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Abstract—The fragmentation of one-phonon states in hot nuclei is studied. For this purpose, the quasiparti-
cle-phonon nuclear model is extended to a finite temperature by applying the formalism of thermo field
dynamics. It is shown that consistent application of the thermal state condition leads to the realization of the
detailed balance principle at each stage of the thermal Hamiltonian diagonalization. The equations describ-
ing the coupling between thermal one-phonon and two-phonon states are derived.

DOI: 10.1134/S1547477121060054

1. INTRODUCTION
Collective excitations in hot nuclei have been

actively studied since the early 1980s. For a long time,
both experimentalist and theorist efforts were focused
on elucidating the reasons for the changes in giant
isovector dipole resonance properties with increasing
nuclear excitation energy (see review articles [1, 2] and
reference therein). However, hot nuclei play an
important role in numerous astrophysical processes as
well. Specifically, in collapsing supernovae, where a
temperature of the stellar matter is about К
(0.86 MeV), reactions mediated by weak interaction
(electron captures, beta-decays, neutrino scattering
etc.) and with involving of highly excited nuclei
strongly affect both the collapse dynamics and nucleo-
synthesis occurs during it [3–5].

Progress in theoretical studies of hot nuclei has
been due to generalization to finite temperatures the
methods which are widely used for “cold” nuclei. For
example, nuclear field theory and finite Fermi systems
theory have been extended on finite temperatures
applying formalism of thermal Green’s functions in
[6] and [7, 8], respectively. In works [9, 10] an attempt
has been made to generalize to finite temperatures the
quasiparticle-phonon model [11]. In this case, the for-
malism of thermo field dynamics (TFD) [12, 13] has
been used. Afterwards this approach was partially
revised and rethought in [14, 15]. One more approach
in the field using the Green’s function formalism and
time-blocking approximation is actively developed
and applied in [16, 17]. Fundamental problem to be
solved in these studies is to understand the mechanism
of damping of collective state in hot nuclei and to learn
how to calculate at  a coupling of collective states
with complex configurations which is responsible for

the fragmentation of resonance strength in “cold”
nuclei.

It is worth mentioning that the fragmentation of
nuclear excitation strength is very important aspect in
nuclear structure theory applications for astrophysical
purposes. The shell model calculations have shown
that under certain conditions the cross sections and
rates of weak processes involving atomic nuclei which
take place in hot and dense stellar matter depend sig-
nificantly on the details of nuclear excitations strength
functions [18, 19]. However, although the contempo-
rary shell model calculations well reproduce the exper-
imental strength functions built on the ground states of
nuclei with mass numbers , such calcula-
tions for highly-excited or much heavier nuclei are not
feasible. That is why while calculating the cross sec-
tions and rates of weak processes with hot nuclei one is
forced to use some approximations, such as Axel-
Brink hypothesis or so called “back-resonance”
method allowing to consider transitions with de-exci-
tation of a hot nucleus.

In [20–23, 27], to calculate cross sections and rates
of weak-interaction-mediated processes with hot
nuclei in stellar environments, the approach based on
the thermal extension of the quasiparticle random
phase approximation (TQRPA) within the TFD for-
malism was developed. The essential advantage of
TQRPA consists in allowing to calculate thermal
strength functions in a thermodynamically consistent
way and guarantees fulfillment of the detailed balance
principle (DBP) in contrast with formally similar
approaches of Refs. [24–26]. Comparing the TQRPA
results with those of shell model calculations as well as
with results of just mentioned works [24–26] have
shown the enhancement of thermal impact on
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630 DZHIOEV, VDOVIN
strength functions of multipole transitions. The con-
sequence is the stronger temperature dependence of
weak-process cross sections and rates calculated in
works [20–23, 27].

The goal of the present paper is to go beyond
TQRPA and include the fragmentation of one-pho-
non states in the calculations of thermal strength func-
tions of multipole transitions. To this aim we again use
the TFD formalism and the ideas of the quasiparticle-
phonon model (QPM) [11]. The QPM has been for-
mulated for “cold” nuclei. Its essence is to consider
the interaction of simple states, one-quasiparticle, or
one-phonon, with more complicated ones. The latter
is achieved by including more complex configurations
in the wave functions of nuclear excited states. Here we
use this idea but for hot nuclei. It should be mentioned
that the same trick was used in the previous attempts to
generalize the QPM on finite temperatures [9, 14, 15].
However, in the cited works the problem of the DBP
fulfillment was missed and its demands were fully or
partially violated.

