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Abstract—The coupling between the Josephson phase and magnetization in Superconductor/Ferromag-
net/Superconductor (S/F/S) junctions plays an important role in the dynamics of this system. In the pres-
ence of this coupling, we demonstrate the manifestation of the ferromagnetic resonance (FMR) in the fre-
quency dependence of the magnetization and critical current of S/F/S Josephson junction under circularly
polarized magnetic field. Furthermore, we compare the simulation results in both the nonlinearized and the
linearized models. The ferromagnetic resonance linewidth and the resonance frequency are strongly affected

by the ratio of the Josephson and magnetic energies.
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1. INTRODUCTION

Superconductor/Ferromagnet/superconductor (S/F/S)
Josephson junction is widely considered to be the
place where spintronics and superconductivity fields
interact [1]. In these junctions the supercurrent
induces magnetization dynamics due to the coupling
between the Josephson and magnetic subsystems. The
possibility of achieving electric control over the mag-
netic properties of the magnet via Josephson current
and its counterpart, recently attracted a lot of attention
[2—6]. In [4] the authors demonstrate a unique mag-
netization dynamics with a series of specific phase tra-
jectories. The origin of these trajectories is related to a
direct coupling between the magnetic moment and the
Josephson oscillations in these junctions and ferro-
magnetic resonance (FMR) when Josephson fre-
quency coincides with the ferromagnetic one.

In this paper, we study the coupling between the
Josephson phase and the magnetization which can be
achieved by electromagnetic field [7—14]. We present
a detailed analysis of the effect of the Josephson energy
on the FMR in S/F/S junction under circularly polar-
ized magnetic field in case of nonlinearized and lin-
earized Landau—Lifshitz—Gilbert (LLG) equation.
The coupling between Josephson phase and magneti-
zation alters the FMR linewidth and leads to a shift of
the FMR frequency. We develop the model which
takes into account the interaction between magnetiza-
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tion and Josephson phase in S/F/S junction under cir-
cularly polarized magnetic field using the Resistively
Shunted Junction (RSJ) model. The simulation
results are demonstrated for both the nonlinearized
and the linearized cases.

2. MODEL AND METHODS

‘We consider two superconductors separated by fer-
romagnetic layer with thickness d as shown in Fig. 1.
The area of the junction is L,L, and a bias current
flows in the x-direction. An uniaxial constant mag-
netic field H, is applied in z-direction, while a circu-
larly polarized magnetic field is applied in xy-plane

H, =(H, coswt, H, sinwt,0) with amplitude H,,
and frequency .

The current through the junction according to RSJ
model in the dimensionless form can be written as
[9, 14]:

sin(d.,m, ) sin(d,.m
I/[c(,) — ((bsy z) (q)sz y)sin

(D) (s,

where [ CO is the critical current, ¢, = 47c2Lya’ M, / D,

O,, 47tzlzd M, / ®,, O, is the flux quantum,
m,. =M, /M,, M, =Ml is the saturation magneti-

e+@,
dt

(1)
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(H,.cosot, H,sinwt, 0 L,

Fig. 1. Schematic diagram for S/F/S junction. The bias
current is applied in x-direction, a circularly polarized

microwave with amplitude H . and frequency o is applied
in xy-plane and an uniaxial constant magnetic field Hj is
applied in z-direction.

zation, ¢ is normalized to 03;1, and o, = 27/, CO R / D, is
the characteristic frequency. The dynamics of magne-

tization m, and m, in the considered junction are
described by the LLG equation [14]:

d_m:—g—(mxh +o[mx@mxh,)]), (2)

dt a+0’)
where Q, = @, / . , O, is the ferromagnetic resonance
frequency, a is the Gilbert damping, h, = H, /H0 is
the normalized effective field, H, = ,/y, and y is the

gyromagnetic ratio. The total energy of the system is
determined by

E=FE,+E, +FE, 3)

where E,,, E,. are the energy of the constant dc and ac

magnetic fields, respectively, and | is the Josephson
energy. In the proposed system we have [14]:

E, = —%(e(t) 8T (a1 0y - My(f)z)jl

0
+E, {1 — cos (6(1‘) _8n'd (M (t)y - My(t)z)ﬂ, (4)
0
Ey = —vH,M. (1),
E,. = —vM (t)H,, cos(r) —vM,(t)H,, sin(or).

