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ABSTRACT

We investigate the coupling between ferromagnet and superconducting phase dynamics in superconductor–ferromagnet–superconductor
Josephson junction. The current-voltage characteristics of the junction demonstrate a pattern of subharmonic current steps which forms a
devil’s staircase structure. We show that a width of the steps becomes maximal at ferromagnetic resonance. Moreover, we demonstrate that
the structure of the steps and their widths can be tuned by changing the frequency of the external magnetic field, ratio of Josephson to mag-
netic energy, Gilbert damping and the junction size.
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1. INTRODUCTION

Josephson junction with ferromagnet layer (F) is widely con-
sidered to be the place where spintronics and superconductivity
fields interact.1 In these junctions the supercurrent induces magne-
tization dynamics due to the coupling between the Josephson and
magnetic subsystems. The possibility of achieving electric control
over the magnetic properties of the magnet via Josephson current
and its counterpart, i.e., achieving magnetic control over Josephson
current, recently attracted a lot of attention.1–7 The current-phase
relation in the superconductor–ferromagnet–superconductor (SFS)
junctions is very sensitive to the mutual orientation of the magneti-
zations in the F layer.8,9 In Ref. 10 the authors demonstrate a
unique magnetization dynamics with a series of specific phase tra-
jectories. The origin of these trajectories is related to a direct cou-
pling between the magnetic moment and the Josephson oscillations
in these junctions.

External electromagnetic field can also provide a coupling
between spin wave and Josephson phase in SFS junctions.11–17 Spin
waves are elementary spin excitations which considered to be as both
spatial and time dependent variations in the magnetization.18,19

The ferromagnetic resonance (FMR) corresponds to the uniform
precession of the magnetization around an external applied
magnetic field.18 This mode can be resonantly excited by
ac magnetic field that couples directly to the magnetization
dynamics as described by the Landau–Lifshitz–Gilbert (LLG)
equation.18,19

In Ref. 18 the authors show that spin wave resonance at
frequency ωr in SFS implies a dissipation that is manifested as
a depression in the current-voltage (I–V) characteristic of the
junction when �hωr = 2 eV, where �h is the Planck’s constant, e is the
electron charge and V is the voltage across the junction. The ac
Josephson current produces an oscillating magnetic field and when
the Josephson frequency matches the spin wave frequency, this
resonantly excites the magnetization dynamics M(t).18 Due to the
nonlinearity of the Josephson effect, there is a rectification of
current across the junction, resulting in a dip in the average dc
component of the supercurrent.18

In Ref. 13 the authors neglect the effective field due to
Josephson energy in LLG equation and the results reveal that even
steps appear in the I–V characteristic of SFS junction under
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external magnetic field. The origin of these steps is due to the inter-
action of Cooper pairs with even number of magnons. Inside the
ferromagnet, if the Cooper pairs scattered by odd number of
magnons, no Josephson current flows due to the formation of spin
triplet state.13 However, if the Cooper pairs interact with even
number of magnons, the Josephson coupling between the s-wave
superconductor is achieved and the spin singlet state is formed,
resulting in flows of Josephson current.13 In Ref. 20 we show that
taking into account the effective field due to Josepshon energy and
at FMR, additional subharmonic current steps appear in the I–V
characteristic for overdamped SFS junction with spin-wave excita-
tions (magnons). It is found that the position of the current steps
in the I–V characteristics form the devil’s staircase structure which
follows the continued fraction formula.20 The positions of those
fractional steps are given by

V ¼ N +
1

n+
1

m+
1

p+ � � �

0
BBBBB@

1
CCCCCAΩ, (1)

where Ω = ω /ωc, ω is the frequency of the external radiation, ωc is
the characteristic frequency of the Josephson junction and N, n, m,
p are positive integers.

In this paper, we present a detailed analysis of the I–V charac-
teristics of SFS junction under external magnetic field and show
how we can control the position of the subharmonic steps and alter
their widths. The coupling between spin-wave and the Josephson
phase in SFS junction is achieved through the Josephson energy
and gauge invariant phase difference between the S layers. In the
framework of our approach, the dynamics of the SFS junction is
fully described by the resistively shunted junction (RSJ) model and
LLG equation. These equations are solved numerically by the 4th
order Runge–Kutta method. The appearance and position of the
observed current steps depend directly on the magnetic field and
junction parameters.