2. DERIVING STRENGTH FUNCTIONS 
IN THE FORMALISM 

OF THERMO FIELD DYNAMICS
Let us consider the strength function of arbitrary

operator , describing the influence of an external
perturbation on a nucleus. In the case of a hot nucleus
the strength function contains averaging over all possi-
ble thermally excited initial states

(1)

Here  is excitation probability of

state i with energy ;  is strength
(probability) of transition ;  is
transition energy. At  the strength function is
defined for both positive and negative values of E. In
the first case, energy is transferred to a hot nucleus, in
the second case, a hot nucleus de-excites. Since

, the strength function satisfies the
detailed balance principle

(2)
Due to completeness of the eigenstates of the

nuclear Hamiltonian , the strength function (1) can
be written as the Fourier transform of the time correla-
tion function of the operator 

(3)

where  means the statistical average, and
 is the Heisenberg representation of

the operator .
Thermo field dynamics is based on the postulate

that the statistical average of an arbitrary operator 
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can be represented as a matrix element with respect to
a temperature dependent state , termed the ther-
mal vacuum [12, 13]

(4)
The thermal vacuum is a vector in the Hilbert space

of twice the dimension than the Hilbert space of the
physical system in question. Space extension occurs
due to introduction of a fictitious system identical to
the considered one. Rigorous substantiation of the
Hilbert space expansion in describing heated and non-
equilibrium quantum systems can be done within the
superoperator formalism [29–31]. Let 
be the Hamiltonian of the system considered. Then
the Hamiltonian of the fictitious system has the form

, where operators associated with the fic-
titious system are denoted by a “tilde”. The relation
between the operators from two Hilbert spaces is given
by the rules of tilde-conjugation

(5)
It should be noted that the double tilde-conjuga-

tion rule, which is the last in the relation set (5) differs
from that has been proposed originally in the works
[12, 13]. The necessity of this redefinition and the corre-
sponding consequences are discussed in Refs. [15, 32].

For the vector  to have the feature (4), it must
satisfy so-called thermal state condition

(6)
Here,  for a boson-like (fermion-like) oper-
ator , and operator  is termed a thermal
Hamiltonian. A thermal Hamiltonian is the time-evo-
lution operator in the extended Hilbert space, i.e.,

, and its eigenstates constitute the
complete set in this space.

Note that each positive-energy eigenstate
(7)

corresponds to a tilde-conjugate eigenstate with nega-
tive energy

(8)
The thermal vacuum is the eigenvalue of the ther-

mal Hamiltonian with the zero eigenvalue, i.e.
. By acting on both sides of Eq. (6) on the

eigenstates of the thermal Hamiltonian, the thermal
state condition can be rewritten in the form

(9)

where the relation  is con-
sidered.

Completeness property of the eigenstate set of the
thermal Hamiltonian allows to write the strength
function (3) as the following expansion:

(10)

0( )T

= .0( ) 0( )A T A T

= ,†( )H H a a

� = ,� �

†( )H H a a

= , + = + , = .� � �� �

~ ~ ~( ) ( ) * * ( )AB AB aA bB a A b B A A

0( )T

/= σ .�

* 2 †0( ) 0( )T
AA T e A T

σ = −1( )A i
A = − �* H H

−= * *( ) i t i tA t e Ae

=* 2 % 2k k k

= − .� �

k k k* 2 % 2

=* 0( ) 0T

/= σ ,�

%
2 2

20( ) 0( )k T
k A kA T e T A

=�
�2 20( ) * 0( )k kT A T A

{ }
,

= δ − + δ + , �

7

7 % 7 %

( )
( ) ( ) ( ) ( )k k k k

k

S E T

B E B E
LES AND NUCLEI LETTERS  Vol. 18  No. 6  2021



THERMODYNAMICALLY CONSISTENT DESCRIPTION 631
where  and  are probabilities of transitions from
the thermal vacuum to the eigenstates of 

(11)

Transitions from the thermal vacuum to the 
states of the Hamiltonian correspond energy transfer to
the hot nucleus, whereas transitions to tilde-states 
correspond to de-excitation of the nucleus. Thermal state
condition (9) leads to the following relation between
probabilities of transitions to tilde-conjugate states:

(12)
whence the fulfillment of the DBP follows directly (2).
Thus, within TFD the DBP fulfillment is the direct
consequence of the thermal state condition (6).

