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The approach in a theory of collective excitations in hot nuclei exploring the formalism
of thermo field dynamics and the model Hamiltonian consisting of a mean field, the BCS
paring interaction, and long-range particle-hole effective forces is reexamined. In contrast
with earlier studies, it is found that a wave function of a thermal phonon is depended not
only on the Fermi—Dirac thermal occupation numbers of the Bogoliubov quasiparticles
consisting the phonon but also on the Bose thermal occupation numbers of the phonon.
This strongly affects a thermal phonon coupling due to the renormalization of a phonon—
phonon interaction and enlarging the number of thermal two-phonon configurations
coupled with one-phonon ones. Moreover, it is shown that the formulation of the double
tilde conjugation rule for fermions proposed by I. Ojima is more appropriate in the
context of the present study than the original one by H. Umezawa and co-workers.
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1. Introduction

The present paper addresses some aspects of theoretical treatment of collective
excitations of a hot nucleus within the thermo field dynamics (TFD).

The TFD'? is known as a powerful tool in studying many-body problems at
finite temperatures. There exist numerous TFD applications in condensed matter
and high-energy physics (see, for example, Refs. 2-5). In spite of several attractive
properties, the TFD formalism seems to be less popular in the nuclear theorist
community. During the last 20 years only a dozen works dealing with the TFD
application to nuclear structure problems were published.f

An important step in application of the TFD formalism for extending the
standard nuclear theory methods (the HFB approximation, RPA, a boson expan-
sion technique) to finite temperatures was made by Hatsuda.” In Refs. 6, 11, 14,
16, 17, different approximations going beyond the thermal RPA were formulated.
Civitarese and co-workers®!® applied the TFD to problems of treating nuclear
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pairing in the BCS and the random phase approximations as well as quasicon-
tinuum (or resonant) single-particle states at finite temperatures. Moreover, the
TFD was used to prove the Bloch-Messiah theorem at finite temperatures® and
construct number-projection methods for the BCS pairing in hot nuclei.'319

The methods and approximations developed in the papers cited above were not
applied to numerical calculations of any nuclear properties. Only simple solvable
models were used to demonstrate the new achievements. At the same time, in
Refs. 10, 12 the TFD was combined with the quasiparticle-phonon nuclear model
(QPM)?° to formulate an approach allowing one to treat microscopically a coupling
of different excitation modes in hot nuclei. This coupling is known to be responsible
for the spreading width of giant resonances in cold spherical nuclei, and the TFD-
QPM approach was used to analyze a thermal behavior of a giant dipole resonance
width.'®

It appeared that in contrast with earlier studies of the problem?! (see also
Ref. 22) based on the Matsubara Green’s function technique and the nuclear field
theory,?® the quasiparticle-phonon interaction at finite temperature in the TFD-
QPM approach did not depend on the thermal occupation numbers of phonons.
Only the Fermi-Dirac thermal occupation numbers of noninteracting BCS quasi-
particles appeared in corresponding formulae of Refs. 10, 18. Some aspects of this
difference were discussed in Ref. 18 (see also Ref. 24).

Recently, studying weak transitions of the Gamow-Teller type in hot nuclei®®
within the TFD we found some inconsistencies in the TFD-QPM approach of
Refs. 10, 12 related to structures of thermal vibrational phonons. Moreover, new
points in the TFD-QPM approach appear if one adopts changes in the TFD for-
mulation proposed by Izumi Ojima,?%27 which concern the alternative formulation
of the double tilde conjugation rule (DTCR).

The reasons given above compel us to reexamine the TFD-QPM approach of
Refs. 10, 12, 18 to a quasiparticle-phonon coupling at finite temperatures. This is
the main aim of the present paper.

This paper is organized as follows. A brief summary of the TFD formalism is
given in Sec. 2. This seems to be necessary because we use here a variant of the
theory, which somewhat differs from the standard one.'?” In Sec. 3, the TFD for-
malism is applied to the nuclear Hamiltonian consisting of a mean field, the BCS
pairing interaction, and separable particle-hole forces, i.e. to the QPM Hamilto-
nian.?? In Sec. 3.2, the thermal BCS pairing is considered. This part of the paper
is close to that of Refs. 9, 10, 12. A discussion of ~-transitions between a thermal
vacuum state and thermal quasiparticle excitations is the only addition. In Sec. 3.3,
the equations of the thermal random phase approximation (TRPA) are derived. Tt
is shown why and how the thermal Bose—FEinstein occupation factors should appear
in the expressions for thermal quasiparticle amplitudes of a thermal phonon wave
function. The points missed in Refs. 10, 12, 18 are analyzed and discussed. The
new formulae of the quasiparticle-phonon coupling term at finite temperature are
evaluated in Sec. 3.4. The summary and conclusions are given in Sec. 4.
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2. The TFD Formalism

We consider a system of Fermi particles at finite temperature and treat its sta-
tistical properties within the grand canonical ensemble. In the standard statistical
mechanics, a heated system is described by a mixed state density matrix p, which
is the solution to the Liouville-von Neumann equation

Op
“or

Here H is the Hamiltonian of the system under consideration with eigenstates |n)

[H, p]. (1)

and eigenvalues E,, (the chemical potential is included in H). The thermal average
of an arbitrary operator A is given by

((A)) = Tr[pA]/Tr[p] = Y e /T (n|Aln) /Ze—En/T, (2)

where T is the temperature in units of energy. The main idea behind TFD is to
define a special state, which is named a thermal vacuum |0(T")), such that the
thermal average of A equals the expectation value of A with respect to this state

({4)) = (O(T)[A]O(T)) - (3)

To construct |0(T")), one should double the Hilbert space of the system by adding
the so-called tilde states |f).! These tilde states are the eigenstates of the tilde
Hamiltonian H with the same eigenvalues as H, i.e. H|i) = E,|n). Thus, the
Hilbert space of a heated system is twice as large as of the corresponding initial
(cold) one.

In the enlarged space covered by the states |n) ® |m), two types of operators
are acting — the ordinary, say, A; and the tilde ones A;. There is a one-to-one
correspondence between these two sets A; < A;. However, ordinary operators can
change only ordinary states |n) whereas tilde operators change only tilde states |7).
There exist the following rules of tilde conjugation operation':

(A1 As) = Ay Ay,
- y . (4)
(141 4+ c2As) = i A1 + 5 A,

where c¢1, co are c-numbers. The asterisk denotes the complex conjugation. The
tilde operation is supposed to commute with the Hermitian conjugation:

(A)f = AT (5)

Moreover, it is required that ordinary and tilde operators should commute or anti-
commute with each other

[A1, Ao]5 =0 (6)

depending on their bosonic or fermionic nature.
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Introduction of the doubled Hilbert space of a heated system enables one to
construct the above thermal vacuum |0(7)) in the following manner:

|0(T)) = Ze*E"/QTem" ny ® |fz>/ Ze*En/T (o, €R). (7)

Hereafter, the thermal vacuum (7) will be referred to as the exact thermal vacuum.
The thermal vacuum is invariant under the tilde operation.

