ik

X A5 Gidn) + A2 o) + Bi Ui}

(207)
SN =TTYY £
T ik
X{A(_)T(' ')—Aﬁ(" 4+ B9 (i
ym 12 M i) o (i)}
where
(+)T(]l./2)
fllz(le'x/z[B sz]JM Tyy jZ[B;L‘]B;%]JM)
=~
+ lV;:i /1yjz[B sz]JM’
AnrGi) = Y YA Gl (208)

BJX/I(.]].]2) = jljz(lesz[BJIsz]JM
* yj'lyjz[Blejz]JM)
+ lu,,h(leyh[ﬁ sz]JM * yJIXJZ[B%BZ]'/M)

and the following notation is used for combinations of
the Bogolyubov transformation  coefficients:

) _ *) -
Ujj, =u;vj * Vil Vi Conse
quently, # ,, ,, (162) contains terms expressed in terms of

products of the operators of creation and annihilation of
a pair of thermal quasi-particles: [B; I N JM[B}L-3 i

Ja | IM>
fnt al &t ot
B Ji jz]JM[BZBL]JM’ [B ]JM[B B 14]JM’ etc. These
terms describe the interactlon between two thermal
quasiparticle states.

To consider the interaction between two thermal
quasiparticle states, we use the generalization of the
quasiparticle random phase approximation (QRPA)
[112, 41] to the case T # 0, that is, we diagonalize
(approximately) the thermal Hamiltonian

=uuy, T ViV

H =Hpes + o (209)
in terms of thermal phonon operators
1 _Ji mtat
QJM: = ZZ (\Ifjl p ]JM + \I’j, /Z[BZBE]JM
)
+ 20, BB L — 07,88 Iy (210)

— GLIBLBLIL + 2 1B BT

The phonon operators QZM,., 0 M s 0}, are
obtained from (210) by applying operations of the
Hermitian and tilde conjugation. Normal parity pho-

nons (7 = (—l)J) are generated by multipole and spin-

PHYSICS OF PARTICLES AND NUCLEI
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multipole L = J components of residual interaction,

while anomalous parity phonons (r = (=1)""") are
generated by spin-multipole components with
L=Jz*1

The method of approximate diagonalization of the
thermal Hamiltonian in terms of thermal phonon
operators (210) will be called the thermal quasiparticle
random phase approximation (TQRPA), thus empha-
sizing that the phonon operators consist of operators
of the creation and annihilation of thermal quasiparti-
cles. The vacuum of thermal phonons |y (T)) is the
thermal vacuum in the TQRPA provided that it satis-
fies thermal state condition (142).

To find the structure (phonon amplitudes .0,
etc.) and the energy of thermal phonons, as in the der-
ivation of the QRPA equations for a cold nucleus, we
will use the quasi-boson approximation, that is, we
will assume that the operators of creation and annihi-
lation of a pair of thermal quasiparticles obey the

bosonic commutation relations?’:

187,87, 1/us - [B],B,
~ 8y Bunar (8,8 7, + (1) 278,185,

Jua s
[[le B/’z];M ’[B Bl4]-1 M ] = 8-’-’ SMM 6J1J16/2J4

while all other commutators are equal to zero. In
the quasi-boson approximation, the sum of # pcg
(191) and the part €, ,, which describes the interac-
tion of two-thermal-quasi-particle states, is a qua-
dratic Hermitian form with respect to the creation and
annihilation operators of bosons. This quadratic form
can be reduced to a diagonal form

1ya]

Q11)

H = ZO)Ji(Q;MiQJMi = 00O (212)

TMi
by a linear transformation of the form (210). For the
transformation to be canonical, i.e., to provide
bosonic commutation relations between the phonon
operators, the phonon amplitudes must satisfy a num-
ber of conditions. In particular, from the condition

that [0, Oly] = 8- it follows that

IZZ {(wlllz 11'12 - ¢jll/2¢11/z)

T ik
q)jlllzq)jljz) (nlllz i - &JIJZ§/1/2) (213)

Ji ~Ji
~Ji ~Ji' _
éfllz E-'Jljz )} = ” ’

+ (W/ljz\lj/lh
+ (nlllz Jljz
27 Aswell as for T = 0, the validity of the quasi-boson approxima-
tion is related to the requirement that the number of thermal
quasiparticles in the vacuum of thermal phonons be small. This
requirement is the main assumption in the TQRPA.
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. ~Ji 1\ —j+J Ji
where the notations 7, =(-1) n;;, and
Ji—ht) e Ji 28 :
ﬁjl =D €., are used”®. Having considered

other commutators ([Q,,;, Q~;M,-.] =0, etc.), we obtain a

number of additional relations between the amplitudes
(see (325)—(327) in Appendix B). The obtained rela-
tions between the amplitudes imply the normalization
and orthogonality of one-phonon states:

<QJM[|QJ'M'i'> = 8JJ'8MM'61'1'"
<QJM[|QJ'M'i'> =0

In addition, they can be used to show that the
transformations inverse to (210) have the form

[B B]Z]JM Z(lesz/Ml + q)/lJZQmI

~ Ji "’
+ wh/z JMl + ¢/uzQJMt)

[B%B%]JM = [B 'sz T

[B BL]JM = _lZ(n i jZQ./Ml + & i Qi
+ ﬁjfh ~./M1 &/uzQJMI
[Bj-] jz]JM = —[Bj,Bz]m-

These relations make it possible to express an arbi-
trary single-particle operator in terms of thermal pho-
non operators.

(214)

(215)

So far, the consideration was not different from the
standard QRPA. A distinctive feature of the TQRPA
method is the fact that the diagonalized Hamilto-
nian (212) is invariant under the unitary transforma-
tion mixing tilde and nontilde phonons

+ + 3
O = XiOumi + YOusis

" " (216)

O = XiOumi + Y:.O)piis
where X} — Y,.2 = 1. In other words, the diagonaliza-
tion procedure determines a structure of the thermal
phonons and the phonon vacuum only up to unitary
transformation (216). Recall that we encountered the
same situation when determining a structure of ther-
mal quasiparticles.

Let us obtain additional conditions for phonon
amplitudes by requiring that the vacuum of thermal pho-

nons | y,(T')) obeys the thermal state condition (142). As
an operator A4 in condition (142), we first consider the
two-quasiparticle operator A = [Oc; 0(1] m (Jia €T).
Let us express this operator through thermal quasiparti-
cles, and then, using inverse transformations (215),

20Other amplitudes when permuting the indices j and j, are

multiplied by (- l)J1 A (i.e., \ygjl =i jz”\uﬁh etc.).

PHYSICS OF PARTICLES AND NUCLEI  Vol. 53

No. 5

915

through thermal phonon operators. We keep in the
resulting expression only one-phonon terms

_ Ji ~Ji At
A= 3G, + 939,97,)Q0

Ji - Ji
+ (0,95, + 55V,
- Ji Ji At
+ (0,5, +5,.55,95,,)C0
Y Ji Ji A
+ (X055 + Y5V
Substituting this expression into thermal state con-
dition (142) leads to the following relations between
tilde lTI,(I) and nontilde y, ¢ amplitudes
N\ —ay;/2T Ji
(W] _ XiX€ * —ViYi [q)j
- - —wy; /2T .
O).,  XiXn —Yivie Vi

The same relations can be obtained if we consider
the operator [oc/flocz] ;s as the operator A. If, however,

(217)

(218)

as A, we use [0(1 07 1 OF [oczocjz] 7> then we obtain the

relations between the phonon amplitudes 1, § and ﬁ,&

~\Ji —m .
(n] = © T YiXi, (&
E" b

Ji
J . (219)

XY
-0y /2T
n hh

leyjz - yjlsze
The obtained relations between tilde and nontilde
phonon amplitudes unambiguously fix the structure

of thermal phonons in such a way that their vacuum is
a thermal vacuum in the TQRPA.

Let us fix the “true” structure of thermal phonons
when deriving the TQRPA equations by introducing
the effective amplitudes ¥, ®, H and =:

N7 Ji \If Ji
-1
(d)),, = [Xix; %, = Y5y;5),] (d)j

Jija i

~\Ji
= Yyx;x;, = X Jiy/lyfzr1 (gﬂ
i
Ji Y (220)
j = XXy, = YJiyjlsz]_l (éj

b hh

[

(

E Ji
—1
= Y0x; v, = XX, [~J )
Jij
where the temperature-dependent functions X ;; and

Y, are related to the Bose—Einstein distribution
function

Yy =" -7 X, =4y @21

Thus, the requirement that thermal state condi-
tion (142) be satisfied for the vacuum of thermal pho-
nons leads to the fact that phonon amplitudes depend
on both fermionic and bosonic occupation numbers.
In this case, the direct and tilde-conjugate inverse

phonon amplitudes (i.e., y and q~>, \TI and ¢, n and é,
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ﬁ and &) are expressed through the same effective
amplitude (¥, ®, H, £).

It is easy to show that the effective amplitudes sat-
isfy the following relations with permutation of the

indices j; and j,:
Ji Ji
¥ — (_l)jl_j2+'/ ¥
D) @)
J24 J12
_ (_1)j1+j2+J.:.Ji

HY
Jad =i

(222)

In addition, orthonormality condition (213) in this
case takes the form

1 Ji Ji' Ji 2 2
ZZ {(\lejzlP/]/z - (I)Juzq)/ /2)(1 - yfl - yfz)
N2

(223)

—_Ji =Ji'

Ji 2 2
+ (HJ1J2Hjjz —EiE) W — Vil = 8

This relation coincides with the normalization
condition for the amplitudes of phonon operators,
which is satisfied in the method of temperature RPA
[113] and when using the temperature Green’s func-
tions [114]. However, it should be kept in mind that the
phonon definition in [113, 114] includes Bogolyubov
quasiparticles, rather than thermal quasiparticles. The
comparison of expression (223) with the normaliza-

tion condition in the mentioned works shows that ‘Pf 5
corresponds to the direct phonon amplitude d)JA"A cor-

.—.I
responds to the inverse one, while H” S, and /.l ;, are

the so-called scattering amplitudes that arise due to
thermal smearing of the Fermi surface in the nucleus.