Formally the expression (10) has the form of the
strength function at zero temperature, since it contains
single summation over eigenstates of (thermal) Ham-
iltonian, and the role of the ground state is played by
the thermal vacuum. The difference is that the thermal
Hamiltonian spectrum consists of both the positive
and negative eigenvalues, and in principle depends on
temperature. The probabilities of transitions from the
thermal vacuum state to the thermal Hamiltonian
eigenstates are also temperature dependent. Thus,
within TFD the problem of calculation of the strength
function is reduced to finding the eigenvalues of the
thermal Hamiltonian. The TFD advantage is that to
diagonalize the thermal Hamiltonian, one can use the
same methods as at zero temperature: the independent
quasiparticle approximation, the random phase
approximation, etc. However, as will be shown below,
the demand to satisfy the thermal state condition adds
its own specifics to the thermal Hamiltonian diagonal-
ization.

As at , to find the thermal Hamiltonian
eigenstates it is convenient to use the equation of
motion method [33, 34]

(13)

Here,  is the creation operator of the eigenstate
, i.e., . The tilde-conjugate oper-

ator , such that , is the solution of
(13) corresponding to energy . Let us define the
thermal vacuum as the vacuum for the operators , 

(14)

In contrast with the  case at  the solu-
tion of equations of motion does not produce the
unambiguous determination of the thermal Hamilto-
nian eigenstates. Indeed, if  is a solution of Eq.(13),
then, applying the operation of Hermitian and tilde
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show that the operator  is also its solution with the
same energy . Hence, an arbitrary linear combina-
tion of these operators also satisfies the equation of
motion. To determine which solutions are “true” one
must select from the whole set of solutions of the
equation of motion those which satisfy the thermal
state condition (9).

Formally, the equation of motion (13), together
with the thermal state condition (9), allows one to find
the exact eigenstates of the thermal Hamiltonian.
However, in practice, we are looking for a solution to
the equation as an expansion in a limited set of some
basic operators . Moreover, the exact solution of
Eq. (13) demands to know the thermal vacuum state

. The latter condition, in principle, can be satis-
fied solving the equation of motion via the iteration
procedure. However, since the double symmetric
commutator in the left side of Eq. (13) reduces the
sensitivity of the equation solution to the choice of

 one can use the approximate form of the ther-
mal vacuum instead of the exact one. It is worth recall-
ing that this is exactly how the RPA equations for 
are derived when the Hartree–Fock vacuum is used as
the ground state instead of the phonon vacuum [34].

Since the solutions of the equation of motion are
approximate the thermal state condition (9) can be
satisfied for certain operator class A only. Note that if
Eq. (9) holds for certain set of operators , then it is
also true for their linear combination. Therefore in
order for the strength function of one-particle transi-
tion operator  to satisfy the detailed balance princi-
ple we will use one- and two-fermion operators , ,

, ,  as the set .

3. THERMAL QUASIPARTICLES 
AND PHONONS

Here we use the version of QPM where the nuclear
Hamiltonian consists of the proton and neutron mean
fields, the pairing BCS interaction, and separable
multipole particle-hole interaction

(15)

For spherical nuclei the terms of Hamiltonian 
can be written as follows:
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632 DZHIOEV, VDOVIN
where  is the multipole one-particle operator

(19)

In Eqs. (16)–(19), the following notations which

are standard for QPM are used: the symbol  means
a summation over proton (neutron)  ( ) sin-
gle-particle levels with quantum numbers 
and energy ; changing of the sign of  corresponds
to replacing ;  are chemical potentials;

is pairing interaction constants;  is constants
of isoscalar and isovector interactions of multipolarity

; the functions  are the radial formfactors of the
separable particle-hole forces. It is assumed that the
Hamiltonian parameters are independent on tempera-
ture, which is justified at  MeV [35, 36].