Till now our discussion follows the line of Refs. 1, 2. The new point appears
in the definition of the so-called DTCR. Originally,! DTCR was introduced in the
form

A= pPA A ) (8)
where pq = 1 if A is a bosonic operator and py = —1 if A is a fermionic one. This
DTCR form was used in all of the TFD applications to nuclear structure problems,
for example, in Refs. 6-19. However, quite long ago the other form of DTCR was
proposed by Ojima,2® namely,

A=A. (9)
That is, the Ojima version of DTCR does not distinguish between bosonic and
fermionic operators. This form is based on the equivalence between the algebraic
structure of TFD and that of the axiomatic statistical mechanics (c*-algebra ap-
proach) established by Ojima. In the present paper, we will compare consequences
of using the two DTCR versions. For that we define DTCR for a fermionic A in the
following manner:

A= 024, (10)

where o is equal to either 1 (/T — —A) ori (A= A). Thus, the DTCR definition
(10) includes both the above DTCR variants.
The Schrodinger equation for a hot system in the doubled Hilbert space reads

0
i U4, T)) = ML, T), (11)

since H = H — H is the time-translation operator and, therefore, the Hamiltonian
of a hot system. The operator H is named the thermal Hamiltonian.! The exact
thermal vacuum (7) is the eigenstate of H corresponding to the zero eigenvalue.
Equation (11) describes the time evolution of a system at finite temperature and,
thus, is the analog of the Liouville-von Neumann equation (1).

The properties of elementary excitations of the system at 7" # 0 are determined
by H. Excitation energies of various modes at T # 0 are the eigenvalues of H but
not of the original Hamiltonian H and in general they depend on T'. Moreover,
any eigenstate of H with positive energy has its counterpart — the tilde-conjugate
eigenstate with negative energy. Following Umezawa, we consider creation of a tilde
state with negative energy as annihilation of a thermally excited state. This is a
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way to treat excitation and de-excitation processes in a heated quantum system
within TFD.

Whereas the dynamical development of the system is carried by the thermal
Hamiltonian, its thermal behavior is controlled by the thermal vacuum. The grand
canonical value of an observable corresponding to operator A should be calculated
as (0(T)|A|0(T)), i.e. after diagonalizing H.

Obviously, in most cases one cannot diagonalize H exactly and, thus, find the
exact thermal vacuum and other eigenstates. Usually, one resorts to some approx-
imations and then finds an approximate thermal vacuum state, e.g. the thermal
vacua corresponding to the HFB or the random phase approximations. In the case
that there appear several solutions in the given approximation, one should find the
minimum of thermodynamical potential {2 to see which of them is realized. In TFD,

Q is given as'?

Q= (Uo(T)|H — KT|Wo(T)), (12)

where Uy (7T) is the approximate thermal vacuum and K is the entropy operator of
the system.

3. The Finite Temperature QPM
3.1. The thermal QPM Hamiltonian
In what follows, we will use the microscopic Hamiltonian of the QPM?°
Hqprm = Hsp + Hpair + Hpn - (13)

The Hamiltonian (13) includes average fields of protons and neutrons

Hyp = Z Z Jmajm ’ (14)

pairing interactions of the BCS type

Palr i Z G Z a]lml ]1m1 J2m2a]2m2 (G’W = (_1)j_maj7m)’ (15)

]1m1
Jama

and effective multipole—multipole isoscalar and isovector forces

ph=——2 ST (6 + et )M (1M, (p7). (16)

Ap Tp==£1

The single-particle operator M ;[ u (1) reads
M, (1) = 3 Gumali® Ba(r)Yau (6, 6) lj2mz)al, a1, - (17)

Jjima
J2mz

1 . . 1 .
Here, an operator a},, (a;,,) is the creation (annihilation) operator of nucleon in

a single-particle subshell with quantum numbers nljm = jm and energy E;; index
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T = n, p is the isotopic one, changing the sign of 7 means the interchange n < p, the
notation )" implies a summation over neutron (7 = n) or proton (7 = p) single-
particle states only. The parameter G, is the proton—proton or neutron—neutron
pairing interaction constant; Ry (r) is the radial form factor of the A-pole separable
interaction, Y, (6, ¢) is the corresponding spherical harmonic; H(())\) and /#) are the
coupling constants of isoscalar and isovector multipole-multipole interactions of A
multipolarity. The value A, is the neutron or proton chemical potential (the Fermi
level).

To find an excitation spectrum of a hot nucleus governed by the QPM Hamil-
tonian (13), at the beginning we should construct the thermal QPM Hamiltonian

HqrMm
Hqem = Hopnm — Hopu (18)

where f{QpM = ﬁsp + ﬁpair + f[ph is the tilde counterpart of Hqpm created by the
tilde conjugation rules (4). Then we should diagonalize Hgpwm. This procedure is
quite similar to that used in the standard QPM,2° i.e. at T = 0. The main difference
lies in the doubled Hilbert space of a heated nucleus.

3.2. Thermal quasiparticles

The first step is diagonalization of part of the full thermal Hamiltonian, namely
the sum of the two first terms Hsp + Hpair, which in the following will be referred
to as the thermal BCS Hamiltonian Hpcs. To this aim, we make the Bogoliubov
u, v-transformation from nucleon operators aT, a to quasiparticle operators oﬂL, Qa:

Tt e
Xy = Uja,, — Vg s (19)
— . 2 2 _
Ay = Uj Ay, — VO (Uj +uj = 1.

The same transformation with the same u, v coefficients has to be applied to nucle-
[ T

onic tilde operators a ims Qi thus producing the tilde quasiparticle operators & im

and ;.
jm
Thermal effects appear after the second (or thermal) Bogoliubov transformation,
which mixes ordinary and tilde quasiparticle operators and, thus, produces the
operators of so-called thermal quasiparticles ﬂ}m, Bjm, and their tilde counterparts
ﬂ;m = xja;m - O—yj&jm ) (20)

B = 0500, + oysam (23 +y3 =1).

Note that in contrast with Refs. 6, 7, 9, 10, 12 and many others, we include the
factor o from the definition of DTCR (10) to the thermal Bogoliubov transformation
(20).

To find the coefficients u,v, we express the thermal Hamiltonian in terms of
thermal quasiparticle operators (20) and then require that the one-body part of the
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thermal BCS Hamiltonian has to be diagonal in terms of thermal quasiparticles.
This leads to the following equations for the u, v coefficients:

2 J T 2 J T
u] 2< Ej >7 vj 2( €5 )’ ( )

where £; = \/(E; — Ar)2 + A2. The gap parameter A, and the chemical potential
A, are the solutions of the equations

T:—ZQ;H y3)u;vj, NszQJ—i—l(v 2haly?),  (22)
J
where N, is the number of neutrons or protons in a nucleus. Actually, the equa-
tion for IV, is not a consequence of the procedure described above but rather an
additional demand that a number of particles of any kind in the heated system are
conserved in average.
With u;,v; from (21) the one-body part of the thermal BCS Hamiltonian reads

HBCS = 7_{sp + Hpalr — Z Z 5] ]m 6jm[§jm) (23)

T jm

Thus, Hpcs describes a system of noninteracting thermal quasiparticles and tilde
quasiparticles with energies €; and —¢;, respectively. The vacuum for thermal quasi-
particles is given by!26

10(8, 8)) = exp{~K;/2} exp { o Zzam g, o 10(@))|0(a)), (24)

T jm

where |0(«)) and |0(&)) are the vacua for ordinary and tilde Bogoliubov quasipar-
ticles, respectively. The operator Ky is the entropy operator. It reads

ZZ{a]m W Iny? —l—ozjma]m Ina3}. (25)

T

We should stress that although the vacuum (24) is the eigenstate of the thermal
BCS Hamiltonian (23) with zero eigenvalue it is not yet a thermal vacuum state in
the sense of (3). To determine the thermal vacuum state corresponding to Hpcs, we
need to fix appropriately the coefficients z;,y;. They can be found by minimizing
the thermodynamic potential

Qf = (0(8, B)|(Hep + Hpair) — TK|0(8, )

= ZZ{eijQ +T(y§ lnyjz—i—x? lnx?)}. (26)
T Jm

Note that Q¢ contains the ordinary operators Hg, and Hpair but not the thermal
ones Hyp and Hpair. As a result of variational procedure, we obtain

~1/2
.
w=|rrew (2)] 0 m—a-gr (27)
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Thus, the coefficients yj2 are nothing else than the thermal occupation factors of
the Fermi—Dirac statistics.