To diagonalize the thermal Hamiltonian in the
basis of thermal phonons, i.e., to reduce it to the form
(212), we use equation of motion (143), in which we
consider the creation and annihilation operators of a
pair of thermal quasiparticles as O, while a role of the
vacuum state is played by the thermal vacuum of the
TQBCS approximation |@,(7’)). When calculating the
commutators, we assume the validity of quasi-boson
approximation (211). As a result, we arrive at a system
of linear homogeneous TQRPA equations for effective
amplitudes (220). For thermal phonons of normal
parity, the TQRPA equations take the following form

N
(+) Ji 72 (+) (J3k)
/1/261112 -J Jij2 Jih
(m;k) (k)

(Zx Dj; <pr>) W W
p==l (224)
(+) Ji ~-2 () (JT;k)
jljzl/I/IIh -J ujj Jih

k=1
(s3k) (k)

(ZX DJ.I (pt)) ('0J1 jljz

p=tl1
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N

( ) i -2 ( ) (J3k)

/uzTJIJz - J Vi ik
k=1

( ZX(WI k)D(k)(pT)) O‘).Il jlh’

—+1
N

O g j2,0

J1J2 N2 /1/2

(JJ;k)
7

( ZX(S k)D.Y;t) (pT)) O‘)JI /]/2

=%1

In the case of phonons of anomalous parity, the
system of TQRPA equations is written as [115]

(+) Jio Ji
J]lszljz mﬁp{/f}b’
(+) Ji -2 () (LJ k)
/IJzI/V/uz - J ”/uzz Z ik
=1L=J+1
(83k) (k)
(ZX DLJ;(pT)) ("‘)JI j]jz’
p==£l
( )T.]l _ SJ[ (225)
J]jz N ('OJ[ hh?
( )S./I _ —2 +) (L.I k)
/1/2 N2 /I/ZZ Z i
=1L=J+1

( ZX(S k)DL.h(pT)) (DJI St

=+1

In the above equations, the following notation is
used for linear combinations of effective amplitudes:

DY@ =>" - ¥,)G7,

Qi

Ji
Jljz (y i Vi )TJ]Jz}

i a1

N2 N2

2
Vi

(LJ;k) 2 Ji (226)
1
D) = Z S M= v = VW,
hh
(+) Ji
(ylz - yj] )Slllz}
where
Ji Ji Ji Ji Ji
1112 \lejz + q)lllz’ I/Vfllé - \Pflfz - q)flfz’ (227)
v—.,l Ji Ji —Ji
TJ]Jz HJ]jz += =’ Sjljz - Hfljz T =ik

The resulting systems of TQRPA equations repre-
sent an eigenvalue problem, the matrix of which has a
dimension twice as large as the number of two thermal
quasiparticle states. As shown in Appendix B, the use
of the separable residual interaction makes it possible
to reduce the eigenvalue problem to a system of 4N
linear homogeneous equations for the functions

Dty and D)(T) (T = n,p) (Egs. (330) and (334)).
The condition for the existence of a nontrivial solution
of this system leads to a secular equation for the tem-
perature-dependent energy m, of thermal phonons
(see Egs. (332) and (335)). Finding for each o, the

functions DJ,)('C) D(Ll}f(’c) (with arbitrary normaliza-
tion) and substituting them into (224), (225), we
determine the unnormalized effective amplitudes (220).
Vol. 53
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The effective amplitudes are normalized using condi-
tion (223).

Let us obtain expressions for the transition ampli-
tude from thermal vacuum to one-phonon states. To
this end, using (193) and inverse transformations

(215), we express the one-particle tensor operator J ,,
in terms of thermal phonon operators:

T =4~ ZXJ,{[F‘”(JJHF T I

—0y/2T A
X (QJMi +e " On)

HITT ) =TT O+ 0y )
+ T N B (i) + B i)}
T I~
Where?® Y
T ) = IZZ 1=y = y2)
T jih
;12G}/1112 + (yjz - y./l) /1/2 /1/2} (229)

T ) = IZZ 1=y —)?)

T ik
Oy 2\ () oJi
X uJ]Jzu/jljz + (yjz — Y )V/|JZSJ1J2}

The temperature-dependent functions F(Jf)(g 7)
determine the transition amplitude to one-phonon
states:

(04T Jwo(T)) = XATST )+ TT I,

(04T s wo(T)) = YulT5 (T ) =TT 1.
We obtain expressions for the reduced transition
probabilities

By(T,) = Qs |T | wo(T))
= X2[t0T )+ TT
Bu(T,) = (0, 1T J||w0<T>>|2
e AN KT A

(230)

(231)

If Jh,, =+=1)""YT, , (see footnote 29), then
the transition probabilities to tilde-conjugate one-
phonon states are related as

Bi(T ) =e""B.(T ). (232)

The resulting expressions for the amplitude and
strength of transitions to one-phonon states, together
with the transition energy

E,=w, Ei=-o, (233)

29Using relations show

E’TT — Mg

(222) it is easy to that if

J ;_u (and, therefore, t(J) = (=)=~ (J))

then 1"( T J)—O On the contrary, if J | = M,
(and, therefore, t —( 1)/‘+JZ+Jt(J)) then 1"(+)(J 7)=0
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determine charge-neutral spectral densities (127) and
strength functions (130) in the TQRPA. Due to the
fact that the TQRPA thermal vacuum satisfies the
thermal state condition (142), the principle of detailed
balance (119) is valid for the spectral densities and
strength functions.

Just as operators of the thermal and Bogolyubov quasi-
particles are related by thermal transformation (171), the
thermal phonon operators can be represented as a
result of the following thermal transformation

oo T ~
O = X5 — Yoidyuis

~T ~T

Oumi = Xsidomi — Y smis
where the g-phonon operators correspond to the val-
ues X,; =LY, =0 in amplitude definition (220). In
this case, the one-phonon part of the thermal Hamil-

tonian is diagonal both in terms of g-phonons and in
terms of thermal phonons

Hrorea = Z(DJ,'(QIM[QJM[ — 05iQ)
M ; o (235)
= ZO‘)Ji(qJMquMi = Grpidimi)-
TMi

(234)

The relationship between the g-phonon vacuum,
| W), and thermal vacuum |y, (7)) has the form simi-
lar to (177) [37]. Using the standard procedure [41],
the TQRPA thermal vacuum can be expressed in terms
of the thermal vacuum of the TQBCS approximation,
and its tilde invariance can be proved.

In [116, 84, 104, 117], g-phonons were considered
as thermal ones, and their vacuum played the role of
thermal vacuum. With this approach, the bosonic
occupation numbers do not arise in the theory. In
addition, the transition probability to tilde states with
negative energy turns out to be zero:

by (T ) = KQJI' ”gJ”WONZ
=rPT )+,
bi(T ;) = (7 J”W0>| =0,

which leads to a violation of the principle of detailed
balance, since it makes the exoenergic processes, asso-
ciated with the deexcitation of the hot nucleus, impos-
sible. This circumstance was not considered in [84,
104, 116, 117].

The fact that in a system of g-phonons, as well as
for a nucleus in the ground state, only an excitation
process is possible, allows us to consider g-phonons as
“cold” phonons, while thermal transformation (234),
as a process of their heating, i.e., a transition to new
phonon operators, whose vacuum state is the thermal
vacuum. After heating, the thermal vacuum contains
thermally excited g-phonons

(236)

(yo(D)| q;MquMi |yo(T) = YJ? (237)
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Therefore, in accordance with expressions (231),
the probability of the deexcitation process, in which a
g-phonon is removed from the system, is proportional

to Yﬁ, and the probability of the inverse process of
excitation, in which a g-phonon is added to the sys-

tem, is proportional to X,zi =1+7Y, ,?.

In [35], using the example of the QPM Hamilto-
nian with a multipole residual interaction, we have stud-
ied how the choice of thermal transformation (171) (real
or complex) affects the TQRPA equations. It was
found that although the form of the secular equation
for the phonon energy does not depend on the choice
of thermal transformation, differences arise in the
structure of thermal phonons. In particular, it was
shown that in order for the thermal phonon to corre-

spond in the limit H ., = 0 to the excitation of a two
thermal quasiparticle state, while for the TQRPA ther-
mal vacuum to pass into the thermal vacuum of the
TQBCS approximation, it is necessary to use exactly

the complex transformation.

10. FRAGMENTATION
OF CHARGE-NEUTRAL THERMAL PHONONS

In a cold nucleus (7" =0), the random phase
approximation is successfully used both in studying
the basic properties of giant resonances (position,
excitation probabilities) and in studying the properties
of collective low-lying nuclear states. At the same
time, it is known that the assumption of noninteract-
ing collective modes—phonons—does not allow the
entire variety of properties of nuclear excitations to be
described. In particular, the simple one-phonon
approximation fails to reproduce the probabilities of
transitions between low-lying vibrational states, the
widths of giant resonances, the photoabsorption cross
sections, and so on. In microscopic nuclear models, a
partial or complete solution of these problems is
achieved by complicating the wave function of excited
states due to including more and more complex com-
ponents in its structure. The interaction between the
simple and complex components of the wave function
occurs due to the part of the residual interaction,
which is neglected in RPA when calculating the struc-
ture of one-phonon states. One of these models is the
quasiparticle-phonon nuclear model, which is based
on the coupling of elementary nuclear excitation
modes—Bogolyubov quasi-particles and RPA pho-
nons [92, 101, 118, 119]. With the help of QPM, it is
possible to describe those properties of nuclear exci-
tations that are related by few-quasiparticle compo-
nents of the wave functions. In even—even nuclei these
are one- and two-phonon configurations, while in odd
nuclei, they are one-quasiparticle configurations and
configurations of the “quasiparticle + phonon” type.
The interaction of these simple configurations with
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more complex ones leads to their fragmentation over a
large number of states. One of manifestations of the
fragmentation is the appearance of large widths at
giant resonances and deep hole states [120, 121].

The above presented generalizations of the BCS
and QRPA methods to hot nuclei using the method of
superoperators, as well as the fact that the thermal
Hamiltonian structure inherits a structure of the orig-
inal physical Hamiltonian of the nucleus, make it pos-
sible to consider going beyond the one-phonon
approximation at 7 # 0 within the method that is tra-
ditional for QPM, i.e., by complicating the wave func-
tion of excited states due to including two-phonon
components in it. The first work in this direction was
published in 1994 [104]. Further, the theoretical
results of this work were used to calculate the depen-
dence of the giant dipole resonance width on the
nucleus temperature [117, 122]. However, in these
works, a structure of thermal phonons was found
according to [84, 116], i.e., it was assumed that g-pho-
nons are thermal phonons, and their vacuum is a ther-
mal vacuum. As was shown in the previous section,
under this assumption the TQRPA vacuum does not
satisfy thermal state condition (109). As a result, the
detailed balance principle is violated both at the one-
phonon level and when the coupling of phonons is
considered. To consider the correct structure of the
thermal vacuum when going beyond the one-phonon
approximation, the results of [104] were revised in
[35, 107, 123] in the direction of complicating the
probe wave function. As will be shown below, this
complication is absolutely necessary if we intend to
satisfy the thermal state condition and preserve the
detailed balance principle.