Since the Hamiltonian (15) contains only multi-
pole particle-hole forces, its eigenstates of the multi-
polarity  correspond to nuclear excited states of nor-
mal parity, i.e., . The one-body transition
operator to these states written in terms of nucleonic
operators of creation and annihilation has the follow-
ing form:

(20)

In Eq. (20),  is a reduced matrix element of the
transition operator, , and  means a
coupling of two angular momenta on the total angular
momentum  with the projection . In what follows,
it will be assumed that under Hermitian conjugation
the operator  transforms as a multipole operator

, so that .
Then, according to the detailed balance principle (2),
the strength function of the operator (20) satisfies the
condition

(21)

connecting probabilities of excitation and deexcitation
of a hot nucleus.

The thermal Hamiltonian corresponding to the
above QPM Hamiltonian has a form

(22)

As in the case of zero temperature, the determina-
tion of eigenstates of the thermal Hamiltonian (22)
starts with the allowance for pair correlations. To this
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aim the creation operators  and annihilation
operators  of thermal quasiparticles are introduced.
The thermal quasiparticle operators diagonalize the
one-body part of the thermal Hamiltonian

(23)

The sign of approximate equality in (23) means
that the terms for the monopole interaction between
thermal quasiparticles are not indicated in the expres-
sion for . The vacuum of thermal quasiparticles

 under the additional condition (9) is a thermal
vacuum in the BCS approximation, the values 
are the thermal quasiparticle energies.

The operators of creation and annihilation of thermal
quasiparticles relate to the nucleonic operators 
and  from the original thermal Hamiltonian (22) by
means of two unitary transformations. The first one is
the well-known  Bogoliubov transformation from
the nucleonic operators to the quasiparticle operators
( )

(24)

The similar transformation is performed with the
creation and annihilation operators of tilde-particles
(nucleons), thereby introducing into consideration the
operators of tilde-quasiparticles  and . The sec-
ond, so-called the thermal -transformation,
mixes the operators of thermal quasiparticles  and
tilde-quasiparticles  

(25)
Since the two transformations (24), (25) are uni-

tary, the thermal quasiparticle operators obey the
standard anticommutation relations. Note that the use
of the double tilde operation in the form (5) leads to a
complex thermal transformation (25) [15].

Solution of the corresponding equation of motion

(26)

where , with additional condi-

tion (9), where , leads to well- known equa-
tions of the thermal BCS (TBCS), which describe the
pair correlations in a hot nucleus [37, 38]. Within TFD
the equations were derived in Refs. [10, 39], exploiting
the method similar with that was presented above, i.e.,
diagonalizing the one-body part of . However, in
Refs. [10, 39] the coefficients of the thermal -
transformation were found by the minimization of the
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thermodynamical potential. For the first time the
diagonalization of  using the thermal state condi-
tion were performed in [14].

Having solved the TBCS equations, one can calcu-
late the energies of thermal quasiparticles and the
transformation coefficients (24) and (25) as a function
of temperature. In particular, the coefficients of thermal
transformation are related to the thermal Fermi–Dirac
occupation numbers of Bogoliubov quasiparticles

(27)

Due to the presence of thermally excited quasipar-
ticles in the thermal vacuum, both the process of cre-
ation and the process of annihilation of Bogoliubov
quasiparticles are allowed. In the TFD formalism, the
first process corresponds to the production of a ther-
mal quasiparticle with positive energy, and the second
one to the process of creation of a thermal tilde-quasi-
particle with negative energy [15].

In the independent thermal quasiparticle approxi-
mation, the simplest excitation modes of a hot nuclei
under an external one-body perturbation are the fol-
lowing states , , .
Transitions from the thermal vacuum to these states
describe, correspondingly, the processes of two quasi-
particles creation, two thermally excited quasi-parti-
cles annihilation and a transition of an excited quasi-
particle from one state to another.

It has been shown [15], that probabilities of transi-
tions to tilde-conjugate states constructed, as written
out just above, from two thermal quasiparticles, are
related by the principle of detailed balance (12).