The thermal quasiparticle vacuum (24) with the coefficients y;, =; (27) is the
thermal vacuum in the thermal BCS approximation. Hereafter, it will be denoted
by [0(T); ap)o-

The average number of thermally excited Bogoliubov quasiparticles with quan-
tum numbers jm in the BCS thermal vacuum |0(7T); qp)e is

(0(T);aplal,, a5, 0(T); ap)e = y2, (28)
whereas the average number of nucleons in the same state is
— . T . 2,2 2,2
n;(T) = (,<O(T),qp|ajmajm|0(T),qp>(7 = ujy; +vjT;. (29)

The function n;(T) determines smearing of the Fermi surface due to thermal and
pairing effects.

Equations (22) with y;,z; (27) are the well-known BCS -equations at finite
temperature (see, for example, Refs. 28-30).

Since the thermal vacuum |0(T"); qp), contains a certain number of the Bogoli-
ubov quasiparticles, the excited states at finite temperature can be built on the top
of |0(T"); qp)» by either adding or eliminating a Bogoliubov quasiparticle. Due to
the relations,

b [0(T);ap)e = 2385, 10(T);ap)e, a5 |O(T); ap)o = 0™y B5|0(T); ap)o . (30)

one can associate the first process with creation of a thermal quasiparticle having a
positive energy, whereas the second process can be considered as creation of a tilde
thermal quasiparticle having a negative energy.

The simplest excitations on the top of the BCS thermal vacuum in an even—even
hot nucleus involve two thermal quasiparticles. Their wave functions and energies
are

[6;r1ﬂ;2];)l|0(T)7qp>aa w =&y +€j2 = 55';')2 ;
LA ap)o, @ = —el7)
[5215%];)1\,|0(T)7qp>07 W =¢&j —Ej,

o (31)

Jijz2”

£

The square brackets | ]i; in (31) mean the coupling of single-particle momenta ji,

J2 to the total angular momentum A with the magnetic quantum number pu.

As it should be, any thermal two-quasiparticle state with positive energy w has
a counterpart — a tilde-conjugated state with negative energy —w.

Quite interesting relations exist between electromagnetic transition probabilities
to thermal two-quasiparticle states and their tilde counterparts. Let us write the
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E)-transition operator M(EAu) in terms of thermal quasiparticles

M(EA) = Z Z ;1\32 \iUng2) + Ax(Ga2) + Ban(jija) b

T Jij2

1 - ) )
ALH(]LD) 2”51])2 (le Ljs [ﬂ;l 6;2]2 - Uthyjz [ﬂ%ﬂ%} ) -0 vJ(1])2xJ1 Yjo [6;1[3;;2]2 )

Azp(igz) = (DM MAL, Gl
Bu(jiga) = =0 (w2 (81 BL10 + yi i [B5-5,,10)
+ uﬁjj)g (025,95 (8], 8,1 — o yj, 25, [B-A]%) . (32)

In (32), '™ s the reduced single-particle matrix element of the E\-transition
operator; u Uj, Vjp + Ujp Uy, o=

Jij2
7 .
51])2 jlj)Q = Uj Uj, — Vj,Vj, and A = V2 4 1.
Only the terms containing the operators Ai . (J172) and Asz(j1j2) contribute to
transitions from the BCS thermal vacuum state to any thermal two-quasiparticle
state. Introducing the functions

—1/2
Y(w) = [eXp (§) B 1} L X(w) = [+ V(W) (33)
and taking the advantage of the relations

+
vyl = (-2 —y2)Y2(ET),
(34)

2y =y}, — vy )Y?(e ;1;2) for g5, >¢€j,,

we get the squared reduced matrix elements ®3 of the operator M(EAu) between
the BCS thermal vacuum and different thermal two-quasiparticle states (31):

A
(81 A1) = (OM) ulT)2(1 — g2 — 2 X3 (),
AT At _ N (+) (+)
(I)i([ﬂjﬂf]ﬁ) - (Fjljzuj1j2)2(1 - y]21 - y]22)y2(€j1j2)’
o W}, =X, G >en)s (g

B3 (8], BLIN) = (L5, 07002 %
177 Ji1J2 Jlj2 _
: (yj21 - yjzz)yz(eggj)l)v (Ejl < 6jz) »

At ot ( ) ()2 (yJ22 - yjzl)YQ(e;:j)g)7 (Ejl > 6jz)v
([ﬁjlﬁjz] ) ( JiJ2 Jljz) 9 9 2/ (—)
W5, = ¥5,) X755, ), (€4 <)

From (35) it follows that transition probabilities to the states tilde-conjugated to
each other and, correspondingly, having the energies +w relate with the factor

B () = oxp () 83~ (36)
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Formally, the function Y (w) in (35) is the Bose-Einstein distribution function,
which determines the average number of bosons with energy w in a system in the
thermal equilibrium at temperature T'. This gives an idea to treat two-fermion exci-
tations in a hot nucleus as bosons. The probability to create a boson is proportional
to the factor [1 4 Y?(w)], whereas the probability to annihilate it is proportional to
Y?2(w).

Expressions (35) determine E)-strength distribution in a hot nucleus within
the independent BCS quasiparticle approximation. An interesting point is that in
contrast with T = 0 case a portion of the F\-strength appears in the negative
energy region w < 0, i.e. below the thermal vacuum state, at finite temperatures.
This strength determines a probability of y-ray emission by a hot nucleus, whereas
the strength at w > 0 determines a photoabsorption cross section. Both the parts
of the E)\-strength contribute to the energy weighted sum rule (EWSR) at T #£ 0

EWSR = ) Z e L@ (1818110 — R (BRI

T j12j2

+) Z el @381 ALY — @3 (1AL A1 0]

T j12>J2

_ (/\) (+) (+)\2 2 2 (—) (=)
Z Z 3132 31j2 (uj1j2> (1- Yj — yj2) &g (v 1112) (ym - yjz)]
T ji12>J2

(37)

3.3. Thermal phonons

The second step in the diagonalization of the thermal Hamiltonian is to take into
account the long-range particle-hole interaction Hpy,. This interaction is respon-
sible for the existence of different types of collective vibrations in nuclei. In this
subsection, the thermal quasiparticle random phase approximation in treating the
vibrations of hot nuclei is discussed.

Transformations (19) and (20) with the coefficients determined by Eqs. (21) and
(27) should be applied to the rest of the thermal Hamiltonian Hpy, — Hpp as well.
Then the thermal Hamiltonian (18) takes the form

Harn = Y > & (B850 = BlBim)

53 ST 8+ o) (M ()M (or) — NI, (1) Ty, 7))
Ap Tp==£1

(38)
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In terms of thermal quasiparticles, the multipole operator M i H(T) has the same
shape as the EA-transition operator (32). The only difference is that one should sub-
stitute matrix elements F( j) for matrix elements f(lj2 (1]l RA(r)YA(0, @) || 72)-

The thermal Hamiltonian (38) can be approximately reduced to the Hamiltonian
of noninteracting bosonic excitations — thermal phonons. This occurs if one omits
in (38) the terms containing the operator By, (j1j2). Hereafter, the remaining part
of the thermal Hamiltonian (38) is denoted Hrrpa.