Here v is the volume of the ferromagnetic layer,
and E;= ®,/./21. The effective field is given by

H, = —;VME. ®)]
After integrating over the junction area, the total
effective field in the dimensionless form reads as
h, = h,, cos(Qe, + (h, sin(Qr) + T;e, cos )
xeé,+(1+T e, cos0)e,
withe;, = E,/(vM,H,) and

_ sin(o,m;)
b = m;(dgm;) {COS(q)Sjmi)

(6)

sin(§ym;)
e LT PN
(&ym;) } ! @
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here the index i =y, j = zand
0:if h,=1+h,,
8'/:{1‘ e ac

if h, =1+h, +h,.

In case of high-frequency magnetic susceptibility
one can linearize LLG equation, then the RSJ equa-
tion is reduced to [14]:
sin((bsmy

sy
where [, = [ sin((I)sy)/ (4y), Oy = 4°L,d M_/®, and

the expression for y-component of magnetization has
the form [14]:

_ o) g
/1, in6() + == ®)

Q’
—20c—cos(Qt) +(1- sin(€27)
Q3 ( LY ]

m, = 0 : ., )
Q’ 2 Q°
I-mas| +A)|1- + 4o
[ b Qéj ( " on o
where A, = e,(])fz cose(t)/3, n=1-0’ and

n, =1+ 0’ and ¢, = (4n’L.dh,, M,)/(®@,).

The magnetization and phase dynamics of the
S/F/S junction can be described by solving Eq. (1) and
Eq. (2) together. To solve this system of equations,
we employ the fourth-order Runge—Kutta scheme.
The initial conditions for the magnetization compo-

nents are assumed to be m, =0, m, =0.01 and

=41- mi — mﬁ, while for the voltage and phase we

have Vi =0,0,,=0.

3. RESULTS AND DISCUSSION

First, we investigate the effect of the Josephson
energy on the FMR by comparing the FMR linewidth
with §, =0, when A, =1+4h, and J, =1, when
h, =1+ h,, + h,. Figure 2 demonstrates the manifesta-
tion of FMR in the frequency dependence of the max-
imum amplitude of the magnetization component
m,(t) and m,(f) (m,(¢) is qualitatively same as m, (¢)). It
illustrates the maximal amplitude of m,(¢) versus €2,

while a minimum occurs for m,(f). At A, = 0 the line-
width is symmetric around the resonance frequency

Q, = 0.5, however, at 8, =1, the FMR linewidth is
not symmetric. So, this fact reflects the influence of
the Josephson energy to the effective field.

Next, we show the manifestation of FMR in the
frequency dependence of the average critical current
density. In the nonlinearized scheme the average crit-
ical current is given by

/- <sin(¢symz)sin(¢szmy)>. (10)
(O,1m.) (05,1,
Vol. 17 No.1 2020
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Fig. 2. Manifestation of the FMR in the frequency depen-
dence of the maximum amplitude of the magnetization
component m,, and m, at bias current I = 1.16. Lines added

to guide the eye.

The FMR linewidth at 3,= 0 and §,= 1 is shown in

Fig. 3. As we see, at §, = 1 the resonance linewidth is
getting not symmetric as the result of including
Josephson energy to the effective field. Furthermore,

the effect of increasing €, is manifested in a shift of the
FMR frequency. The value of this shift is presented
below, where the linearized LLG is considered.