At the next stage, the thermal Hamiltonian eigen-
states are found considering the interaction between
thermal quasiparticles due to the separable particle-
hole interaction. For this, the so-called thermal quasi-
particle random phase approximation (TQRPA) is
used, according to which thermal Hamiltonian (22) is
diagonalized approximately within the space of pho-
non operators constructed as a linear combination of
various operators of two thermal quasiparticle [10, 15]

(28)

An imaginary unit appeared in the above definition
of thermal phonon operator since we use the complex
thermal transformation (25) (see also [15]). Other
phonon operators , ,  can be evaluated
from (28) applying the Hermitian and tilde conjuga-
tion operations. A vacuum of thermal phonons 
is the true thermal vacuum of TQRPA if it satisfies the
thermal state condition (9). Assuming that  is
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close to the thermal vacuum of the TBCS approxima-
tion , we get the quasi-boson approximation,
according to which the thermal phonon operators
obey boson commutation relations.

To find the thermal phonon structure, i.e., the
amplitudes  etc., as well as the phonon energies,
the following equation of motion must be solved:

(29)

where the creation and annihilation operators of ther-
mal quasiparticles pairs are used as .We emphasize
once again that, as in the standard QRPA, the equation
of motion (29) includes the thermal quasiparticle vac-
uum, and not a thermal phonon vacuum. Equation (29)
leads to a system of linear homogeneous equations for
the amplitudes etc. Since we use the separable
particle-hole interaction, the condition for the solv-
ability of this system of equations has the form of a sec-
ular equation for the energy of thermal phonons 
[10, 15]. The requirement that the thermal phonon
vacuum satisfies the thermal state condition (9)
( , , ), leads to the following rela-
tions for the amplitudes [22]:

(30)

where the so-called effective amplitudes , ,  and
 are introduced. Temperature dependent coefficients
 and  are related with the Bose–Einstein distri-

bution function

(31)

Thus, the thermal state condition (9) for the ther-
mal phonon vacuum leads to the emergence of ther-
mal occupation numbers for bosons (phonons). The
phonon amplitudes depend on both fermionic and
bosonic occupation numbers. The forward-going and
their backward-going tilde-conjugate amplitudes (i.e.

 and ,  and ,  and ,  and ) are expressed
through each other by means of the effective ampli-
tudes.
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Due to the separable form of the residual particle-
hole interaction the following analytical expressions
for the effective amplitudes are valid [15]:

(32)

Here  is the reduced matrix element of a multipole

operator, . Besides, the following nota-
tions are used for bilinear combinations of the Bogoli-
ubov transformation coefficients: ,

. The effective amplitudes depend
on temperature because -dependence of energies of
thermal quasiparticles and phonons and moreover
because of  coefficients which can be obtained
from the normalization condition [15]

(33)

Note that the above expressions for the effective
amplitudes coincide with the expressions for the pho-
non amplitudes given in [40], where they have been
obtained within the formalism of the temperature
Green’s functions.

Just as the operators of thermal and Bogoliubov qua-
siparticles are related by thermal trans-formation (25),
the operators of thermal phonons can be represented
as a result of certain thermal transformation

(34)

where the -phonon operators correspond to the val-
ues of coefficients in Eq. (30) . By
means of transformation inverse to (34) it can be
shown that the thermal phonon vacuum  con-
tains  thermally excited -phonons with the ener-
gies 

(35)

Therefore, in a certain sense, -phonons can be
considered as “cold” phonons, and thermal transfor-
mation (34), as it were, heats them up, providing tran-
sition to new phonon operators, for which the vacuum
state is just the thermal vacuum. In this case, the one-
phonon part of the thermal Hamiltonian is diagonal

+
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both in terms of -phonons and in terms of thermal
phonons, since the transformation (34) is unitary

(36)

The -phonon vacuum  relates to the thermal
vacuum  through a unitary transformation [13].
It should be noted, that in Refs. [9, 10] it was -pho-
nons that were considered as thermal, and their vac-
uum played the role of thermal vacuum. In this case,
the bosonic occupation numbers do not appear in the
theory.