To diagonalize Hrrpa, it is natural to use a trial wave function, which is a linear
superposition of different types of thermal two-quasiparticle operators, namely

/\l” - ZZ J1J2 J1J2 [ﬂ 6 ] + 2077]1]2 [ﬂjlg_%]ﬁ)
T Jij2
+ (_1))\—H( J1j2 [ﬁ.hﬁ]Q] 31]2 [ﬁjlﬁj?] + 20 ]1]2 [ﬁ]16]_2] ) .

(39)

The factors o and o* at the crossover (i.e. tilde-—nontilde) terms of (39) are absent
in the thermal phonon definition in Refs. 10, 12, 18. They appear due to adoption
of the new DTCR (10). The definition (39) coincides with the one in Refs. 10, 12,
18 when o = 1.

One more very important assumption has to be accepted. We assume that the
thermal biquasiparticle operators contained in (39) commute like bosonic operators

[[ﬁjlﬁjz]ﬁv [ﬁ;ﬂ;;]ﬁi] A =0 O (611135j2j4 + (= 1)31 J2tA 6]1]45j2j3) )
[[6]1ﬂ32]w [6 ﬂ;;m;] ~ _5)\/\/5MM/5J1J36J2J4 )

and all other commutators are equal to zero. This assumption is known as the

(40)

quasiboson approximation.

Moreover, taking into consideration the long-range interaction we should rede-
fine the thermal vacuum state. At first, we define it as the vacuum state |0(Q, Q))(7
for thermal phonons

Q/\ui|0(Qv Q)>o’ = 07 Q/\ui|0(Qv Q»G =0. (41)

A thermal one-phonon state is constructed by acting on the thermal phonon vacuum
[0(Q, Q))s by the thermal phonon creation operator

QL,10(Q,Q))s - (42)
A thermal tilde one-phonon state should be define as
Q;—m| (@ Q) = (~DQL_,,10(Q, Q)0 (43)

because just the operator (—1)*~ “Q Aepii transforms under spatial rotations like a
spherical tensor of rank .
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The set of thermal one-phonon wave functions has to be orthonormalized. This
demand together with the quasiboson approximation for commutators of biquasi-
particle operators (40) imposes the following constraints on the phonon amplitudes

Wy ¢y D, Gy 1, €

~\i ~/\'L Ai AL ~)\z 5.
9 Z Zgjljz J1J2 + g]1]2 JiJ2 + t]lJZ ]1]2 + t]lJZ Jijz 5”' ’

T Jij2

~ i Al ~)\'L AL )\'L _
Z Zghh Jlj2 + gjl]2 J1J2 + tj132 J1Jj2 + tj132 Jijz T 0.

T Jij2

In (44), the following notation is introduced for the sums and differences of original
phonon amplitudes:

Al ~ N\ A
w ) .. Jlj2 3132’ /. Jlj2 Jl]2 ’
J1J2 Jij2

¢ Al f Al
I Vi i D V) ENi
(S) =M, F & (g) = Mg F & -
J1J2 J1J2

_ j1—ja+A XN — (_1\j1—J2tAeXi
Moreover, 7,7, = (1) My §55, = (=1) jaj1

Constraints (44) imply that thermal phonon operators commute like bosons.
With constraints (44) one can find the inverse transformation to (39)

(45)

T i A
Zwm S+ 9005 Qo+ O Qs + 9001 Qo
(46)

o ~\1
[ =0 Z n]ug /\/u 3112 Q)\/u + 77]1]2 Q,\,” jl]QQ)\l“ )

and then evaluate the following expression of the thermal RPA Hamiltonian Hrrpa
in terms of thermal phonon operators:

HTRPA:ZZEJ —ﬁjm jm ——Z Z Ky + PRY)

T /\um’ Tp==+1
<A{[DY D) = DY DYN(QN s + Q5 Q% + QL)
FIDXDY — DY DNQL + Qu) (@l + Q) — (1)} (47)

The notation “(t.c.)” in (47) stands for the items, which are tilde conjugated to the
displayed ones. The functions D2 and D2* (1 = n, p) are the following combinations



On the TFD Treatment of Collective Vibrations in Hot Nuclei 1547

of phonon amplitudes:

-

D;}Z = Z fj(l)\])Q[ ;j_j)z (lexhg]lh o y]lyJZ-g]l]Q) — 20 vg(lg)zleyjztjljg]

J1J2
(48)
D;\i = Z fJ1]2[ J1j2 ($]1$]29]1]2 OQyjlyﬁg;\lzjz) - 202U§;j)2yj1x32tjlzj2] :
Jij2

To find eigenvalues of Hrrpa, we apply the variational principle, i.e. we min-
imize the expectation value of Hrrpa over the thermal one-phonon state under
constraints (44).

It should be stressed that the phonon vacuum |0(Q, Q))s is not the thermal
vacuum in the sense of Eq. (3) and, thus, the expectation value of any physical
operator with respect to [0(Q,Q))s does not correspond to the average over the
grand canonical ensemble.

After a variation procedure with respect to functions ¢, w, g, w, t, and s one
gets a homogeneous system of linear equations. Since we use the separable effective
interaction, the system of equations looks simple

. i 1 f(k) (+)
( ) = e e Srse Z( % )+P“§ ))[leth/\’ +o y]lyJQD ]7

- +
¢ Tj1j2 2/\2 glj)z F Wi p=+1
Ai 5 sV ()
Z/J a 152 Yir j A A i AL
( i = LR N (6 4 pr )i Dot + 0P, D)L, (49)
Tj1j2 2\ €1 da T wxi p==+1
" s e SIS A ~\i
(1) --% (1;2 5 (6 4 kD — i ]
T2 23 €j1js T WAi p=11

For a further discussion, it is more convenient to rewrite the system (49)
regarding the functions D;‘i and D;‘i as unknown variables. Then, we get

> 6 +o(B) = e (2) (50)

p==1 pT T

where the function X} (w) reads

” (+) y2,.(+) (=) y2,(=)
1 Moo | ) e (U =93 —y3) ()0 W3 — v3,)
XM (w) == (f ))2[ ) PR 2 =

4 (H)y2 _ 2 (=)y2 _
(€j1j2) w (53'13'2) w

(51)

Demanding the existence of a nontrivial solution to the system of linear equa-
tions (50), we derive the secular equation for the energy of the thermal one-phonon
state wy;

A A A A
(56" + XD @) + XD )] = 4RV XO @)X V@) =1, (52)
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Equation (52) is strictly the same as was obtained by other methods in Refs. 31-33.
It does not differ as well from the previous results of the TFD-QPM approach.'%:12

One obtains the same secular equation as (52) if the variational procedure is
applied to the expectation value of Hrrpa over the tilde thermal one-phonon state
Q;—M|O(Q, Q))(7 As it was stated in the previous subsection, both the positive and
negative energy excitations of a hot nucleus built on the top of the thermal vacuum
have a physical meaning and should be considered on equal footing. Hence, the
negative roots of (52) are identified with energies of tilde phonons.

Unfortunately, the values D} and Df_‘l cannot be determined unambiguously
from Eq. (50) and the normalization condition (44). The reason for this indetermi-
nacy is the following. Equations (50) enable one to prove that the TRPA Hamilto-
nian Hrgrpa is diagonal in terms of the thermal phonon operators, i.e.