2. MODEL AND METHODS

In Fig. 1 we consider a current biased SFS junction where the
two superconductors are separated by the ferromagnet layer with
thickness d. The area of the junction Ly Lz. An uniaxial constant
magnetic field H0 is applied in z direction, while the magnetic field
is applied in xy plane Hac = (Hac cosωt, Hac sinωt, 0) with amplitude
Hac and frequency ω. The magnetic field is induced in the F layer
through B(t) = 4πM(t), and the magnetic fluxes in z and y directions
are Φz(t) = 4πdLy Mz(t), Φy (t) = 4πdLz My (t), respectively. The
gauge-invariant phase difference in the junction is given by21

∇y,zθ(y, z, t) ¼ � 2πd
Φ0

B(t)� n, (2)

where θ is the phase difference between superconducting electrodes,
Φ0 = h/2e is the magnetic flux quantum and n is a unit vector
normal to yz plane. The gauge-invariant phase difference in terms of

magnetization components reads as

θ(y, z, t) ¼ θ(t)� 8π2dMz(t)
Φ0

y þ 8π2dMy(t)

Φ0
z: (3)

According to RSJ model, the current through the junction is
given by13

I
I0c

¼ sin θ(y, z, t)þ Φ0

2πI0c R
dθ(y, z, t)

dt
, (4)

where I0c is the critical current and R is the resistance in the
Josephson junction. After taking into account the gauge invariance
including the magnetization of the ferromagnet and integrating
over the junction area the electric current reads13

I
I0c

¼
Φ2

0sin(θ(t)) sin
4π2dMz(t)Ly

Φ0

� �
sin

4π2dMy(t)Lz
Φ0

� �
16π4d2LzLyMz(t)My(t)

þ Φ0

2πRI0c

dθ(y, z, t)
dt

: (5)

The applied magnetic field in the xy plane causes the pre-
cessional motion of the magnetization in the F layer. The dynamics
of magnetization M in the F layer is described by LLG equation

(1þ α2)
dM
dt

¼ �γM�Heff � γα

jMj [M� (M�Heff )]: (6)

The total energy of junction in the proposed model is given
by E = Es + EM + Eac where Es is the energy stored in Josephson

FIG. 1. SFS Josephson junction. The bias current is applied in x direction, an
external magnetic field with amplitude Hac and frequency ω is applied in xy
plane and an uniaxial constant magnetic field H0 is applied in z direction.
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junction, EM is the energy of uniaxial dc magnetic field (Zeeman
energy) and Eac is the energy of ac magnetic field:

Es ¼ �Φ0

2π
θ(y, z, t)I þ EJ [1� cos θ(y, z, t)],

EM ¼ �VFH0MZ(t),

Eac ¼ �VFMx(t)Haccos(ωt)� VFMy(t)Hacsin(ωt):

(7)

Here, EJ ¼ Φ0I0c =2π is the Josephson energy, H0 = ω0/γ, ω0 is the
FMR frequency, and VF is the volume of the ferromagnet. We
neglect the anisotropy energy due to demagnetizing effect for sim-
plicity. The effective field in LLG equation is calculated by

Heff ¼ � 1
VF

∇ME: (8)

Thus, the effective field Hm due to microwave radiation Hac and
uniaxial magnetic field H0 is given by

Hm ¼ Haccos(ωt)êx þHacsin(ωt)êy þH0êz , (9)

while the effective field Hs due to superconducting part is found
from

Hs ¼ � EJ
VF

sin(θ(y, z, t))∇Mθ(y, z, t): (10)

One should take the integration of LLG on coordinates, however,
the superconducting part is the only part which depends on the
coordinate so, we can integrate the effective field due to the
Josephson energy and insert the result into LLG equation. Then,
the y and z components are given by

Hsy ¼ EJcos(θ(t))sin(πΦz(t)=Φ0)
VFπMy(t)Φz(t)

� Φ0cos(πΦy(t)=Φ0)� Φ2
0

sin(πΦy(t)=Φ0)

πΦy(t)

� �
êy , (11)

Hsz ¼ EJcos(θ(t))sin(πΦy(t)=Φ0)

VFπMz(t)Φy(t)

� Φ0cos(πΦz(t)=Φ0)� Φ2
0
sin(πΦz(t)=Φ0)

πΦz(t)

� �
êz: (12)

As a result, the total effective field is Heff=Hm+Hs. In the dimen-
sionless form we use t ! tωc, ωc ¼ 2πI0c R=Φ0 is the characteristic
frequency, m =M/M0, M0 = k M k, heff=Heff/H0, εJ = EJ/VFM0H0,
hac =Hac/H0, Ω = ω/ωc, Ω0 = ω0/ωc, fsy = 4π2LydM0/Φ0,
fsy = 4π2lzdM0/Φ0. Finally, the voltage V(t)= dθ/dt is normalized to
�hωc/(2e). The LLG and the effective field equations take the form

dm
dt

¼ � Ω0

(1þ α2)
(m� heff þ α[m� (m� heff )]) (13)

with

heff ¼ haccos(Ωt)êx þ (hacsin(Ωt)þ ΓijεJ cos θ)êy
þ (1þ ΓijεJ cos θ)êz , (14)