It is known that the use of a separable residual
interaction in QPM makes it possible to bypass a
problem of the configuration space growth as the
wave function structure becomes more complex [92,
118, 119]. Separabelization of the Landau—Migdal
interaction makes it possible to apply the same calcu-
lation scheme when going beyond RPA, which is a
promising direction from the viewpoint of self-con-
sistency and possibility of performing global calcula-
tions for a large number of nuclei. However, here, for
the purpose of clarity and simplification of the result
derivation, we restrict ourselves to the QPM Hamil-
tonian, in which we consider only the multipole
residual interaction in the charge-neutral channel.
The generalization of the results to the case of sepa-
rable interaction of a more complex form does not
present fundamental difficulty.

If we consider only the multipole interaction and
set N =1, then secular equation (332) for determining
Vol. 53
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the energy ®;, of one-phonon states of normal parity
reduces to the condition:

[%%L () + X @10 +x7)
(J) (gp(d) ) (238)
0 Xl %mm p(w)%mm ,,(0)) = 1’
where the functions %), .(®) are defined in (331). We
note that for separable residual strengths, a similar
equation was first obtained by Ignatyuk using the tem-
perature Green’s functions [124], as well as in a num-
ber of later works based on the application of tempera-
ture RPA (see, e.g., [125—127]). Equation (238) was
obtained in [84] as a special case of a more general
equation that considers, along with the particle—hole
interaction, the particle—particle multipole residual
interaction. In our work [35], Eq. (238) was obtained
for the first time using complex thermal transforma-
tion (171). In [35], there are also expressions for pho-
non amplitudes y, @, etc., from which the expressions

for effective amplitudes follow

Ji (-/) +)

(\Pj — 1 fjljz Jh2
Ji o) —

o ik N 8J]Jz + ('0-/’

Ji (J) -)
(Hj — 1 f/ljz Jih

(239)

—
—

Ji o) —
= Jih N lgjljz +O‘)Jt
The temperature dependence of the effective

amplitudes is contained in the 7'-dependent energies
of thermal quasiparticles and phonons, as well as in

the normalization coefficients N f , the analytical form
of which is given in [35, Eq. (55)]. It should also be
noted that the expressions obtained for the effective
amplitudes coincide with the expressions for the pho-
non amplitudes in [114], where they were obtained
using the temperature Green’s functions.

After the QPM thermal Hamiltonian part, which is
quadratic in the creation and annihilation operators of
two thermal quasiparticle states, has been reduced to a
diagonal form, the thermal Hamiltonian can be writ-

ten in the following form?>’:

¥ = ZO‘)Ji(Q;M[QJMi - Q;MiQJMi) + %qph (240)
IMi
The explicit form of the term ¥ aphs  Which

describes the interaction of thermal quasiparticles and

30The approximately equal sign in (240) means that in the QPM
thermal Hamiltonian we neglect the part containing the prod-
ucts of the creation and annihilation operators of thermal qua-

siparticles of the form BTBBTB. As with T =0, terms of this
form are fourth-order operators in phonon operators, while

%qph ~ QTQTQ is the leading correction to the thermal Ham-
iltonian of noninteracting phonons.
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phonons, can be obtained by writing the multipole

operator J(/UJM (7) in terms of the phonon operators

My (1) = lf“ZD,,-(r){mQIM,- + 0
A 1 (J ) p(H) (241)
- +
+ V@ + O} + 7 57 Bl o).
i
The substitution of this expression into the thermal

Hamiltonian leads to the following formula for €,

T (J)
RPN

qpl
./Ml T jih Nll

X X (O5 + Q) + YOy + O )}
x By (ij) + (h.c.) — (t.c))],

where, for brevity, the terms that are Hermitian- and
tilde-conjugate of the indicated terms are denoted as
(h.c.) and (t.c.), respectively, and the expression for

(242)

the operator B}X} (jij») is given in (208). As in the case
of a cold nucleus, the term ¥, mixes states with dif-
ferent numbers of phonons, due to which the frag-
mentation (broadening) of the strength of transitions
to one-phonon states occurs.

Strictly speaking, the thermal Hamiltonian €,
being written in terms of thermal quasiparticles and

phonons, contains terms of the type BTB, which
describe the interaction of thermal quasiparticles
ignored in TQRPA. These terms, as in the standard
QPM at zero temperature [118, 92], will be neglected.
In addition, when considering the coupling of thermal
quasiparticles and thermal phonons, we will neglect
the Pauli principle, i.e., consider thermal phonon
operators as “true” bosons. In addition, we will use
another approximation, namely, we will assume that

[BS) o) @ are] = [BSo Gido)s@rar] = 0. (243)

To clarify the meaning of this approximation, we
write J€;, in terms of g-phonons

vy
;ZZW (244)

X (@5 + do) Bim Gia) + (h.c) = (.1
Comparison of this expression with Eq. (242)
shows that approximation (243) switches off the inter-

action of “cold” qT, g and q*,q phonons. The interac-
tion of tilde and nontilde phonon excitations occurs
only after “heating” (234).

To satisfy thermal state condition (142) if the cou-
pling of one- and two-phonon configurations are con-
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sidered, we will seek the eigenfunctions of the thermal
Hamiltonian (240) in the following form:

|9/JMV> = glTIMV |‘PO(T)>
= [Z{R,-uv)QIM,- + Ri(IV)O5, — N(IV)Qy;

= N,(UV)Qps} + D AR IVIOLOL, L
o (245)
DM AT AT My T AT
+ P (S V)[Q;TI,-IQ;TZ,-Z]JM +28,,, IV, O lim

272

= T U0, O, L — T (IW04,01 Iom
= 224910501, Ine) || #oT),

where, as before, square brackets denote the coupling
of two angular momenta:

101,00, 1 = D Mttty [ IM) Q1. O

125
[Q)irli,é)%iz I = Z(klulkzuz lJM) Q}Tlp,il%fz
135

and so on. The wave function (245) must be normal-
ized. Therefore, the one- and two-phonon amplitudes
in expansion (245) satisfy the condition

(2 2 ) = DARINT + [RIV)T
— [N(W)T =[NV}
+ 23RBS IWE + [ Prs (V)T
o
+ASEIWE = [TEIWE = [Tra(WT
— AZAE VT =1

2l

(246)

As before, we will assume that nontilde state (245)
corresponds to the positive energy E,,. Then the tilde
conjugate state corresponds to the negative energy
—FE,,. The new thermal vacuum is defined as the vac-
uum with respect to the annihilation operators

D [T = D jpy | (1)) = 0. (247)

‘We emphasize that the presence of thermal phonon
annihilation operators in (245) indicates that the ther-
mal vacuum is redefined when the coupling of one-
and two-phonon configurations is considered. Recall
that in the standard QPM, when the fragmentation of
one-phonon states is considered, the wave function of
the ground state is not redefined but remains identical
to the QRPA phonon vacuum. A similar assumption
was used in [35, 104, 107, 117] when considering the
fragmentation of thermal one-phonon states. Also
note that, in contrast to [104], the wave function (245)

. . ~t
contains mixed components of the type QTQ . The
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presence of these components leads to additional
poles of spectral densities and strength functions?!.

Let us obtain additional conditions on the structure

of the operator QZT,MV, requiring that the new vacuum
satisfy condition (142). To this end, as when consider-
ing the structure of the thermal vacuum TQRPA, we

use as A the two-quasiparticle operators [ocj-locjz] s

[0‘; o 1y » and their Hermitian conjugates. Expressing

the two-quasiparticle operators through thermal pho-
non operators, it is easy to show that the amplitudes at
one-phonon terms in (245) must satisfy the condition

N X _y, (R
~ vy ="t J 248
(RJA( V) X, Ve B (N ,-( v),  (248)

where F, is the eigenvalue of thermal Hamiltonian
(240) corresponding to wave function (245). Thus, we
have obtained an important result regarding the struc-
ture of wave function (245): if we require that the ther-
mal state condition for the vacuum of the operators
9 ;4 be satisfied, then wave function (245) must con-
tain both direct one-phonon terms, i.e., terms consist-
ing of the phonon creation operator, and inverse tilde-
conjugate terms consisting of the phonon annihilation
operator. In this connection, it is logical to include in
wave function (245) the inverse two-phonon terms
as well.

By analogy with TQRPA, in order to fix the correct
structure of wave function (245), we determine the
effective amplitudes

R JV) =X, X YY“R J
Ni(v)_[.lv 5i — Y Xl N'(V)

N ! (249)
= [YJVXJ/' - A/JVYJi]_l [EJ (JV),
where Xj, - Y; =1 and X,,/Y,, = e/*". Using
the equality
2 5 2 2 2
[RUV] +[Ri(JV)]” —[N(IV)] —[N:(JV)] (250)

=R,V - [N,(w)T

normalization condition (246) can be written in terms
of effective amplitudes.