Hrrea = Y wxi(@,:Qx — @1 Qxp) - (53)

At

It is seen that the Hamiltonian (53) is invariant under the unitary transformation,
which mixes nontilde and tilde thermal phonons but preserves the secular equation
(52). Just due to this invariance the systems of Egs. (49) or (50) cannot be solved
unambiguously. To overcome this problem, one needs to involve additional consid-
erations. To this aim, minimization of the thermodynamic potential was used while
considering the pairing correlations at finite temperature (see Sec. 3.3). However,
in the case of a thermal phonon system this procedure is not so straightforward.

Let us turn back to Eqs. (49). The following interrelations between D and D
can be easily found from the normalization condition (44):

i A \i 2 XM (W)
(DY')? = (DX)? = 4)\4W ) (54)
where N2 is given by
NN = )2 3X<A>(w)|ww ,
T aw T —Wii
2
L= X @ai)(re” +m17) " 9 o o
X X X A (5] IR (55)
XO@ni g sy ) O

Instead of the functions D} and D, it is convenient to introduce the new

variables

Al i i i
_DNAY L DD 56)

- ~ ) )\ - ~ )
2)\2X§)\) (wM) ' 2)\2X9)(wM)

i

which obey the following condition: X fz — Yfi =1.
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Then we substitute Xy; and Yy; for D2 and D) in Egs. (49) and get

Xi (A 5,5
<¢> ' L f]l]z J1g2

(24,75, Xni + 02yj1yj2Y)\i) )

¢ J1J2 \% NM h] F wWxi
i 2 (Y] (+)
¢> g lem J1j2 2
- (Vi Yja Xni + 025,25, i), (57)
( ¢ Jijz2 \/ M Ej_]é Twyi
i 2 A, (=)
77> a® iV (
== Tj Yja Xni — Yj Tja Yai) -
<£ J1jz VAR 513)2 F wWxi o o

Some conclusions concerning variables X; and Y); can be achieved if one an-
alyzes their behavior at the limit T — 0. Obviously, the phonon wave function
(39) at T' = 0 should consist of two components only aT O‘L and oy, , . Since at
T — 0 the thermal occupation numbers of quasmartlcles y; tend to zero (z; — 1),
the demand can be fulfilled only if Yx; — 0 (and synchronously X; — 1). In such

A and ¢ tend to zero whereas ¥, and

a case the tilde amplitudes ¢, ]1]2 e 31]2

survive.

Let us define the thermal phonons with the amplitudes corresponding to Yy; = 0
and X); = 1 as qim,q)\m and name them “reference phonons” (r-phonons). The
vacuum for r-phonons is denoted by [0(q, §))o. From (57) one can conclude that
the thermal phonons corresponding to other values of X,;,Y); can be produced by
applying the unitary {X»;, Y);} transformation to the r-phonons

me XMQI\M = Yaily 0

: (58)
Q/\l“ X)\iq)wi - Y/\iq,\m‘ .
The vacuum for the phonons Q i Q i has the form?!
0(Q. Q)0 = exp{~Kp/2} exp{ ¥ i ¢ 1000 D)o (59)
At
where K is the entropy operator for noninteracting bosons
Ky = — Z{QT\M‘L\M In Y/\Qz' - q/\mq;m In sz'} ‘ (60)

At

Now we are ready to determine the values X»;, Y);. To this aim, we minimize
the thermodynamic potential €, for the r-phonon system, which reads

O(Q7 Q)| Z wAiQI\MiQ,\Mi - ka|0(Q, Q))a

At

= {oxYE +T(VEImYE + X3 X})} (61)
At
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Varying (61) with respect to Y); and equating the result to zero we get

_ —1/2
i = {exp <wf) _1} X = [ YR (62)

The coefficients Yfi are the thermal occupation factors of the Bose-Einstein statis-
tics. They determine the average number of r-phonons in the thermal phonon
vacuum

(0(Q, Q)] ¢},,:0,,:/0(Q. Q))o = V3. (63)

It is worthwhile to note that the problems of correct construction of the thermal
RPA phonon operator and the thermal RPA vacuum state were already discussed
in Ref. 9 using the BCS Hamiltonian as an example. The authors of Ref. 9 also
confronted with an ambiguity of RPA solutions at finite temperature. To get it
out, they introduced the “nonrotated” thermal pairing phonons and then made a
thermal rotation, which minimized the thermodynamic potential. At the same time,
these circumstances, i.e. the invariance of the Htrpa under the thermal rotation
(58), were overlooked in Refs. 10, 12. In these papers, it was assumed that Yy; = 0
at any temperature and the vacuum for “r-phonons” was identified as the “true”
thermal vacuum state. That is why thermal bosonic occupation numbers did not
appear in the corresponding formulae in Refs. 10, 12, 18.

Now we can fix the factor . To this aim, we consider the behavior of thermal
phonon amplitudes (57) when the coupling constants of a separable multipole in-
teraction I{O/\l) tend to zero. When H(()/\l) — 0 the thermal phonon energy wy; — 5%}2
and only one amplitude has to survive in the corresponding phonon wave func-
ti(O)\I)l In particular, all the amplitudes of backward going components vanish when

Xi

kg1 — 0. Taking advantage of (34) it can be shown that if wy; — el

jijz Sivjz 0

whereas (nj jz) — 1 at any o value.
When wy; — 6( , the amplitudes ¢ and 1/) also vanish at any value of 0. However,

limiting values of w and d) appear to be dependent on o, namely,

. xj, T, X (e (Jr))-i—ay Y5, Y (€ (Jr-))
lim i Tt Y57 Egige) X2 4 o2y2(el))
J1J 1/2 ’
W)xz‘}5§17)2 2 (1 _ yj1 _ yjz) / J1J2 J1J2
oy XE Y 2, Y (e
li Ao J1992 J1]2 J1tje VLI e (+) Y (+) 2.0 1).
wxiir?(_‘*'? 7 (1 - yjl yj2)1/2 ( 11]2) (63112)(0 + )

7132

(64)

Since from a physical point of view d)] ', should vanish, we choose o = . Then not
only ¢]1J2 = 0 but also %112 = 1. The present result on DTCR agrees with the
conclusion in Ref. 27. In Ref. 27, the appropriate choice of DTCR was specified by
the fermion number conservation in the system. If the number of fermions in the
system is not conserved, DTCR should have the form (9), i.e. A = A. This seems

to be just our case since the number of quasiparticles in a nucleus is not conserved.
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Now we complete constructing the thermal phonon operator and the “true”
thermal vacuum state in the random phase approximation. They should be calcu-
lated with formulae (39) and (57), where X; and Y); are given by (62) and o = i.
Hereafter, the thermal phonon vacuum is denoted by |0(7); TRPA). We would like
to stress once again that the thermal RPA vacuum |0(T); TRPA) reduces to the
thermal BCS vacuum when the particle-hole interaction vanishes only if the co-
efficients X;, Y; are the phonon thermal occupation numbers given by (62) and
o =1.

At the end of this subsection, we calculate a matrix element of the E\-transition
between the RPA thermal vacuum and a thermal one-phonon state. To this aim,
one has to write the operator M(EAu) (32) in terms of thermal phonon opera-
tors. Taking into account only the term of (32) with the operators A;M (j1j2) and
Am(jljg), one gets

MEN) = =3 Y >r

T T J1j2

X {[ Jlj)z (%1%29]1]2 + y11y32gjuz) + 21)](1])230]1 yhtjuz](Q/\m + Q)\_p,z)

+ [l (@, G, + Ui ving)s,) + 205 yg wgt) A(Qi—m + Qi) }
- i zz: zT:ry{XM(QQM + Q) + V2@, + Q) (65)
where
oyl wé— (e =~ k) () 08 )
12 T (€j272)° = Wi (€5,52)% — Wi

(66)

Expression (65) differs significantly from that in Refs. 12, 18. Specifically, there
appear terms with tilde-phonon operators in (65). This is a consequence of {X,Y'}
rotation of thermal phonons. The item proportional to the factor Y); is responsible
for transitions to tilde phonon states lying below the thermal vacuum state, i.e. for
decay of the thermal vacuum.