Γij ¼ sin(fsimj)

mi(fsimj)
cos(fsjmi)�

sin(fsjmi)

(fsjmi)

" #
, (15)

where i = y, j = z. The RSJ in the dimensionless form is given by

I=I0c ¼ sin(fsymz)sin(fszmy)

(fsymz)(fszmy)
sin θþ dθ

dt
: (16)

The magnetization and phase dynamics of the SFS junction
can be described by solving Eq. (16) together with Eq. (13).
To solve this system of equations, we employ the fourth-order
Runge–Kutta scheme. At each current step, we find the temporal
dependence of the voltage phase θ (t), and mi (i = x, y, z) in the
(0, Tmax) interval. Then the time-average voltage V is given by

V ¼ 1
Tf � Ti

ð
V(t)dt,

where Ti and Tf determine the interval for the temporal averaging.
The current value is increased or decreased by a small amount of
δI (the bias current step) to calculate the voltage at the next point
of the I–V characteristics. The phase, voltage and magnetization
components achieved at the previous current step are used as
the initial conditions for the next current step. The one-loop I–V
characteristic is obtained by sweeping the bias current from I = 0 to
I = 3 and back down to I = 0. The initial conditions for the
magnetization components are assumed to be mx = 0,my = 0.01 and

mz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

x �m2
y

q
, while for the voltage and phase we have

Vini = 0, θini = 0. The numerical parameters (if not mentioned) are
taken as α = 0.1, hac = 1, fsy = fsz = 4, εJ = 0.2 and Ω0 = 0.5.

3. RESULTS AND DISCUSSIONS

It is well-known that Josephson oscillations can be synchro-
nized by external microwave radiation which leads to Shapiro steps
in the I–V characteristic.22 The position of the Shapiro step is
determined by relation V = (n/m) Ω, where n, m are integers.
The steps at m = 1 are called harmonics, otherwise we deal with
synchronized subharmonic (fractional) steps. We show below the
appearance of subharmonics in our case.

First we present the simulated I–V characteristics at different
frequencies of the magnetic field. The I–V characteristics at three
different values of Ω are shown in Fig. 2(a).

As we see, the second harmonic has the largest step width at
the ferromagnetic resonance frequency Ω =Ω0, i.e., the FMR is
manifested itself by the step’s width. There are also many subhar-
monic current steps in the I–V characteristic. We have analyzed the
steps position between V = 0 and 0.7 for Ω = 0.7 and found
different level continued fractions, which follow the formula given
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by Eq. (1) and demonstrated in Fig. 2(b). We see the reflection of
the second level continued fractions 1/n and 1− 1/n with N = 1.
In addition to this, steps with third level continued fractions
1/(n− 1/m) with N = 1 is manifested. In the inset we demonstrate
part of the fourth level continued fraction 1− 1/[n + 1/(m + 1/p)]
with n = 2 and m = 2.

In case of external electromagnetic field which leads to the
additional electric current Iac =A sinΩt, the width of the Shapiro
step is proportional to ∝ Jn(A/Ω), where Jn is the Bessel function of
first kind. The preliminary results (not presented here) show that
the width of the Shapiro-like steps under external magnetic field

has a more complex frequency dependence.20 This question will be
discussed in detail somewhere else.

The coupling between Josephson phase and magnetization
manifests itself in the appearance of the Shapiro steps in the I–V
characteristics at fractional and odd multiplies of Ω.20 In Fig. 3 we
demonstrate the effect of the ratio of the Josephson to magnetic
energy εJ on appearance of the steps and their width for Ω = 0.5
where the enlarged parts of the I–V characteristics at three different
values of εJ are shown. As it is demonstrated in the figures, at
εJ = 0.05 only two subharmonic steps appear between V = 1 and 1.5
(see hollow arrows). An enhanced staircase structure appears by

FIG. 3. (a) An enlarged part of the I–V characteristic at different values of εJ in
the interval between V = 1 and 1.5; (b) The same in the interval between
V = 1.75 and 2. For clarity, the I–V characteristics for εJ = 0.3 and 0.5 have
been shifted to right, by ΔI = 0.07 and 0.14, respectively, with respect to the
case with εJ = 0.05.

FIG. 2. (a) I–V characteristic at three different values of Ω . For clarity, the I–V
characteristics for Ω = 0.5 and Ω = 0.7 have been shifted to the right, by
ΔI = 0.5 and 1, respectively, with respect to Ω = 0.2; (b) An enlarged part of the
I–V characteristic with Ω = 0.7 . To get step voltage multiply the corresponding
fraction with Ω = 0.7.
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increasing the value of εJ, which can be see at εJ = 0.3 and 0.5.
Moreover, intense subharmonic steps appear between V = 1.75 and
2 for εJ = 0.5 . The positions for these steps reflect third level
continued fraction (N− 1) + 1/(n + 1/m) with N = 4 and n = 1
[see Fig. 3(b)].