3 TQRPA (see Eq. (210)), the analogs of these mixed compo-
nents in the structure of a thermal phonon are two thermal

quasiparticle states of the form BTBT, which describe the scat-
tering of thermally excited Bogolyubov quasiparticles. By anal-

ogy, terms of the form QT@Tcorrespond to the scattering of
thermally excited g-phonons.
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To find the eigenstates of thermal Hamiltonian (240)
and their energies, we again use the equation of
motion (139) in the form

(Wo(D)I180, %, 25,11 wo(T))

= E;, (Wo(D)[180, 20,11 wo (1)),

where |y, (7)) is the TQRPA phonon vacuum, and the
operators included in the definition of the right-hand
side of (245) are considered as dO operators, i.e.,

80 = QJM,Q;M,[QxliI,szfz]JM: and so on. As a result,
we arrive at a system of linear equations for one- and
two-phonon amplitudes in expansion (245) [123]. The
dimension of the resulting system of equations can be
significantly reduced by excluding from it two-pho-
non amplitudes. Then, using (249), we obtain a system
of linear homogeneous equations for effective ampli-

tudes R, and N, [123]:

MP(E) MP(E) [Rj=o
MP-E) MV ey \N)

(251)

(252)

The expressions for the matrix elements Mﬁ}-’z) is
the following:

M{(E) = §;(0y; — E)
1y J[Unk el o) | Vi@V o)
25\ oy oy, —E oyt +E

Moty

WMWY
Wy, —y, — F

My . Miy i
s Gy, (JDGyL (Ji )) (Y7»22i2 - Yfl"‘ )}’
MP(E)

Wy, —y, +E
_ 1y (Uit Vi anU (i)
Wy T, —E oy +o, +E

1h

x(1+Y +Yfz,.2)+(

2%
My
WGy Y
Wy, —y, — F
G}uli! Ji W}\,l{] Ji'
+ kztz( l) 7»212( l) (Y)i,‘z _ Y}L21i1) )
Wy, —W,;, +E
The quantities U} (Ji), Vi(Ji), W, (Ji), and
G%‘Z'}Z(Ji) are related to the matrix elements of the oper-
ator 4, between the one- and two-phonon states
and are expressed through the effective TQRPA
amplitudes (220) and fermionic thermal occupation
numbers [123]. We note the dependence of the matrix

x(1+ Y, +Yi,-2>+[

elements Mf,"ﬂz) not only on fermionic, but also on
phonon thermal occupation numbers. In this sense,
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the equations obtained have something in common
with the results of [26], where the bosonic occupation
numbers arise due to special properties of the tem-
perature Green’s functions.

The condition for existence of a nontrivial solution
of system (252) leads to a secular equation det [Mll = 0
for the eigenvalues E;, of thermal Hamiltonian (240).
Solving system (252) for each positive eigenvalue £,
we find the unnormalized effective amplitudes R;(JVv)
and N,(Jv). The normalization is carried out using
conditions (246) and (250). Thus, we completely
define the structure of the operator SZTJMV. The struc-

ture of the operator §ZTJMV, corresponding to the nega-

tive eigenvalue —F,, is found using the tilde-conjuga-
tion operation, i.e., replacing nontilde phonons in
expression (245) with tilde ones and vice versa.

After the structure of the eigenstates of thermal
Hamiltonian (240) has been determined, we calculate
the reduced transition probabilities for the one-parti-

cle multipole operator T ,;,

BT ) = K2 T 1%
= X}, DR + N,uv)]’,

B B 5 (255)
%JV(O‘]J) = KQ Jv ”gJ”lPO(T)N

= VA [XrARG + Nl

The expressions for the reduced probabilities
obtained in our work [123] satisfy the detailed balance
principle (134). Thus, by requiring for the thermal
vacuum that the thermal state condition be satisfied at
each stage of diagonalization of the thermal Hamilto-
nian, we succeeded in constructing a thermodynami-
cally consistent method for describing the fragmenta-
tion of one-phonon states in hot nuclei. In [104, 117],
the thermal state condition was satisfied only in the
TQBCS approximation, but already at the TQRPA
level, the detailed balance principle was violated, since

the strength function did not have terms describing 1-
transitions. In subsequent papers [35, 107], the consis-
tent construction of the thermal vacuum and thermal
phonons ensured the satisfaction of the detailed bal-
ance principle in TQRPA. However, for considering
the interaction of one- and two-phonon configura-
tions, the TQRPA vacuum was used as the thermal
vacuum, with the result that the detailed balance prin-
ciple was satisfied only on average, i.e., after averaging
the strength function over a certain energy interval.

Thus, using the example of the quasiparticle-pho-
non nuclear model, we have shown that a thermody-
namically consistent consideration of the coupling
between one- and two-phonon configurations in a hot
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nucleus requires a consistent redefinition of the ther-
mal vacuum. According to the equations obtained, the
matrix elements of the interaction of phonons of a hot
nucleus depend on both quasiparticle (fermionic) and
phonon (bosonic) thermal occupation numbers. The
procedure presented here can be easily generalized to
the case of spin—isospin excitations of a hot nucleus
(magnetic dipole, Gamow—Teller, etc.), which is
important from the viewpoint of astrophysical appli-
cations.

11. CHARGE-EXCHANGE PHONONS
IN HOT NUCLEI

Let us apply the TQRPA method to finding the eigen-
states of the charge-exchange part of the thermal Hamil-
tonian. To this end, we approximately diagonalize

¥ = Hpes + Hepex (256)

in terms of phonon operators. For cold nuclei, charge-
exchange phonons were considered in [97, 128—130].
In the approximation of independent thermal quasi-
particles, the charge-exchange modes of thermal
Hamiltonian ¥ (191) are described as proton—
neutron pairs of thermal quasiparticles. The interac-
tion between elementary excitation modes arises due
to the charge-exchange part of thermal Hamiltonian

(163). The multipole Jl/L(k)T and spin—multipole S Z'}H
operators (157) 1nc1uded in the definition of the resid-

ual interaction H, .., being written in terms of ther-
mal quasiparticles, have the same form as the single-

particle transition operator (193)2.

Let us perform a linear transformation from the
operators of creation and annihilation of proton—neu-
tron two thermal quasiparticle states to the operators
of creation and annihilation of charge-exchange ther-
mal phonons:

Q./M: Z(ijjn

+ im0 IB) B e + 177, 1B B, Lo
- q)j:jn[B Bjn]JM q)'J/:Jn[B/,,B ]JM
1 gjpjn[B B/n]JM 1 ‘E-'/pjn[BE /H]W)

As in the case of charge-neutral phonons, the oper-

_ it et
B/,,]JM + \lfj,,/n [BEBZ]/M

(257)

ators ﬁ;Mi, Q> and Qi are obtained from (257) by
applying the operation of Hermitian- and tilde-conju-
gation. The multipole and spin—multipole with L = J

3276 obtain expressions for ./‘/L(k)Jr and Sil;)ﬂ; from (193), it suf-
fices to

A f(Jk) (LJ5k)
/1/2 Jpdn P dpin

make the substitutions: j, — j,, and
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components of the residual interaction ¥, ., generate
charge-exchange phonons of normal parity

(m=(- 1)1), while the spin—multipole interaction with
L =J x1 generates phonons of anomalous parity

(n=(=1)"").

Requiring the fulfillment of bosonic commutation
rules for thermal charge-exchange phonons and
assuming that the quasi-boson approximation for the
creation and annihilation operators of proton-neutron
pairs of thermal quasiparticles is valid, we obtain
orthonormalization relations for phonon amplitudes
v, ¢, etc., which are included in the definition of a ther-
mal phonon (see Egs. (336)—(339)) in Appendix C).
Using these relations, it is easy to show that the trans-
formations inverse to (257) have the form:

]JM - Z(ij/nQJMl + q)fp/,, IMi

T o (258)
+ q’jlj i T ¢an Lmi),
gt 259)
BLBL L = 1B}8] 1. (
B/,,Bjn]m = _iz(ni,’)/nQ/M’ ‘:Jl ey
B (260)
+ ﬁjlj + éh QJM:
gt - (261)
BB L = BBy 1

We further require that thermal Hamiltonian (256)
be diagonal in terms of the phonon operators

# = Zmli(QjMiQJMi - ﬁjMiﬁJMi),

JMi

(262)

and the phonon vacuum was the thermal vacuum in
the TQRPA. To this end, the phonon operators must
satisfy equation of motion (143), and the phonon vac-
uum must satisfy the thermal state condition (142). As
an operator A in condition (142), we consider the pro-
ton—neutron two quasiparticle operators

T T T T

[(xjp(xjn]JM’ [aEaE]JMa [OCJPOC;]JMa [a;aj,,]JM- (263)

Expressing these operators first in terms of the
operators of creation and annihilation of thermal qua-
siparticles, and then through charge-exchange ther-
mal phonons, we arrive at relations between nontilde
and tilde amplitudes similar to those considered in the
charge-neutral case ((218), (219)). Let us introduce
the effective amplitudes
Vol. 53

No.5 2022



SUPEROPERATOR APPROACH TO THE THEORY OF HOT NUCLEI

Ji
Ji o _ Wj,,/n
Jpin = —
XJixj,,xJ YJiJ’jpyj,,
~Ji
Jpdn

= bl
YJixj,,xj,, - XJiyjpyjn
Ji

Jio q)jpjn
Jpin = ~
XJixjpxj Y.liyjpyj,,
i
_ JpJn
Y;x; x;, XJ,y,,,yjn (264)
Ji n/,un
JpJn T
X/ij,,yj',, - Y.Iiyjpxjn
gﬁ
_ JpJn
- )
inxj,,yj,, - X.Iiyj,,xj,,
g./i
=Ji JpJn
i = —
X.lixjpyj,, )/Jiyjpxj”
~ Ji
_ Jnin
Y.lixjpyjn - X.Iiyjpxjn

For them, the orthonormalization condition takes
the form

Ji Ji' J: Ji'
Z{(lp T/p/n fpfn(bj,,jn)
Jpin

x(1-y; —y})+(H H

Jon

(265)
—Ji =Ji
B :fpfn:jpjn)(yfn - yjp)} =9,

As in the case of charge-neutral phonons, the
requirement to satisfy the thermal state condition for
the vacuum of charge-exchange phonons leads to the
fact that phonon amplitudes depend on both fermi-
onic and bosonic thermal occupation numbers.