Thus, there are two types of matrix elements corresponding to excitation and
de-excitation processes of the thermal vacuum

®xi = (0(T); TRPA|M(EAW)Q),;0(T); TRPA) = X ) T,
) i (67)
®xi = (0(T); TRPA|M(EM)QL[|0(T); TRPA) = Yai ) T

The factors X); and Y); in (67) were missed in Refs. 12, 18 since the r-phonons
qi\m, ijim. were explored rather than the “rotated” Q i Q i+
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The factor X2, in the photoabsorption cross section for hot nuclei as well as its
role was discussed in detail in Ref. 34. This factor occurred also in the response
function in Ref. 32 but was missed in the B(E\) | expression in Ref. 33. Note that
in both the papers3?33 the thermal RPA equations were derived with the equation
of motion method for bifermion operators oz;»loz;r-z and oz;r-lah.

As in the case of transitions to thermal two-quasiparticle states (see Sec. 3.2),
there exists the following relation between transition probabilities from the nontilde

and tilde one-phonon states
B2, = exp(wxi/T)P3, . (68)

This relation is equivalent to the principle of detailed balancing connecting the
probabilities for the probe to transfer energy w to the heated system and to absorb
energy w from the heated system (see, for example, Ref. 32).

The model energy-weighed sum rule at the thermal RP approximation is given
by

EWSR = 3 wn(®3, - 83) = 3 wn (0 +T0)° . (69)
wxi>0 wxi>0
It is worthwhile to note that the EWSR (69) appears to be independent on the
thermal phonon occupation factors. The numerical value of (69) should coincide
with that of (37).

Nominally, this expression coincides with that in Ref. 33. However, the essential
difference between the present result and Ref. 33 is the contribution of TRPA states
with negative energies wy; (i.e. tilde states). In Ref. 33, the total strength of EX-
transitions is located in the positive energy region whereas in the present approach
some fraction of strength is carried by the states with wy; < 0. As a result, part of
the EWSR pertaining to positive excitation energies is greater than the total one
that is obvious from (69).

3.4. Interaction of thermal phonons

In this subsection, we deal with a coupling of thermal phonons, i.e. go beyond the
thermal RPA. Physical effects that can be treated in this order of approximation
relate to fragmentation of basic nuclear excitations like quasiparticles and phonons,
their spreading widths and/or more consistent description of transition strength
distributions over a nuclear spectrum. The problem of temperature dependence of
the giant resonance width, which was intensively discussed not long ago (see, e.g.,
reviews Refs. 35-37) also belongs to this set.

The part of H (18), which is responsible for these effects, is the so-called
quasiparticle-phonon interaction (or the cubic anharmonic term) Hqpn

Haph = Z Z Z \/jj\% /\/w + Q)\;u,)B)\l“(JIJQ) (h.c.) = (t.c.)},

)\M T Jjij2
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+ 7
Baui(uj2) = i), (235, 8%, 5,10 + 235 [BEB510) — 05, (475, 161, A1)
+ Y5, [Bj—ﬁjm. (70)
The coefficients Xj’\fh, RYAY s and Z;‘fh are given by

At
X X Y
<y>_ _ =$j1$j2<Y)M+yj1yj2<X>M Z) =,y Xai + Y5 w5, Yai . (T1)

Jij2

The interaction Hqpn couples the multiphonon states whose structures differ by one
phonon, i.e. one-phonon states with two-phonon states, two-phonon states with
three-phonon states, etc. This term can be named the “cubic anharmonic” one
because in the lowest order of boson expansion the fermionic operator B ,;(jij2) is
substituted by the product of two bosonic operators (or phonons). The remaining
part of the thermal Hamiltonian consists of the items ~ BI\_H (jljg)B)\u (j3j4), which
are equivalent to the sum of products of four bosonic operators. Its contribution
will not be considered here.

To take into account the term Hqpn, we again apply the variational principle.
A new trial wave function is assumed to be of the form

| Z R; JV QJMz Z PAA;Z; /\111 QAQzQ]

Aliy
A2z

A1 t A1t 3T T J
Z S/\zllzl JV /\ﬂlQ/\ io ZT/\zllzl JV Q/\ nQ)\zzz]
Apiq A1iy
Xgig A2i2
x |0(T); RPA), (72)

where R, P, S, T are the variational parameters, which should be determined. As
one can see in (72), the thermal vacuum is kept the same as in the TRPA. At
T = 0 the latter approximation is valid if the quasiparticle-phonon interaction is
relatively weak.

The trial wave function (72) has to be normalized and, therefore, the amplitudes
R, P, S, T should satisfy the following constraints:

S Ri(JV)? + Y 2P (V)P + (SN (Iv) + 2T (Jv)PY =1, (73)

i A1iq
)\Q’iQ

Since the trial wave function contains three different types of components, there
are three types of interaction matrix elements, which couple a thermal one-phonon
state with two-phonon ones

U (Ji) = (RPA; O(T)|Quari Hapn[Q1 . Q1. 17,10(T); RPA)
Vi (i) = (RPA; O(T)|QuariHapn[QF, i, QL TH/10(T);RPA), - (74)
WL (Ji) = (RPA; O(T)|Quari Hapn QL. QT 17,(0(T); RPA) .

Xl’Ll )\Q’LQ
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The matrix element U QIZ ! (Ji) corresponds to a transition from one to two phonons,
whereas the matrix elements V’\”1 (Ji) and Wi‘;’; (Ji) describe a thermal phonon
scattering and a thermal phonon absorptlon7 respectively. The explicit forms of U,
V', and W are given in Appendix A.

Thus, we should minimize the expectation value of the thermal Hamiltonian

Hrpa + Hqph over |¥,(JM)) at constraint (73). The expectation value is given by
(W, (JM)[Hrpa + Hapn| ¥, (JM)) Z wyi[R

)\1 1 )\1 1
+2 Z w/\lil + w)\2i2)[P)\2fZ2 JV + Z w)\lll w/\zlz)[s,\gzg (JV)]

Api Ariy

Agio A2tz
=23 (@nin Fwna) [T (P +23 03 R (UL (D)
PSEA [EPSES
Xgig A2i2
+Sis (JIWRE (T + T IV (i) (75)
A2io Agig Ao A2z t )

After the standard variation procedure, one gets a homogeneous system of linear
equations (7, is the energy of the state |¥,(JM)))

Ri(Jv)(wxi — mw +Z{P§;;; VU ()
N
HSA(TV)VRRH (D) + TR (JV)WRLH (i)} =
PR () (@ri + @rai = 10) ZR VU (Ji) = (76)

AQ'LQ
S/)\‘;Z; (Jv) (Wi, — Wrgis — M) + Z Ri(JV)V/\/\zliil (Ji) =

A A
T)\211121 (JV) (W/\111 + Wrgiy + 77,/ i~ Z R;( W)lelzl (J’L)
The system has a solution if 7, is the root of the following secular equation:

1 UN I (JHUR (i
det |(wri — 1w)0ir — = Z iy (TDUhaiy (1)
2 w)\l’tl + wkgig - 771/

Ariy
A2z

o Vis (VG (1) Wil (TOWR (1)

)\Q’LQ

- 0. (77)
wkl’tl w)\QiQ - 77u w)\l’il + wkgig + 771/

Minimizing the expectation value of the thermal Hamiltonian Hrpa +Hqph over the
wave function |¥,(JM)) we get the corresponding equations for tilde-conjugated
states. They also can be obtained from (76) and (77) by changing the sign of 7,.
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That is, if 0, is the energy of a given state |¥,(JM)), then —n, is the energy of
the tilde-conjugated state | ¥, (JM)).