In the linearized scheme, the resonance frequency
can be found by analyzing the denominator of m,(¢) (see
Eq. (9)) which can be written in the following form

A=T1+1+0)(Q/Q)" +20” - 1)
X (Q/Qp) + A, (07 = 1)(Q/Q)” +1).

At the resonance, the value of m, () is maximum,
i.e., A has a minimum. So, we have to solve the equa-

tion ‘di—g = 0 for Q, to get the critical points. Then, to

1

check if the resultant frequency corresponds to the

2
minimum value for A, we find d—jé . Four different
Q,
cases are shown below for the resonance frequency Q,
Q’. - iQO’ AJ = 09
a=20 / (12)
M = i%go, AJ 0
2
QI‘ Zil;(ngo, AJ =0,
1+
o #0 Y. (13)
- +
Q == L2Q,, A, #0.
Darady 0
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Fig. 3. Manifestation of the FMR in the frequency depen-
dence of the average critical current density for three dif-
ferent values of €.

The manifestation of FMR in the frequency
dependence of the maximum amplitude of the magne-

tization component m,(¢) is shown in Fig. 4 at different
values of €, and o.. In Figs. 4a and 4b we demonstrate

the effect of €, on the resonance frequency at o = 0.
For clarity, we show an enlarged part for the maximum

value of m, around Q =0.5. At A; =0, we observe
singularity at Q = €,, which can be seen from the
expression of m, at o, = 0

3Q; sin(Q1)
3(Qp - Q%) + Qoe, 02 cos(8(r))
This singularity disappearsat g, # 0, and m,,(f) has

an upper limit for the maximal value which decreases
with increasing €, (see Figs. 4b and Eq. (14)). Near the
resonance, the conditions of linearization are violated,
which is demonstrated by large values of m,,, but nev-
ertheless the used formulas could help to see the vari-
ation of resonance position, and the position of the
Devil's staircase in the IV characteristics as demon-
strated in [14]. Furthermore, the resonance linewidth
becomes wider and the resonance frequency is shifted
from Q = Q,. In Fig. 4c we demonstrate the effect of
o and €, on the resonance frequency and its linewidth.
At o, = 0.1 the resonance linewidth is narrower than in
case with oo = 0.3. However, at o = 0.1 and ¢, = 0.2
the resonance linewidth is narrower than in case with
€, = 0.02. In addition to this, the maximum value of
m,,(t) fore,; = 0.2 is larger than the case with g, = 0.02.
This result is opposite to the case with oo = 0, where the
maximum value increases with decreasing €.

my(t) = (14)

No.1 2020
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Fig. 4. Frequency dependence of the maximum amplitude of the magnetization component my(t). (a) An enlarged part of the
resonance curve is shown around Q = 0.5at oo = 0. (b) The same asin (a), but with e; # 0. (¢c) The same asin (a), but with o # 0.

A rough estimation for the resonance shift can be done
using Eq. (12) for oo = 0 and Eq. (13) for o0 # 0. Since
A, o< cos(6(f)) and lcos 8 < 1, we can calculate the shift
at the extreme limits in which cos 6(¢) = 1. We denote
8, =1Q, — Q,| as the left shift of the resonance frequency
from Q, with cos® = —1, while §, =|Q, — Q| is the
right shift of the resonance frequency from €, with

cos O = 1. For the given parameters ¢, =2, ¢, = 0.4,
and Q) = 0.5, the shift of the resonance frequency is pre-
sented in Table 1 at different values of € ; and .
All frequencies which are demonstrated in Table 1
2
correspond to the local minimum for A (% > 0).
Q

However, m, reaches a global maximum when cos 6

"

Table 1. Demonstration of the resonance frequency shift calculated from Eq. (14) at different values of €, with ¢, = 2,