Equation of motion (143) leads to the following
system of homogeneous linear equations for effective
amplitudes [131]:

e Gl — 20

JpIn " Jpin Jpn
N
(J3k) (k) (+ K Ji
d; X Dy = oW,
=1
(+) 7-2 ( )
gjpjn J,,/,, -2/
(-1 k). (kK)Gn(=k) Ji
z Jpdn K1 @D O*)JiGj,,j,,:
(266)
) pdi 7-2 ( )
Sfpjnij/n -2
(; k) (k) (+ k)
zd Xl @ m./IS/ Jn®

8( )S-ll _2]*2 (+)

Jpdn"= JpJn
2N

(30), (G (=50 Ji
dii D = 0,7} .
k=1
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The resulting system of TQRPA equations applies
to both parity types (normal and anomalous) of
charge-exchange phonons. For the sake of brevity, the
following notation is used:

) _ o mk) ) (k)
Xl - Xl s j,,j,, fjp/n >
D50 = DY 1<k < N),
(k) (s;k— N) (J k) JJ:k— /v)
X1 =X > /,,/,, f/,,/n
95 = DY) (N +1< k <2N)

for phonons of normal parity, and

(s;k) (k)
X Xl d/,,j,,
(+k) (‘*’ k)
ey D;oy 1<k <N),
) (s:k=N) (ik) _ U+ k=N)
X1 =X ) dj,,jn = fj,,jn ’

9 = DS (N +1< k <2N)

for anomalous parity phonons. In addition, the fol-
lowing linear combinations of effective amplitudes are
defined:

(J-1J; k)
= Jivin

(+ k) _ (X k) (+)
Jpdn Jp/n -y /n)
Jpdn
Jl Ji
X G+ v (y, - y, )T,p,n} (267)
( k) _ (J k) _ 2)
JpJn /,,J J
Jpdn
+) 2 Ji
x VVJ1J2 + VJp/n(y Jn )Sjpjn}
where
Ji Ji
G/,,/n - \P/ Jn q)jpjn’
Ji Ji i
I/V/p/” lP/ Jn q)jpj,,’ (268)
T./l _ H.It += :Jl
Jpdn T T dpda U T dpdn?
Ji _ ppdi =Ji
Sj,,jn = Mg T = hvn

The expressions for D} i ) have exactly the same

form up to replacement f (3k) by fj(’jj i)

The dimension of the system of TQRPA equa-
tions (266) for charge-exchange thermal phonons is
twice the number of basic proton—neutron two ther-
mal quasiparticle states. The separable form of the
residual interaction makes it possible to reduce this
system to a system of 4N linear homogeneous equa-

tions for the functions D,f ) ij,k), (see Egs. (342) in

Appendix C). The condltlon for the existence of a
nontrivial solution to this system leads to secular equa-

tion (345) for the energy , of thermal phonons.
Finding for each w,; the functions DJ,Jr o D(L ,,k) (with

arbitrary normalization) and substltutlng them
into (266), we determine the unnormalized sums

G . T and differences W S

i L e , of effective ampli-
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tudes. The effective amplitudes are then normalized
using condition (265).

Let us obtain expressions for the amplitudes and
probabilities of charge-exchange transitions from
thermal vacuum to the one-phonon state. To express

the multipole operator J',), of n — p transition

through thermal phonons, in expression (228) it suf-
fices to replace the operators of charge-neutral pho-
nons with the operators of charge-exchange phonons,
and to carry out the summation over proton—neutron
states. As a result, the amplitudes of # — p transitions
take the form

(@, [T7PNom)) = X, TT D)+ TOTD),

- (269)
(QulTFlo)) = v rP@ ) -rQ@ N,
where
LT =3 D=5, -0
JpJn
() Ji
\ Gfp/n ( _y/,,) JpJn Jpjn} (270)

O gy = 1§57
LTS =220 =, =)
JpJn
) gJi (+)
X uj,,jnVVj,,jn + (y -y /,,) JoIn /p/n}
For the p — n transition operator g(f,fl, we use the
fact that

g = _jINY)
JJM __J jjﬂ[a a ]JM

Jpl)
i Q71)
Ay (.I)
-/ z /p Jn ]JM’

Jpdn
where t(/) = (- l)j" sntd (J) . Therefore, the amplitudes
of p—>n transitions are
(QullTFo) = X, AT @) =TT,
(QulTFom) = VT @)+ TOT D).
The functions T(T) are obtained from (270) by

replacing the reduced matrix element t“) with t(“

The squares of the modulus of the right- hand 51de of
(269) and (272) are equal to the reduced probability
(strength) of charge-exchange transitions:

(272)

_ _ _ 2
BT = X[ @D + 0@ o

~ 2
BT =12 rP@) -to@d),
and

B,(TP) = X2 [TPTP) -TOTS

5 i (274)
Bi T =TT+ TOTY .

If the multipole charge-exchange operators g(f,;

TG =235,

are such that ( T

then the reduced prob-

PHYSICS OF PARTICLES AND NUCLEI

DZHIOEYV, VDOVIN

abilities of the n — p and p — n transitions to tilde-
conjugate states are related by the principle of detailed
balance

Bi( TSy = e /"B (TP). (275)

This relation, in particular, is valid for the Fermi
and Gamow—Teller transitions.

The above expressions for the amplitude and
strength of transitions to one-phonon states together
with the transition energy determine the charge-
exchange spectral densities (128) and strength func-
tions (131) in TQRPA. Once again, we note that the
energy of the charge-exchange transition is not equal to
the energy of the phonon—they are related as follows:

) & @
E _(D./1+Anp’ Eji =- Ji

(276)

Here E J,) (E Ji ) is the transition energy to a non-
tilde (tilde) one-phonon state. Due to the fact that the
vacuum of charge-exchange phonons satisfies thermal
state condition (142), principle of detailed balance (120)
is valid for spectral densities and strength functions.

Let us show that a total strength of the Fermi and
Gamow—Teller transitions calculated in TQRPA satis-
fies Ikeda sum rule (203). In the case of Gamow—

Teller (J* = 1") transitions, we have
S-S, =Y [B(GT)+ Bi(GT)]
- Z[B,-I(Gn) + Bi(GT)]
- Z[B,-(IGT_) - B(GT)l1-e ')
_ S [Iroer) + e
—ir‘+)<GT y+r@ryf ]

- ZZ [(1 _yj _yjn)”/pjn ‘/n

i pn

(277)

(+)
- (y/ - y/,,) /,,/n /,,Jn]

+) i
x Z j,,'jnv[(l y/ - yjn )uj,,/,,
Jpdn

i

(y/,, _yjn) J,,/nT/p/n]
=Z|jpj” [(l_yj ) )

y n )”/,,/n JoJn
JoIn

+ W5 =YVl

In the last equality, we used the fact that the effec-
tive amplitudes satisfy completeness condition (341).
Since the last line is nothing else than expression (204)
for S_ - S, in the independent thermal quasiparticle
approximation, then we have thus proved the fulfill-
ment of the Ikeda sum rule in TQRPA. The validity of
the sum rule for the Fermi operator is proved similarly.
Vol. 53
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In the conclusion to this section, we note that in
our papers [132—134] the TQRPA equations for
charge-exchange one-phonon excitations were
obtained for the QPM Hamiltonian. The formally
similar equations for a separable residual interaction
were obtained in [135—137] in the context of thermal
RPA. However, these works did not consider the pro-
cesses of deexcitation of the hot nucleus, and, as a
result, the principle of detailed balance was violated.

12. CROSS SECTIONS OF WEAK REACTIONS
WITH HOT NUCLEI

Further, we will apply the developed statistical
approach to the calculation of spectral densities and
strength functions to describe weak reactions of lep-
tons with hot nuclei under astrophysical conditions.
The standard way to describe semileptonic nuclear
processes is the Donnelly—Walecka method
[138, 139], which is based on the analogy with the
scattering of electrons by nuclei. The use of the cur-
rent—current form of the weak interaction Hamilto-

nian A » makes it possible to obtain a general expres-
sion for the matrix elements { £ |H,,|i) between the ini-
tial and final states for all semileptonic processes,
while the multipole expansion of the nucleon current
makes it possible to formulate selection rules for the
parity and total momentum of a nucleus. The Don-
nelly—Walecka method is widely used in calculating
cross sections for neutrino-nuclear processes (see,
e.g., [140—145]), as well as in studying the rates of
muon capture [146].

Let us present the basic information about the cal-
culation of cross sections for semileptonic processes
involving atomic nuclei in the context of the Don-
nelly—Walecka approach. A more detailed discussion
and details of the derivation of cross section are given
in books [139, 147] and papers [138, 148]. For general-
ity, we will consider the following reaction

I+5 4= 5 A+1. (278)

Here, / is the lepton incident on the parent nucleus

iA , ' is the scattered lepton, while ,ZV',A is the daugh-
ter nucleus. In charge-neutral reactions of the inelastic
scattering of neutrino (/ =/'=v) and antineutrino
(Il =I' =V), the number of nucleons of each type in
the nucleus does not change, ie., Z'=27 and
N'= N.The change in the number of nucleons in the
nucleus occurs in charge-exchange reactions:
Z'=Z7—-1and N' = N + 1in the reactions of capture

of an electron (/ =e, I'=v,) and an antineutrino
(I=V,, I'=e"); Z'=Z+1 and N'=N -1 when
capturing a neutrino (/ =v,, /'=e") or a positron

(I=e" 1= V,). We will assume that the states of the
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incident and scattered leptons are described by a plane
wave3. Let us denote the energy and momentum of
the incident (scattered) lepton as €;, p; (€, p;). Then
q = p, — p, is the three-momentum transferred to the
lepton in the scattering at the angle 0, while
o = g, — ¢, is the energy transferred to the nucleus.

The Donnelly—Walecka method assumes that the
states of the parent |J;m;) and daughter |/, /) nuclei
are characterized by certain values of the total
momentum and parity. Using the multipole expansion
of the matrix elements of the lepton weak current, the
differential cross section for reaction (278) can be rep-

resented in the following form:3*

doy(e) _ AGy)’ 5 [ﬁj

dcos® n'ct \p (280)
X & {anL(if) +m; (if)},
J=0 J=1

where the summation over J is constrained by the
momentum selection rules|J;, — J ;| < J < J; + J ;. For

convenience, a general notation for the weak interac-
tion constant is introduced

F=

, {GFVud for charged currents, 281)

Gr for neutral currents,

where Gy /(hc)’ =~ 1.166x107° GeV™ [150] is the
Fermi constant of weak interaction, while

V.,a = 0.9740 [150] is the Cabibbo—Kobayashi—Mas-
kawa matrix element, which is associated with the
mixing of two components of the charged nucleon
current: the one that preserves strangeness and
another that does not preserve it. The factor

S, = %(S, =1) for/ = et (/ =v,v) in (280) considers

the need for averaging the electron or positron spin
over the initial states.

The functions nfL’T are expressed in terms of the
reduced matrix elements of the nucleon current multi-
pole operators:

33To consider a distortion of the wave function of a charged lep-
ton in the Coulomb field of the nucleus, see below.

34 As shown in [149], the nuclear recoil can be neglected provided
that the energy of incident lepton and the energy of nucleus

excitation are much less than the nuclear mass M . If this con-
dition is omitted, then the largest correction will be a coeffi-
cient for the density of final states (recoil factor)

fRZ[IJr

-1
2, 5in(6/2)
= 1 + 72 s
MAC
by which the right-hand side of (280) is multiplied.