Certainly, the above results deviate from those of Ref. 10. Owing to the changes
of thermal RPA-phonon amplitudes and, in particular, their dependence on the ther-
mal phonon occupation numbers, the quasiparticle-phonon interaction (70) couples
one-phonon states with three types of thermal two-phonon states whereas in Ref. 10
only one type was taken into account (namely, the first term in (72)).

The terms QTQT and QTQT in the trial wave function describe the processes,
which were not considered in Ref. 10 and later in Ref. 18. The processes of
thermal phonon scattering and absorption became possible due to the presence of
thermal r-phonons in the thermal phonon vacuum. Since in Ref. 10 the thermal
quasiparticle-phonon interaction was treated on the basis of thermal vacuum for
r-phonons, the above effects were missed.

The inclusion of the terms QTQT and QTQ' in the trial wave function produces
the new poles in the secular equation (77) in comparison with the previous study,'®
namel% (W/\1i1 - w)\QiQ) and _(w)\l’il + w/\2i2)'

The new equations of the TFD-QPM approach (76) and (77) are in qualitative
agreement with those in Ref. 22 and, in some respects, in Ref. 21.

As it was mentioned in Sec. 1, the consideration in Refs. 21, 22 was based on
the Matsubara Green’s function technique and nuclear field theory. The approach
of Ref. 22 is especially close to our approach since it treats a hot nucleus as a sys-
tem of interacting TRPA phonons. Although the equations of both the approaches
seem to be hardly compared “term-to-term” because of quite different formalisms
explored, in both the cases the negative TRPA roots are in the game, the poles in
the equations are of the same types, phonon interaction matrix elements are similar,
etc. That is why we can establish their “qualitative” agreement.

The formulae for the matrix elements of E'A transitions from the thermal vacuum
state to the state (72) and its tilde-counterpart are quite obvious. In the leading
approximation the operator M(E\) induces a transition from the thermal vacuum
to one-phonon components of the thermal state |¥,(JM)) (or [¥,(JM))) only.
Matrix elements of direct transitions from |0(7"); RPA) to two-phonon components
are very weak although do not vanish. Thus, one gets

B(Jv) = (U, (JM)|M(EN)|0(T); RPA) = 3 Ry(Jw)si,
O(Jv) = (U, (JM)||M(EN)[0(T); RPA) = Y Ri(Jv)®yi ,
where ®y; and ®;; are given by (67).

4. Summary and Conclusions

The present study was motivated by the necessity to reexamine the TFD-QPM
approach'%1218 in theory of hot nuclei. In this respect, a couple of new facets
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of the TRPA formulated within the TFD were found and their influence on the
coupling of thermal phonons was established.

We showed that for the Hamiltonian consisting of a mean field, the BCS pair-
ing interaction and separable particle-hole effective interactions, amplitudes of a
thermal phonon wave function (39) were not determined unambiguously by diago-
nalization of the RPA-part of the thermal Hamiltonian. To fix the coefficients of a
linear transformation from the set of thermal two-quasiparticle operators to phonon
operators, one should impose an additional demand — to minimize the thermody-
namic potential of the system of free thermal phonons. This was achieved by using
one more unitary transformation — a thermal rotation of “reference” phonons
(r-phonons). As a consequence, the Bose-Einstein thermal occupation numbers
(thermal occupation numbers of phonons) come to play. It should be stressed that
the new ingredient does not affect the main TRPA equation, i.e. the equation for
thermal phonon energies.

As far as we know, the thermal rotation of phonons in the TRPA framework was
discussed only in Ref. 9 when treating the pairing BCS Hamiltonian. The thermal
rotation of phonons was missed not only in the preceding TFD-QPM studies!?:12:18
but it was not also mentioned in Refs. 6, 7. Moreover, the Bose—Einstein ther-
mal occupation numbers do not appear when the TRPA equations are derived by
exploring the phonon operator with scattering terms.33:38:39

Thus, according to the present results amplitudes in the thermal phonon wave
function depend not only on thermal occupation numbers of the Bogoliubov quasi-
particles making up the phonon but also on the thermal occupation numbers of the
phonon. Moreover, presently the corresponding thermal phonon vacuum contains
some amount of r-phonons with probabilities determined by their energies in ac-
cordance with the Bose statistics. During to this, the processes of excitation and
de-excitation of a hot nucleus can be regarded on equal footing.

The above results have weighty consequences. The first one is the appearance of
the factor 1/(1—exp(—w/T')) in the EX transition strength. Its role was discussed in
Ref. 34 where it was derived using the Green function technique (see also Ref. 32).
This factor somewhat enhances the low energy part of the E)\ transition strength.
It is also essential when w can take negative values, i.e. when considering a decay
of a hot nucleus.

The second consequence concerns the thermal quasiparticle-phonon interaction
Hqph- This consequence is two-fold: (a) renormalization of phonon—phonon interac-
tion vertices (cf. matrix element Ufg;j (Ji) (A.1) with that in Ref. 10); (b) essential
extension of the thermal two-phonon configuration space and the corresponding
complication of trial wave function (72).

With the above new ingredients the TFD-QPM approach well conform (at least
qualitatively) with a more traditional one exploring the Matsubara Green’s function
method.?"?2 Now in both the approaches one has two kinds of thermal occupation
numbers (fermionic and bosonic) and the identical sets of processes giving rise to
the phonon—phonon coupling.
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In view of the above discussion, we conclude that the results of calculations
in Ref. 18 should be revised. At the same time, it should be stressed that the
thermal rotation of phonons cannot be regarded as a mandatory ingredient of a
microscopic treatment of boson-like excitations in many fermion systems. Its ne-
cessity seems to be intimately related with a two-body interaction character. For
example, in Refs. 14, 16, 17, 24, 25, some approximations going beyond the TRPA
were constructed by using the TFD formalism and their validity was examined by
the example of the Lipkin model. In those studies, the transformation from thermal
bifermion operators to thermal phonon operators was unambiguously determined
by diagonalization of the thermal model Hamiltonian. No additional demands or
assumptions were needed to be involved.