0, =0.4and Q; = 0.5

o € Q, 1y, 8 = Q0 — Q,1)|, cosB = -1 Q,(ry» Or = [Qy(r) — o, cos6 =1

0 0.002 Q, ) = 0.4997, 8, = 0.0003 Q,r) = 0.5003, 8z = 0.0003

0 0.2 Q, ;) = 0.4655,6, = 0.0345 Q,r) = 0.5323, 6 = 0.0323
Q1) = 0.4893,8,, = 0.0107

0.1 0.02 Q, 12 = 0.4958, 8,, = 0.0042 No resonance at Q, > Q,

0.1 0.2 Q,;) = 0.4585,5, = 0.0415 Q,r) = 0.5244, 5 = 0.0244
Q, ;) = 0.4074, 5,, = 0.0927

0.3 0.2 Q12 = 0.4658,08,, = 0.0342 No resonance at Q, > Q,
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Fig. 5. Frequency dependence of the average critical current density /., in the linearized scheme. (a) Shows the effect of o on the
FMR linewidth. (b) The same as in (a), but with different values of €.

becomes negative such that the denominator has min-
imum (see Eq. (14)). The position of this global max-
imum occurs at the left of QQ;, when cos0(f) = —1. As
shown in Fig. 4b, for €, = 0.2 we have two maximums
with the global one at the left (€2 = 0.46). One should
note that we may have several local maximums in m,
depending on the value of cos©6(7). Next, if o # 0,
both resonance frequencies with cos@ =+1 may
occur on the left side of Q, as in the case with o = 0.1
and 0.3. As we see, the position of the resonance fre-
quency does not depend on the sign of cos 0 as in com-
pare with o0 = 0 case.

Next, in Fig. 5 we demonstrate the manifestation of
the FMR in the frequency dependence of the average

critical current 7, in the linearized scheme. In this
case it takes the form

I _<Sin(¢smyl)>
o =\ T/
(q)smyl)

Figure 5a shows how the resonance width is
affected by changing o.. At oo = 0.01, the resonance
width is very narrow around €2,,, while it becomes wider
at o =0.1 and at o =0.3. A clear shift occurs for
o = 0.3. At the given numerical parameter, the mini-
mum value for 7, increases with increasing o. For
o =0.01,0.1,0.3, the minimum occurs at 0.2,0.7,0.95,

respectively. The effect of €, is shown in Fig. 5b, where
we observe a small variation for the FMR line width

with changing €,. The mismatch in the behavior of /,
for linarized and nonlinearized cases is due to the dif-
ferent relations for the average critical current. In lin-

earized case it is a function of m,,(r) only, so, the max-
imum of m,(¢) corresponds to the minimum of the

15)
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critical current. On the other hand, for the nonlinear-
ized case the critical current is function of additional
terms with m, (f), which show a minimum at FMR. So,
the total current in this case is determined by the com-
petition between the maximum of m, and minimum

of m(7).

Finally, we compare the resonance linewidth in
case of the linearized and nonlinearized system of
equations. We choose the same parameters for both
systems. As shown in Fig. 6, the resonance linewidth
for a linearized system is narrower than for nonlinear-

m;x(my) max(m,;)
1.2 -
¢Sy = 4’ ¢SZ = 27 hac = 0‘27 i
0, =0.4,a=0.1,¢,=0.2, i
10 _QO=0.5 . 420
0.8 115
/
Non-linearized 10
0.6 + T
\i Linearized
\
04+ I, 15
Y
!
0.2 | | ! | “T1-= 1y
0 0.2 04 0.6 0.8

Fig. 6. Maximal amplitude of the m,-component as a

function of the magnetic field frequency in the nonlinear-
ized (max(my)) and linearized (max(my,)) cases.
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ized one. Also, the shift from €} is very clear mani-
fested for linearized system.

In conclusion, we have demonstrated the manifes-
tation of ferromagnetic resonance in the frequency
dependence of the magnetization amplitude and the
average critical current density in S/F/S structure
under circularly polarized magnetic field. The cou-
pling between Josephson phase and magnetization
affect the FMR linewidth and leads to the shift of the
FMR frequency.
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