-1
€/ — € COS 91

2
prMye (279)
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Table 1. Expressions for kinematic factors used in the definition of functions ngL’T. In the second column, using the des-
ignations in [139, Table 2] (see also [147, Table 46.2]), the combinations of matrix elements of the lepton current are indi-
cated. The explanation of notations a, b, ¢ is given in the text (see expressions (283)); § = —1(+1), if a neutrino (antineu-

trino) is involved in the reaction; q& = q2 — @ is the transferred four-momentum squared

Charge-exchange reactions Charge-neutral reactions
2
1 q, .
Vrr =(1-1*- 131;) 1—acos0 + bsinz 0 —}lleOS2 (9) + 281n2 (9)
2 q 2 2
j g + & 2 1/2
vrr ~Lax1)y, Ry (1-acos®)—c 2S'sin (9) 1- % cos? (9)
2 ghe I 2
Voo /0[(’)" 1+acos® 2cos’ (g)
o 2(6
ViL Ll 1+ acos® —2bsin’ O ? X 2cos (E)
ver —Lly %)(1 +cos0) +c ?x 2cos’ (9)

T]fL(lf) = 2J.1+ 1{VLL K']f iPJ”JiW

1

4—VCCKJ}”jAJWL>2 (282a)
+ Ve 2Re (<']f ||$J||Ji><'/f J‘/LJ||J1‘>*)}’
R e A e T
| 1530)) (282b)

Grel
I

J,)*)}.

The charge multipole operator .l ,, is related to
the distribution of the zero component of the weak
nucleon current in the nucleus, while the longitudinal

+vrr2Re (<Jf ||Jg~r;1ag Ji><Jf

n

<,y » transverse electric T}IM and transverse magnetic
Iy multipole operators are related to the distribu-
tion of its spatial component [147, Egs. 45.13]. Kine-
matic factors v, ;, v, etc. are the result of averaging
the various combinations of matrix elements of the
lepton current over lepton polarizations. Their values
are given in Table 1 in a form convenient for numerical
calculations. To this end, the following notations are
used for charge-exchange reactions

(283)

where g is the value of the transferred three-momentum

PHYSICS OF PARTICLES AND NUCLEI

ghc = \/E; +2¢e,8,(1 - acosB) — (m,c*)

= \/(ev - p.c)’ +4e,p,csin’ g

(284)

while E, = ® corresponds to the transition energy
from the initial nuclear state i to final state f. If we

neglect the electron mass (g, > mec2 ), then

a =1,¢c =0, and the charge-exchange kinematic fac-
tors coincide with the charge-neutral ones. In this case

qhc = \/E; +4e.¢,. sin’ g

(285)

Note that the interference term between the elec-

. . . T
tric and magnetic components of the function 1, has
a different sign for reactions involving neutrinos and
antineutrinos.

Since the nucleon weak current includes the vector
and axial-vector parts, then each multipole operator
in (282) consists of two components of opposite parity:

N ~s R s
My = My + My, L= Ly + Ly,
Srel el els 5 A ~mag5

T =T + Ty, and T 57 = Ty + Ty, The

operators M, Ly, 15y, and T/5:¥ have the parity

T=(— l)J, while the operators M jMa l,:;Ma T f,llj , and
77 have the parity & = (—=1)"™". Consequently, for the
given values of J and © = ;7 ,, the contribution to the
matrix elements (282) is made by either the vector or
axial-vector component of the nucleon current multi-

pole operator. Note that, in contrast to electromag-
netic processes (photoexcitation, electron scattering),

in semileptonic processes, 0~ transitions are possible
in nuclei due to the axial component of the nucleon
current.
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To obtain an explicit form of the multipole opera-

tors L, M s I:SJM , etc., which makes it possible to perform
calculations with nonrelativistic wave functions, but
taking into account relativistic corrections, in
[139, 147, 151] a method based on the expansion in

powers of the inverse mass of nucleon val of matrix
element of the nucleon current for free nucleons was
applied. In this approach, the relativistic, or small,
component of the wave function is expressed through
the nonrelativistic component, while the required
expressions for multipole operators, considering rela-
tivistic corrections, are obtained by retaining the terms
of zero and first orders. We present the final expres-
sions for the multipole operators of the weak nucleon
current obtained in this way [138, 148, 152]:

~
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T = F,X,(q%). (286h)

In turn, seven basis operators M,Q, A, A", 2, ¥'and

2" are expressed in terms of spherical Bessel functions
Jji(gx), spherical Y,,(Q,) and vector spherical

O?J%(Qx) harmonics. In [153—155], expressions are
given for the one-particle matrix elements of the basis
operators. We emphasize that not only kinematic fac-
tors (see Table 1), but also matrix elements of the
nucleon current multipole operators are functions of
the transferred three-momentum gq.

The values of the form factors Fy (X =1,2, 4, P)
involved in the expressions for multipole operators
(286) are determined based on the hypotheses of the

M,y = FM;,(gx), (286a) conserved vector current [156, 157] and the partially
A conserved axial current [158, 159]. Conservation of
M JS == 19 the vector current leads to the fact that the vector form
My (286b) factors of the charged weak current coincide with the
" form factors of the electromagnetic current, i.e.,
X {FAQJM (gx) + l(F,;T) —OFp)2 )y (‘]X)} ) v g
2 F,(0) = F,(0), where [151, 160]
Loy ==2M,,(gx), (286¢)
q FO=g =1 (287)
2
By =ilF——21—F, %, @), 286d —u, -1
M { 4 WM, P} sm(gX) ( ) F2V(O) R (288)
2M
f/% =4 .
M (L, =2.79 and u, = —1.91 are magnetic moments of
N (286¢) P .
, 1 the proton and neutron in Bohr magnetons). For the
X {FIAJM (gx) + E(Fl +2MyE)X )y (‘IX)} > vector form factors of neutral weak currents, the Gla-
show—Weinberg—Salam electroweak interaction the-
i = iF 0 (qx), (286) oty gives the values [161, 160]
ﬁ[ﬁg = —A;—q l(1 — 4sin’ 0, ), for protons,

| N (286g) F(0) = | (289)

X {F]AJM (gx) — 5(1’7l +2M y E)E,y, (qx)}, —5, for neutrons,

| l(ul, -1-p, — 4sin’ 0y (U, —1)), for protons,
F,(0) = 2 1 (290)
2My _E(Mp —1—p, —4sin’O,1,), for neutrons,

where 0, is the Weinberg angle (sin2 0, =0.2325).
The hypothesis of partial conservation of the axial cur-
rent establishes the dependence of the axial and pseu-
doscalar form factors on the pion characteristics and
the parameters of the pion—nucleon interaction. In
particular, the axial form factor of the charged current
satisfies the Goldberger—Treiman relation [139, 160]

Ju&nn
F,(0) = -2, (291)
A aMm,
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where f; is a constant determined by the lifetime of
charged pions, and g,, is the pion—nucleon coupling
constant. Substituting the numerical values for f; and
g.n leads to a value F,(0) that is in good agreement
with the value obtained by averaging the results of
numerous measurements of the characteristics of
B-transitions [162]

F,(0) =g, =-1.269£0.003. (292)
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Using relation (291) together with the one-pole

approximation for F,,(qﬁ) gives an expression relating
the axial and pseudoscalar form factors [139, 160]

2MyFy(qy)
FP(‘I&) = %

2
Qu+mn

) (293)

where m; = 139.57 MeV is the pion mass. The corre-
sponding form factors of neutral weak currents have
the form [160, 161]

FAO) =2 Fi0). Folap) = Folg).  (299)
where the upper sign corresponds to protons and the

lower sign, to neutrons. Following [138], to take into
account the dependence of the form factors on the

transferred four-momentum qﬁ , the static values of the

form factors F ,(0) and F,(0) are multiplied by the
one-nucleon form factor

Ssn (qi) = [1 + qﬁ/(855 MeV)z]_z. For astrophysical

calculations with good accuracy, fgy (qj) =1

The expressions for the reaction cross section (280)
were derived by assuming that the lepton wave func-
tion corresponds to a plane wave. However, for
charge-exchange processes where a charged lepton is
present in the initial or final states, it is necessary to
consider the distortion of its wave function in the Cou-
lomb field of the nucleus. Depending on the lepton
charge sign, either an increase or a decrease in the
value of its wave function occurs near the nucleus.

This leads to a growth (for e”) or a suppression (fore")
of the reaction cross section. To consider the influence
of the Coulomb field of the nucleus, cross section
(280) is multiplied by the Fermi function F(xZ* ¢,).
Depending on the type of reaction, Z* either coin-
cides with the charge Z of the parent nucleus or with
the charge of the daughter nucleus Z'; the sign “+”
(“=") corresponds to the case when the charged lep-
ton is an electron (positron). The exact value of
F(Z,¢e,) can be calculated by solving the relativistic
Dirac equation with the Coulomb potential of a
nucleus with radius R [163]. However, at a low
charged-lepton energy (peR/h < 1), the expression
[62, 140, 163] is usually used as an approximate value
of the Fermi function:
2
e™

2(s—1) .
F(Z,se):2(1+s)(2p—eR) L+ M) m - (595)

h I'2s+1)
where s = \1-(0.Z)*, n = aZe,/(cp,), o = ez/(hc) is

the fine structure constant while I'(z) is the gamma
function. At large values of ¢,, an effect of the Cou-
lomb field of a nucleus can be considered by replacing
the momentum and energy of the charged lepton with
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effective values (effective momentum approximation
[140, 141, 164])
eff eff
e, =¢,-V-,
ff 2 - 2.2 (296)
p. €= (Se ) _(mec ) 5
where VCeff is the effective Coulomb potential. As
shown in [165], a good agreement with the exact solu-
tion to the Dirac equation is achieved by using

Vg’ff = 4VC(O)/5, where V.(0) = $3Ze2/(2R) is the
electrostatic potential at the center of the nucleus.