One more new feature of the present study is exploring the double tilde-
conjugation rule in the form proposed by Ojima.?6 More precisely, we found that
just the Ojima formulation of DTCR guarantees the correct behavior of the thermal
phonon wave function in the limit of vanishing particle-hole interaction. Further-
more, the Ojima form of DTCR implies the complex thermal rotation for fermions.
An interesting point is that the effect of the DTCR choice was revealed only at the
TRPA stage while constructing a thermal phonon operator, whereas at the pure
fermionic stage when, e.g., pairing correlations were considered, the role of DTCR
did not show up in and both the versions gave the same results.
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Appendix A

Here we display the matrix elements of the quasiparticle-phonon interaction Hqpn
between thermal one-phonon and different two-phonon configurations. The phonon
amplitudes are shown in (57) and include both quasiparticle and phonon occupation
factors. The symbol {---} is the standard 6j-symbol.

i < 3 - T EED)
GUNOHEDWISY l J/\;h{ ' 2}g)\111)\212(]1]2]3)

1 J2
T j1j2Js ‘73'7 J

A (A e T
+ \/j\% {j; jf jQ}T:\\zllzlJz(]le.jii)

22 (g A g
+(_1)/\1+/\2+J JiJj { -2 .1 : }‘7_—-;\12“2‘11(]1]2]3) , (Al)

VN2 g3 g1 J2
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where
Ji R Ji (* A1i1 A2tz A1i1, 1, A2i2 Ari1 fAaia A1i1 ~A2i2
Givinnaiz (10203) = X55,0;, 5, (550 5550 + D553 Visit + Mings Sian + Shads Tiagn )
~/\11;1 ~/\2’i2 ~/\1i1 /\212 ~)\111 )\212 /\111 /\212
y]lh ]1]2 (wj2j3 ¢j3j1 + (bjzja w]B]l + Mjsja §]3]1 + €j2]3 M1 )

Ji (+) TALi1 )\21'2 TA1i1 =A2ta  =A1i1 g Aada  FA1dr g A2
ZJljz 11j2(1/)j213 é.J3J1 ¢J2Js773331 Mjzjs Pisin gj2j3 szji)

_ =ZJi A1d1 ¢ A2i2 A1d1, A2da  A1d1 JA2i2 _ ¢A1d1 7 Aaia
Zj2j1uJ1J2 (w]wa §]3]1 + ¢J2J3 773331 J2J3 (bjajl Ejzja wjajl ) ’
A1d1 s sy P, (&) Agiz Agiz Aoio ~Ji A2ig £,
)\QiQJi(]ljzj?’) - le]é vj1j2 (w]éja 1311 + d)jzja 1311 + n]2]3 Mjs1 + £j2j3 3331)

Avit, (=) (7 A2d2,7 T A2i2 7 ~)\212 Ji EXois
yjlh 1112(1/}1'21'3 J3J1 +¢1213 J3J1 771213 Mjsj1 +51213 1311)

A1ty (+) TA2i2 ~Ji T 212 £, )\212 FA2i
+ Z]ljz J1J2 (wjzh M35 + ¢]2]3 gJSJl j2j3 w]S]l J2J3 ¢]3]1)
A1i1 (+) A2z, Ji A2i2 _ A2i2 _ Aoio 7 Ji
Zh]l J1J2 (whjs Mjs 1 + ¢J2J3 ]3]1 Mjzjs 11)13]1 J2Js ijl) .

4 N S BV
VI = A YT Y | { }Smmoum

T J1J2J3 \4 NJZ '73 -71 -72
A1)
fj( ]1 A1 Az J A
i \/J\% Js J1 Jo R’\;;‘”(Jljﬂ?’)
T

£ (g n g Aoi
- (_1)A1+A2+J\/,/j\% {j?, J1 jz}]:/\flfh(jm%) A

where
Sj\Jli'Lll A2z (J 1J 2j3) XJ{ZJQ J1J2 (w;\;ji; (5?3'2;12 + ¢;\21]Z; 1/)]/\32]112 + 77;\21;31 5;\::.2;12 + EJ)\;JZ; 77;\32;12 )
yjlh J1Jz (J}J)\;stl ¢j\32; 12 + sz\;ﬁ wj)\:fj? 1/\21;31 5;\32;12 + 51)\213131 771)\32]112 )
2] R O — T O — 00

Ji (+) A1d1 FAoi2 Ard1 ~A2da _ A1d1 g Aede _ cA1d1, ) A2d2
ZJ?Jl J1J2 (ijs 5]331 + ¢J213 Mjs 1 Mjajs ¢J3j1 £j2j3 szj& ) ’

Ariy Ariy ( ) (7 A2z T A2i2 ~)\212 ~Ji EXois £,
RA212J1(31]2]3) ij J1J2 (7/132]3 ]3]1 + ¢1213 ]3]1 + Mjsjs Mjagn + 5]2]3 ]3]1)
)\111 A2z T Aaio 1 Aois Agio
yhm J1J2 (whjs J3J1 + ¢J2j3 J3J1 + Mjzjs 77]3]1 + g1213 J3]1)
A1i1 (+) Aaio ~Ji Aaio & /\212 _ gAoiz g Ji
+Z]1]2 J1j2 (ths s g1 + ¢1213 J3J1 255 wyajl J273 ijl)

_Z/\lil (+) (’lp/\z’bz + (b/\z’bz /\212 ~)\2i2 7Ji )

jogi Wirga \Wjass 77]3]1 J2Ja J3J1 ~ Mjajs J3J1 T Sj2gs Yisgn

CoL N pdais, (&) o TA1d T TA1i1 ~A111 FA1i1
‘7-—)\111J1(*71J233) - lejz Yo (wjzja ]3]1 + ¢]2j3 J3J1 + M2 s 773331 + §]2]3 ]3]1)

A2z Arig A1 )\213 ~Ji A213 ¢,
- yjljZ U]1]2 (w]2]3 w]s]l + ¢]2]3 ¢J3Jl ]3]1 77]3]1 + €j3]1 €j3]1)
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Aaiz, (+) (0 Arin Aviy i, 7 Ji et JJi
+ Zj1j2 Uj o (whjs n]SJl + ¢J2Js Jsjl = Mjzjs Pz J273 j3j1)
Agiz (+) TA1i1 = J1 TA1i1 &, =AM _ fan
21211 J1j2 (whjs s 1 + d)mjs J3]1 Mjajs J3J1 j233 jajl)'

T (J)
J A A
A1t . 1 1 N2
W/\lel(Jz) Ao g g l\/% {jB it s }g,\m,\m (J172J3)
T J1J2J3

I A T
- \/% { j3 jl j2 } RA;ZJz(]L?QJ?,)

[ OV VI B
_(_1))\1+)\2+J Jij { .2 .1 : }R§?11J1(31]2]3) , (A?))

VN2 L3 J1 g2

where

Gl i1nia (Gdads) = X35, 050 (DR @1212 + Gyiinpnaiz 4 i 5?5;3 + )
= VS LRGN 4 ) e g )
+ 2 (R + gy — i giee — )

Z]’L (+) (1/';)\1115)\212 + (;5)\111 ~\oig ~ 191 [ A2ia _ 5A1i1 ,l/})\Q’L'Q) ,

12 W1 g2 \Wiajs Sjsi Gags Tiagr — Mjagjs Pisi J2ds Tjsi
A1d1 A1 ( ) A2iz ] Aoiz 7 Aoia, Ji Agiz
R)\Q'QJ’L (]132]3) leh J1J2 (whjs J3J1 + ¢J2j3 J3]1 + Mjajs Mis g + 51213 ]3]1)
_ i, (<) 7 Azia TAz2i2 ~Aoiz ~Ji FA2in &
yjljz U]1]2 (w]ﬂa wﬂajl (bjzja J3J1 + Mjzgs Mjaga + €J2J3 Jajl)
A1dy (+) TA2i2 Ji T 22 ~Xoio, 7 Ji _ FAoiz JJi
+ ZJljz J1j2 (wjzja Mjs1 + ¢]2]3 1311 ~ Njzjs Yisg £j2j3 j3j1)
Xl’il (+) )\212 ~Ji )\212 212 _ )\2’i2 Ji
J2J1 " J1J2 (ijs Mjs 1 + ¢J2Js ]3J1 Mjzjs ]3]1 5j2j3 j3j1)
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