Let us now demonstrate the effect of Gilbert damping on the
devil’s staircase structure. The Gilbert damping α is introduced
into LLG equation23,24 to describe the relaxation of magnetization
dynamics. To reflect the effect of Gilbert damping, we show an
enlarged part of the I–V characteristic at three different values of α
in Fig. 4.

The width of the current step at V = 2Ω is almost the same at
different values of α (e.g., see upward inset V = 2 Ω). The subhar-
monic current step width for V = (n/m) Ω (n is odd, m is integer)
is decreasing with increasing α. In addition a horizontal shift
for the current steps occurs. We see the intense current steps in the
I–V characteristic for the small value of α = 0.03 (see black solid
arrows). With the increase in Gilbert damping (see α = 0.1, 0.16
and 0.3) the higher level subharmonic steps disappear. It is well-
known that at large value of α the FMR linewidth becomes more
broadening and the resonance frequency is shifted from Ω0.
Accordingly, the subharmonic steps disappear at large value of α.
Furthermore, using the formula presented in Ref. 20 the width at
Ω =Ω0 for the fractional and odd current steps is proportional to
(4α2 + α4)−q/2 × (12 + 3α2) −k/2 , where q and k are integers.

Finally, we demonstrate the effect of the junction size on
the devil’s staircase in the I–V characteristic under external mag-
netic field. The junction size changes the value of fsy and fsz.
In Fig. 5(a) we demonstrate the effect of the junction thickness by
changing fsz (fsy is qualitatively the same).

We observe an enhanced subharmonic structure with the
increase of junction size or the thickness of the ferromagnet.

In Ref. 13 the authors demonstrated that the critical current and
the width of the step at V = 2Ω as a function of Lz/Ly follow Bessel
function of the first kind. In Fig. 5(b), we can see the parts of con-
tinued fraction sequences for subharmonic steps between V = 1 and
2 at fsz =fsy= 6. Current steps between V = 1 and 1.5 reflect the
two second-level continued fractions (N−1) + 1/n and N−1/n with
N = 3 in both cases, while for the steps between V = 1.5 and 2
follow the second-level continued fraction (N−1) + 1/n with N = 4.

Finally, we discuss the possibility of experimentally observing
the effects presented in this paper. For junction size d = 5 nm,
Ly = Lz= 80 nm, critical currentI0c � 200μA, saturation magnetiza-
tion M0≈ 5⋅105A/m, H0≈ 40 mT and gyromagnetic ratio γ = 3π

FIG. 4. An enlarged part of I–V characteristic for four different values of Gilbert
damping for Ω = 0.5. The inset shows an enlarged part of current step with
constant voltage at V = 2Ω.

FIG. 5. (a) I–V characteristic at three different values of fsz = 0.7, 3, 6 and
fsy =fsz. (b) An enlarged part of the I–V characteristic at fsz =fsy = 6. The
hollow arrows represent the starting point of the sequences. To get step voltage
we multiply the corresponding fraction by Ω = 0.5.
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MHz/T, we find the value of fsy(z) = 4π2Ly(z)dM0/Φ0 = 4.8 and
εJ = 0.1. With the same junction parameters, one can control the
appearance of the subharmonic steps by tuning the strength of the
constant magnetic field H0. Estimations show that for H0 = 10 mT,
the value of εJ = 0.4, and the fractional subharmonic steps are
enhanced. In general, the subharmonic steps are sensitive to junc-
tion parameters, Gilbert damping and the frequency of the external
magnetic field.

4. CONCLUSIONS

In this work, we have studied the I–V characteristics of super-
conductor–ferromagnet–superconductor Josephson junction under
external magnetic field. We used a modified RSJ model which hosts
magnetization dynamics in F layer. Due to the external magnetic
field, the coupling between magnetic moment and Josephson phase
is achieved through the effective field taking into account the
Josephson energy and gauge invariant phase difference between the
superconducting electrodes. We have solved a system of equations
which describe the dynamics of the Josephson phase by the RSJ
equation and magnetization dynamics by Landau–Lifshitz–Gilbert
equation. The I–V characteristic demonstrates subharmonic current
steps. The pattern of the subharmonic steps can be controlled by
tuning the frequency of the ac magnetic field. We show that by
increasing the ratio of the Josephson to magnetic energy an
enhanced staircase structure appears. Finally, we demonstrate that
Gilbert damping and junction parameters can change the subhar-
monic step structure. The observed features might find an applica-
tion in superconducting spintronics.
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