Expression (280) corresponds to the differential
cross section of the exclusive reaction, in which the
nucleus passes from the state i to the state /. The cross
section for an inclusive reaction is obtained by sum-
ming over all possible final states f, such that

E;<¢g - m,vcz, and by integrating over the scattering
angle. In a hot stellar medium, thermal occupation of
excited nuclear states takes place. Let us occupation
the temperature-dependent cross section for reaction
(278) as the result of averaging over all thermally

excited states of the nucleus:

o, T) = D p(T)o,(€)

i
A6y’ [elj

= S| & dEe,p, (297)
h4c4 / p[ _J; 'l

1
x [ d(cos O[3 0" (E.T)+ 3 (£,
e J>0 J>1
where ¢, =¢, — F, while the entire temperature
dependence is contained in the charge longitudinal

and transverse multipole functions

S ET) = 3 p (TN GHXE — Ey). (298)
if

Using the explicit form of the functions nfL’T(if )

CL,T

(282), we express ;" (E£,T) in terms of the spectral

densities of the charge .l ,, longitudinal &£ ,, trans-

verse electric I, and transverse magnetic J7** mul-
tipole operators of the nucleon current:
7
ET)=v,,S
nCL( ) LL §£J§£J (299)
+ VeeSa,a, T Vic2Re{Sy ¢}
and
J —
nT(Es T) - VTT[Sgryaggx}mg + Sg—e]}gejl] (300)

+ VTT'2 RC{SJa-Tang—e}] } .

Kinematic factors v;;,voc, etc. do not depend on

temperature, while the spectral densities S, p (£,T") of
multipole operators are determined according to
Vol. 53
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(165). Thus, within the statistical approach, the calcu-
lation of the cross sections for weak reactions with hot
nuclei is reduced to the calculation of spectral densi-
ties for multipole operators (286) of the nucleon cur-
rent, which depend on the transferred momentum gq.
To consider the Coulomb corrections, the cross sec-
tion (297) is multiplied by the Fermi function (295),
and the nuclear recoil is taken into consideration by

using the factor f (279).
Using the dependence of the multipole operators of

nucleon current (286) on the transferred momentum g,
we can directly from (297) obtain an expression for the

cross section o(g;, T') at small values of ;. Indeed, since
the maximum value of the momentum transferred in
reaction (278) is equal to g,,,, = (2¢, — E;/)/hc, then at
a low energy of the initial lepton g, =10 MeV, the
long-wave approximation condition becomes valid
gR <1, where R = 5 fm for nuclei with 4 = 50—80.
Using the property of the Bessel function

@ g
27+

and considering the nucleons in the nucleus to be
SIOW, V,,¢i/¢ <1, it can be shown [139, 147] that, in
the limit ¢ — 0, only the allowed transitions of the
Fermi (J™ = 0") and Gamow—Teller (J* =1") types
contribute to the cross section. For charge-exchange

reactions, the corresponding multipole operators of
current take the form:

Ji(gx) = r gx <1 (301)

A
- 1 ) 1
=—— E ) =—=F., (302)
o x/41ch = * V4r *

Ly = f T = FgAZ(’) o} = J_GT (303)

In a charge-neutral channel, the operator M, 0o CON-
tributes only to the elastic scattering of (anti)neutri-
nos. Since F(0) =0 for protons, then to a good
approximation, we can assume that

My =~ ———

2J_n

where N is the operator of the number of neutrons in

(304)

the nucleus. Therefore, only operators of J© = 1" tran-
sition that are proportional to the zero component of
the Gamow—Teller operator contribute to the inelastic
scattering of (anti)neutrinos in the long-wavelength
approximation:

T 1 e
L?M — TT 15 — gAz (l)o.(/)

! 305
Tiom (305)

where ¢, = T, / 2 is the operator of isospin projection.
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Substitution of the given expressions for MOO, f,f M

and ﬁif, in (297) and integration over the scattering
angle lead to the following expressions for the cross
section of semileptonic reactions on hot nuclei in the
long-wavelength approximation:

 capture of an electron or positron

ote,. T) = (ZGF h“d) { jF(+Z e.)
. < (306)
x | (6c = EY'[Se.(E,T) + Ser, (E, )] dE;
* capture of an electron (anti)neutrino
(GF d)2 €y mec
T F(xZ 1
G(gva ) (h ) J ( :ge) (307)

X (eepec) [SFi(EvT) + SGTi(Ez T)] dE:

1/2

wheree, =¢, - E, p,c = (g, —mc)

* inelastic scattering of (anti)neutrinos

2
o(e,.T) = —2F_
(he

jv (e, — E)’Sgr,(E,T)dE.  (308)

Thus, in the long-wavelength approximation, the
cross sections for weak reactions on a hot nucleus are
expressed in terms of the temperature-dependent
strength functions (115) of the Fermi and Gamow—
Teller transition operators.

The above expressions (297), (306)—(308) for the
temperature-dependent cross section o(g,, T') are exact
in the sense that no additional assumptions about the
structure of the spectral densities and strength func-
tions were made when they were derived from (280).
In the TQRPA, the spectral densities and strength
functions of multipole operators are expressed in
terms of the reduced matrix elements between the
thermal vacuum and thermal one-phonon states (see
Egs. (230), (269), (272). Substituting the spectral
functions calculated in TQRPA into (297) and inte-
grating over the transferred energy £, we obtain a mul-
tipole expansion of the total cross section 6(g;,7) in
the form of the sum of contributions from individual
thermal one-phonon states:

()
D

d(cos0)n5" (k,T) + M (k,T)},

2(GF)

o(e, T) = chk &,T) =

X Zgl'pl'j
Jk —1
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where

NS e, Ty = vy [ [ o)

+ Vee KJk ||M/||W0(T)>|2 (309b)
+ ve 2Re (<Jk §£J||\|IO(T)><Jf ||MJ||W0(T)>*)
and
!, T) = v (k7 o)
+ Ko@) + vir2Re (309¢)
x (55 o) (e [5 ho1) %)

Here, the summation extends to all one-phonon
(nontilde and tilde) states with energies below the

threshold €, — m,rcz. The appearance of one-phonon
states with negative energy for 7 # 0 leads to a situa-

tion that o(g,, T') is different from zero at an arbitrarily
small energy of an incident lepton. Since at zero tem-
perature the TQRPA method reduces to the quasi-
particle random phase approximation, then at 7 = 0,
expression (309) corresponds to the cross section of
the semileptonic reaction on the ground state of the
nucleus.

13. CONCLUSIONS

In the present work, using the formalism of super-
operators and the method of the equation of motion,
we construct a thermodynamically consistent method
for calculating the spectral densities and strength
functions in hot nuclei within the grand canonical
ensemble. For this, a new definition of right fermionic
superoperators in the Liouville space is introduced. As
a consequence of this definition, it is shown that the
thermal state condition depends only on whether the
superoperator is fermion-like or boson-like. Relations
are obtained connecting matrix elements and vacuum
expectation values of tilde-conjugate superoperators.

For a model of a nucleus with a separabelized Sky-
rme interaction in a particle—hole channel, the equa-
tions of the thermal quasiparticle random phase
approximation are obtained that describe the charge-
neutral and charge-exchange one-phonon states in
hot nuclei. The fulfillment of the model-independent
Ikeda sum rule in this approximation is proved. Using
the example of the Hamiltonian of the quasiparticle-
phonon nuclear model, going beyond the random
phase approximation in hot nuclei is proposed by con-
sidering the coupling of one- and two-phonon config-
urations. It is shown that the principle of detailed bal-
ance requires a redefinition of the thermal phonon
vacuum with using the fragmentation of one-phonon
states in hot nuclei.

A statistical approach is proposed for calculating
the cross sections and rates of weak nuclear reactions
with hot nuclei under astrophysical conditions, based
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on a combination of the superoperator formalism and
the Donnelly—Walecka method describing semilep-
tonic nuclear processes.

APPENDICES

APPENDIX A:
Finding functions o(m,n) and B(m,n)
For the right superoperators defined according to
(47), the conditions [&,d;], = 0, [&,a, ], = 0 are sat-
isfied regardless of the choice of the functions oWm, n)

and B(m, n). From the condition [& al

a4l =0fori#j
and relations

galllmn) = om,n + I)B(m,n)Hlm)(nlaja,-T»,

310

5}5,— [l mn)) = B(m,n — oum, n)|||m><n|a,7raj>> 10
we obtain

o(m,n)B(m,n —1) = a(m,n + DP(m, n). (311)

With allowance for this relation, from [a j,ii;r]<s =1
it follows that

o(m,n)B(m,n—1) = 1. (312)

Consequently, 5;&,. satisfies condition (45), i.e., is
the superoperator of the number of particles.

Since

a@llmn) = o(m +1,m)|| /I m)(nla])),

ala;llmm) = om, n)||a,-T|m> (nla;». G1)
Then the requirement [a;, d ;r]c =0 leads to
o(m+1,n) = —com,n), (314)
whence it follows that
o(m,n) = (—0)" o0, n). (315)

The same relation follows from [a;,d;], = 0. Pro-
ceeding similarly, from the conditions [5;,21 ,T]G =0
and [aj,ai](, =0, we get

B(m +1,n) = —cB(m, n) (316)

or
B(m, n) = (=0)"B(0, n). (317)
Consider now the following chains of equalites:

<<m1n1 ”5;” mn, >> = B(my, ny )6m1m2<n2 |ai| m)

(318)
= B(m2a %)Smlmzanl,nz—loh |ai| nl>
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and

<<m2n2 ”i” mmn >> = Oc(”nl’ n )6mlm2 <nl |atT| I’l2>

= a(mlsnl)Smlmzsn] = 1<”1 |a:T|”z> (319)
= oUmy, n, — 1)8m1m2 -1 <”1 |a;r | ”2>-
Then from the condition
<<m1n1 ”5;" m2n2>> = ((myn, @] mym))*, it follows that
B(m,n) = o*(m,n —1). (320)

Consider what the last of the conditions listed on
page 892 leads to. Since

{(mnllaf]|2)) = Bem. mymla)| ny (321)
and ((mnla;)) = (m|a;|n), then the condition
E}L || 1)) = ¢||a,)) means that

B(m, m) = c. (322)
Comparing (322) and (317), we obtain
B(m, n) = c(=0)""". (323)

Using this equality on the right-hand side of (320),
we get

m+n+1

o(m,n) = c*(—o) (324)

which is consistant with (320). Substituting the
expressions obtained for oum, n) and B(m, n) into (312),
we arrive at the condition cc* = 1.