Let us obtain expressions for the reduced probabil-
ity (strength) of transitions from thermal vacuum to
thermal one-phonon states. For this we express the
one-body transition operator  (20) via the thermal
phonon operators [15]

(37)

where

(38)

The temperature dependent coefficients  deter-
mine the reduced probabilities of transitions to the
thermal one-phonon states

(39)

The above expressions together with the transition
energies  unambiguously determine the strength
functions of the operator  (20) within TQRPA.
Since the thermal vacuum TQRPA satisfies the ther-
mal state condition (9), for the strength function of the
transitions to thermal one-phonon states the detailed
balance principle is valid (21).

The expressions (38), (39) agree with the interpre-
tation of -phonons as “cold”. Indeed, let us find the
transition strengths to one-phonon -states

(40)

The vanishing of the transition probabilities to
states with negative energies means that in the system
of -phonons, as in the nucleus in its ground state,
only the excitation process is possible. This circum-
stance was not considered in [9, 10], which led to the
violation of the detailed balance principle.
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It was shown above that a hot nucleus contains 
thermally excited -phonons with energies . There-
fore, the probability of the de-excitation process,
when a phonon is removed from the system, is propor-
tional to , and the probability of the reverse pro-
cess—excitation,—when a phonon is added to the sys-
tem, is proportional to .

4. FRAGMENTATION OF ONE-PHONON 
STATES IN HOT NUCLEI

The concepts of “thermal quasiparticles” and
“thermal phonons” as elementary excitation modes of
a hot nucleus, as well as the structure of the thermal
Hamiltonian inheriting the structure of the original
nuclear Hamiltonian, make it possible to go beyond
the framework of the one-phonon approximation by
the traditional for QPM method—adding two-phonon
components to the wave function [11]. To this aim, as at

, we express the thermal Hamiltonian (22) in
terms of the creation and annihilation operators of
thermal quasiparticles and phonons

(41)

The term  describes the coupling of thermal
phonons and thermal quasiparticles

(42)

where, to shorten the notation, the terms which are
Hermitian- and tilde- conjugates to those given in
Eq. (42) are denoted as  and , respectively.
The operator  is expressed in terms of cre-
ation and annihilation operators of thermal quasipar-
ticles as follows:

(43)

As in the case of a cold nucleus the  term
mixes states with different number of phonons result-
ing in fragmentation of the transition strengths, which
in TQRPA are concentrated in one-phonon states.

Strictly speaking, the thermal Hamiltonian ,
contains terms of the  type which also contribute
to the interaction of thermal quasiparticles but was not
considered in TQRPA. We discard these terms, as this
is done in QPM at zero temperature [11, 28]. In addi-
tion, considering the interaction of thermal quasipar-
ticles and phonons, we will neglect the Pauli principle,
i.e., we will regard the thermal phonon operators as

2
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“true” bosons. Besides,  will use one more approx-
imation, namely, we will assume that

(44)

To clarify the meaning of this approximation, con-
sider the operator , written in terms of -phonons

(45)

Comparison of Eq. (45) with (42) for  shows
that approximation (44) turns off the interaction of
“cold”  and  phonons. Interaction occurs only
after “heating”.

To satisfy the thermal state condition (9), we will
seek the eigenstates of the thermal Hamiltonian (41) in
the following form:

(46)

The wave function (46) should be normalized

(47)

As before, we assume that the “tilde-less” state
corresponds to positive energy . Then tilde-conju-
gate state  corresponds the
negative energy . The new thermal vacuum is
defined as the vacuum for the corresponding annihila-
tion operators

(48)
The presence of the thermal phonon annihilation

operators in (46) indicates on redefinition of the ther-
mal vacuum because of appearance the coupling of
one- and two-phonon configurations. It is worth
recalling that in the standard QPM [11], when the
phonon interaction was switched on, the ground state
wave function was not redefined—it was assumed that
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it coincides with the phonon vacuum. The same
assumption at was implied in Refs. [9, 14, 15].

Additional constraints on the structure of the 
operator follow from requirement that the new vac-
uum must satisfy the thermal state condition (9).
These constraints can be obtained by using in (9) as
the operator  the two-quasiparticle operators

,  and their Hermitian conjugates.
Then, expressing the two-quasiparticle operators in
terms of thermal phonon operators, we obtain the
condition, which should be satisfied by the amplitudes
one-phonon terms in (46)

(49)

where  is the eigenvalue of the thermal Hamilto-
nian (41), corresponding the wave function (46).