APPENDIX B:

Secular Equation
for Charge-Neutral Thermal Phonons

In addition to condition (213), the amplitudes of
charge-neutral thermal phonons satisfy the following
relations:

s from [Q;y:, O] = 0, it follows that

z{ (W70 i ¢jll/2\lfj1ifz )

YY)
+ (W8~ 0 W) (325)
+ (8, &,l,zn,,,z)
+ (ﬁf/z&/:/z §/1/2~j|’j2)}
* from [QJMI.,QJM,,] = 0, it follows that
z{ (Wjuzqfsz q)j'lijz (T)j]l/z )
i
+ WiV — 07507, (326)
(nfllfz ) jlljz E—*/l/z Ev'/ljz )
+ @M, —§E,)) = 0;
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* from [Q,Mi,ém,..] = 0, it follows that

z{ (\lf A jz o7 jl'jz w/lh q)J]Jz )

v
+ (W07, — 007,)
+LE - ELAL)
+ (585, = &My, = 0.

With the help of effective amplitudes (220) four
orthonormalization conditions (Egs. (213), (325)—
(337)) can be written as two relations: (223) and

(327)

T
Zz{(l}rj]:qu)/ Jr - (I).JIIIIZ\PIUZ)
T b
X (1 _ yjzl _ yjzz) + (328)
e

+ ( /1/2 Jih =ik jljz)(yjz _yjl)} =

The separable form of the residual interaction
allows the TQRPA equations (224) and (225) to be
reduced to a system of 4N linear homogeneous equa-
tions. Indeed, for charge-neutral phonons of normal
parity, the formal solution to the problem (224) can be
represented in the following form

22
Ji J
Gjllz( ) (+)
( /1/2) -
(+) (+) (J3k) (mk) (k)
{8/112 i 24 i (ZX Dj; (pl’))
p=tl
(JJ3k) (5:6) ry(k)
t U /1/2 Jij2 (ZX Dyji (p’l?))}
—+]
=)
Ji _ J
I/leJz( ) = (+) \2 2
(ej,) —®
hh Ji

(+) (J3k) (m;k) ry(k)
{(DJ’ /1]2 Wiy (ZX DJi (pT))

) () (JJ3k) (836) (k)
+ 8/|/2 b hj (ZX DJJt (pt))}
P! (329)
Ji J7?
0=t
( Jllz) — 0y
=), (J3k) (m:k) (k)
X {81112 b hj (ZX D (pT))
p=tl
(+) (JJ k) (5;k) (k)
+ 055 2 ik (ZX Dy, (PT))}
p=tl
72
Ji J
Sflll'z(,t)
( /1J2) - (’0-11
( ) (J3k) (m;k) ry(k)
{(D-Il Ji2 Jih2 (ZX DJi (pT))
p=*1
=) (+) (JJ:k) (8;6) ry(k)
t 8Jljz Ji2 Wi (ZX DJJi (PT))}
p=tl
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Substitution of obtained expressions in (226) leads
to a system of 4N homogeneous equations for the

functions D{’(t) and D)(t) 1 <k < N, 1= p,n). In
matrix notation, the resulting system has the form:

M,,, —1 M
M

mm ms [D)J =0
sm Mss -1 [I:DJJ e

The vectors D, and D), of dimension 2N consist

of the elements
D® = (k)(l’)
olnPm)
(k)
DY =( (p)](lskSN),

D} (n)
while the matrices Mg (01, = m, s) are the 2N x 2N
matrices, composed of 2 X 2 units

(330)

k) (J:kk") NS (J;kk'")
Mkk _ [X:Bl of;p ((D) X(B ) (pr ((D)J
O‘B BskNop(J:kk") BskNop(J:kk")
x5O @) A B e ()
(1<k,k'SN).

Here the following notation for functions of ® are
introduced:

T =

i

(J3k) p(J3k")
> fjljz

(+) +)
5 (U55)
x {—(E:::) -5
N2
+ J]Jz( JlJz) ( _yj] )}
(81112) -

(J;kk") 72
%ss;r (0)) =J

b

k) (k")
Jija fJ|J2

(+)
x {ﬁa —y =yl (331)
12 -
L)
+ —(8"’2) S =Y
N2

Kot (@) = T 70> ' f

hh

(/ k) ATk
hj ‘]F/]/Z

=)

u; u;: 2 2
X {(£(+;1J)2 v (1 _ yj| _ yjz)
N2

DZHIOEYV, VDOVIN

to a secular equation for finding the energy wj; of ther-
mal phonons

dtMmm_IMms =0
Y M, —1)"

sm

(332)

For thermal phonons of anomalous parity, the for-
mal solution of the system of TQRPA equations (225)
has the form

o = o)
55 A S i),
k L=J+1 p=xl (333)
1.0 = Yo i)
Wi ’f’h(zx“ Do),
L=J+1

As in the case of the normal parity phonons, a sub-
stitution of the obtained expressions in (226) leads to a
system of 4N homogeneous equations for the func-

tions DY), (1) 1<k < N, 1= p,n):

Mo =1 M,y j(DJ—uj
=0. 334
(MJHJ—I Myra =\ Dy (339

Here M), are the 2N x 2N matrices, composed of
2 X 2 units

(s3k7) %(-’;kk ) (s; k)

(J:kk")
ot Err, (@ x5 s - (©)
(sk) (J:kk") s)op(Jikk')
XL - (0) X+1 %LL';n ()
(1Lk,k'<N),
with the matrix elements
gpUikk) (LJk) (L' Tk
LLT( )_J Z Jij f;ljz
ik

(+)
X J1Jz (ujljz) (1 _ 2
(8(+) ) _ yl]
./l./Z

(v “)) ),
+ J]Jz JlJz (yjz _yjl) ,

(gjllz)

M(kk ) _

~ )

while the vector D, ; of 2N dimension has the follow-
ing components:

(k)
D® =( (k)((p;} 1<k <N.

The thermal phonon energy is found from the con-

<+> - 5 dition for the existence of a nontrivial solution for the
S22 ( y) = Vi) system (334), therefore, it is a solution to the secular
(81112) - equation
and X5 (@) = X% " (). The solvability condition det My =1 My ) 0. (335)
for the system of homogeneous equations (330) leads MJH,J—I Mm,m -1
PHYSICS OF PARTICLES AND NUCLEI Vol. 53 No. 5 2022
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APPENDIX C:

Secular Equation
Jfor Charge-Exchange Thermal Phonons

The requirement to preserve the bosonic commu-
tation relations for charge-exchange thermal phonons
leads to four orthonormalization conditions for the
amplitudes:

o from [, Q) 4] = 8,58 330, it follows that
i Ji Ji'
Z{(m o = 97397
~Ji ~Ji ~Ji yJi
+ (‘If/,,jnllf/,,jn = 5,,95,5,) (336)

+ (T]/,,/n Jpin gjp/"&/pjn
~Ji ~Ji'

+ (nj,,j,, jp/,, - gjl’j"g./p.jn)} = i’ ’

* from [Q,,,;,€2, 4] = 0, it follows that

Ji Ji'
Z{ (W/pln Jpdn q)JpJnW/p/,,

JpIn
+ (00, — 60,97 ) (337)
+ 8 — S
(1,8, ~ 8 =0
* from [Q,Mi,ﬁj-M-p] = 0, it follows that
AW, — 95,8,
JpIn
+ (v - ¢f,',h¢ff,/n (338)
+ (nj,,jnﬁjp/n E-up/n&/pjn)
+ @7y, — &)1 =0
* from [QJM,.,?ZJ'MT] = 0, it follows that
Z{ (ijjn Jnin WJpan)j;Jn)
JpIn
+ (77,0, — éfiﬂfi}) (339)

Ji < Ji’

+ (nlplngjpjn é;/pln Jpjn
~Ji Ji
+ (n/,ungfp/,, E-'Jp/nn/,,/n =0.

For effective amplitudes, the above conditions take
the form of two relations: (265) and

Z{(\Pj;/nq)/p/, - q)j:/n\P V(- yfz‘l B y/z_z)

JpIn (340)
Ji —=Ji' —Ji Ji'

+(H;, =~ )0, =y =
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In proving the fulfillment of the Ikeda sum rule in
TQRPA approximation (277), we used the complete-
ness properties of effective amplitudes

Ji Ji Sjpj,,'aj,,jw
YW, =

i yjp ~Wn
Ji Ji Ipdp " Indy
ZEPJ‘”S/‘M =2 2 (341)
i in Yp

Ji ol Ji yydi
ZGJ,,J‘,.SJ,,J,,- - Zz}pjn”/j,,vjn- =0.

i i

These properties can be easily obtained by writing
down the completeness conditions for phonon ampli-
tudes and then expressing ¢, \, etc. through effective
amplitudes.

As in the case of charge-neutral phonons, the sep-
arable form of the residual interaction makes it possi-
ble to reduce the system of TQRPA equations (266) to
4N homogeneous equations

M. -1 M \D
M, M -\D_)~"

Here M, (6 = +,—,+ —) are the 2N X 2N matrices,
composed of 2 X 2 units

Xia;k')%(ga;kk')(m) Xib;k')%(gb;kk‘)(m)
§ GRIGPPEHID ((y o BRIGPEBKID (1 | (343)
1<k, K'<N.

(342)

Mkk' —

(9

For the normal parity phonons, the indices a,b
assume the values a = J, b = JJ, while for the anom-
alous parity phonons a=(/ -1)J, b=(J +1)J. In

addition, " = " and y""* = ¥ The func-

tions 95(;‘1 *\w) (c = a,b, d = a,b) are defined as

(cd;kk) (c;k) p(dsk")
%i =2 Jpdn f/,,fn
JpJn
(+) ( @) )
€55, \Uj,j,
X :—,,( _yj,, _y/n)
€5 -
JpJn
(F) 2
/,,/n( /:Jn) 2 2
T(y’" — )t
Jp/,, (344)
(cd;kk) 72 (c; k) (d3k")
%Jr— =20/ Jpdn /,,jn
Jpdn
) )
u:. u: "
Jpdn" Jpin 2 2
x {H;’—”a -y, =)
(81,,/”)
6
+ ./pJn JpJn (yi _yi”) )
(e /,,Jn)
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The vectors D™ of the 2N dimension consist of
the functions DS, D5 (267)

The condition for the existence of a nontrivial solu-
tion for system (342) leads to a secular equation for
finding the energy of charge-exchange thermal pho-
nons

[ML 1 M,
det (345)

M, M. -J =0

For the QPM Hamiltonian, the secular equation
for determining the energy of charge-exchange pho-
nons in hot nuclei is given in our paper [134].
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