Thus, we have obtained an important result regard-
ing the structure of the wave function (46): if we
require the fulfillment of the thermal state condition
for the vacuum of operators , then the wave func-
tion (46) should contain both the forward-going one-
phonon terms, and the backward-going tilde-conju-
gate terms, i.e., the terms consisting of the phonon
creation operator. In this regard, it seems logical to
include in the wave function (46) inverse two-phonon
terms as well.

As in the TQRPA, in the definition of the wave
function (46) it is convenient to use the effective
amplitudes

(50)

where  and . Using
equality

(51)

normalization condition (47) can be written via the
effective amplitudes.

To find the eigenstates and eigenvalues of the ther-
mal Hamiltonian (41) we use again the equation of
motion (13) in the form
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where  is the TQRPA phonon vacuum, and as
the operator  we consider the operators which are
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side (46), i.e.  etc. The result is
the following linear equation system:

(53)
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where the following notations of the matrix elements
of the operator  are introduced:

(54)

It can be shown, that within the approximation (44)
the above matrix elements fulfill the equalities
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In (55) the functions , , 

and  have the following forms:
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whereas in their turn the coefficients  and

 are expressed through the effective TQRPA
amplitudes (30) and the fermionic thermal occupation
numbers

(57)

(58)

The dimension of the system (53) can be sizably
reduced eliminating the two-phonon amplitudes.
After that using the definition (50) one gets the system
of linear homogeneous equations for the effective
amplitudes  and 
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The expressions for the matrix elements  are
the following:
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Note that the matrix elements  depend not
only on the quasiparticle thermal quantum numbers,
but also the phonon ones. In this respect our results
have something in common with those of Ref. [6],
where the bosonic occupation numbers arise due to
the special properties of the temperature Green’s
functions.

The existence condition of a nontrivial solution to
system (63) leads to the secular equation  for
the eigenvalues  of the thermal Hamiltonian (41).
Solving the system (63) for each positive eigenvalue

, we find the unnormalized effective amplitudes
 and . Normalization is carried out

using the equations (53) and conditions (47), (51).
Thus, we completely determine the operator structure
of . The structure of the operator , corre-
sponding to the negative eigenvalue , can be
found with the tilde-conjugation operation applying to
the operator (46).

After the structure of the eigenstates of the thermal
Hamiltonian (41) has been determined one can calcu-
late the reduced transition probabilities for the one-
body multipole operator 

(62)

The obtained expressions of the reduced probabili-
ties satisfy the detailed balance principle (12).

Thus, requiring for the thermal vacuum the fulfill-
ment of the thermal state condition at each stage of
diagonalization, we succeeded in constructing a ther-
modynamically consistent method to describe the
fragmentation of one-phonon states in hot nuclei. In
Ref. [9], the thermal state condition was valid in the
TBCS approximation only whereas in TQRPA the
detailed balance principle was already violated
because the strength function had not the term allow-
ing the transitions with negative energy  (de-
excitation process). Later, in [14, 15], the consistent
construction of the thermal vacuum and thermal pho-
nons have ensured the fulfillment of the detailed bal-
ance principle within the TQRPA. However, when
considering the coupling of one- and two-phonon
states the TQRPA vacuum state was used as the ther-
mal vacuum, which has led to violation of the DBP. It
was fulfilled on average only, i.e., after averaging the
strength function over a certain energy interval.
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5. CONCLUSIONS
Taking the quasiparticle-phonon nuclear model as

an example, applying the formalism of thermo field
dynamics we built the consistent procedure of deriving
the thermal strength function for hot nuclei. At every
stage of the procedure the detailed balance principle is
fulfilled. It is shown that thermodynamically consis-
tent consideration of the one- and two-phonon cou-
pling in a hot nucleus demands the consistent re-defi-
nition of the thermal vacuum state. This is the main
result of the present work. According with the
obtained equations, the matrix elements of effective
phonon-phonon interaction in a hot nucleus are
depended on both the quasiparticle (fermion) and
phonon (boson) thermal occupation numbers. This
procedure can be extended easily on the spin-isospin
excitations (magnetic dipole, Gamow–Teller etc.) in
hot nuclei which seems to be relevant for the astro-
physical applications.
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