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ABSTRACT

Irregular easy axis reorientation features are observed in numerical simulations of the nanomagnet coupled to the Josephson junction. We
study magnetization bifurcations and chaos that appear in this system due to the interplay of superconductivity and magnetism. The bifur-
cation structure of magnetization under the variation of Josephson to magnetic energy ratio as a control parameter demonstrates several
precessional motions that are related to chaotic behavior and orbits with different periodicities in the ferromagnetic resonance region. The
effect of an external periodic signal on the bifurcation structure is also investigated. The results demonstrate high-frequency modes of a peri-
odic motion and a chaotic response near resonance. Far from the ferromagnetic resonance, we observe a quasiperiodic behavior. The obtained
results explain the irregular reorientation of the easy axis and the transitions between different types of motion.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0095009

We present a systematic numerical study for nonlinear dynamic
features in the nanomagnet coupled to the Josephson junction.
Our results show that various types of magnetization dynamics of
the nanomagnet may lead to fluctuations in the reorientation of
the easy axis. This opens up unique perspectives for the control
and manipulation of chaos in hybrid superconducting systems.
In particular, we envisage that our results may be of considerable
importance for the development of spintronic devices.

I. INTRODUCTION

Spintronics is currently one of the main contenders for next-
generation nanoscale devices aiming at faster processing speeds and
lower power consumption.1 On the other hand, superconductors
stand out as ultra-low energy dissipation systems. Superconduc-
tivity, thus, has the potential to reduce inherent heating effects in
spintronic devices. As such, many different approaches have been
developed to enhance spintronic effects through the incorporation
of superconductivity and understand the interactions that arise due
to the coexistence of superconducting and magnetic states. Such

efforts have spawned the relatively new field of superconductor
spintronics.2,3 Moreover, molecular nanomagnets4–6 are good candi-
dates for qubit realization due to their long magnetization relaxation
times.7–10

One of the most challenging tasks in nonlinear dynamical
systems is the characterization of periodicity and chaos.11,12 Many
topological structures, e.g., shrimps, boomerangs, or both, have
been observed within chaotic domains.13–17 Since the magnetiza-
tion dynamics of magnetic particles is described by the nonlin-
ear Landau–Lifshitz–Gilbert (LLG) equation,18 complex dynamical
behaviors and bifurcations can take place for these systems also.19–31

Recent experimental work, for example, has observed chaotic states
due to driven pumping in a mono-domain regime.32

Chaotic behavior in the nonequilibrium dynamics of certain
many-body systems can provide a way to investigate eigenstate
thermalization and delocalization of such closed quantum systems.
Demonstration of quantum phase transition, the onset of chaos, and
the formation of many body quantum scars in the ergodic dynam-
ics of an interacting quantum system describing a Bose–Josephson
junction coupled to a single Bosonic mode was presented in Ref. 33.
There, it was shown that the trajectories around the steady states
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of π-mode are unstable with a positive Lyapunov exponent, which
indicates a deviation from ergodicity by scarred states (deviated
states) of unstable π-oscillations.

Chaos within a single driven Josephson junction (JJ) has been
reported within the contexts of the resistively-capacitively shunted
junction (RCSJ) and resistively-capacitively-inductively shunted
(RCL-shunted) models and has also been observed experimentally.34

Chaos is also known to occur in coupled systems of Josephson
junctions. In Ref. 35, for example, the occurrence of spontaneous
chaos synchronization in certain regions of the parameter space of
the capacitively coupled Josephson junction with diffusion current
(CCJJ+DC) model of intrinsic Josephson junctions was demon-
strated, i.e., for a system without any external shunting or ac-drive.
In this case, as the dc-bias current decreases along the outer resistive
branch of the I-V characteristic, the system develops a break-point
region, just before transition to inner branches due to the excita-
tion of a longitudinal plasma wave. Within the break-point region,
quasi-periodic and fully developed chaos can occur. More recently,
chaotic behavior along the resonance circuit branch (rc-branch) of
the RLC-shunted model of intrinsic Josephson junctions has also
been studied.36 In Ref. 36, the dynamics was investigated over a wide
region of the parameter space through numerical simulations of the
I-V characteristics, electrical charge density, Lyapunov exponents,
bifurcation diagrams, and Poincaré sections. The crucial role played
by the rc-frequency in determining the regions of chaos and regular
behavior was demonstrated. In particular, it was found that at the
lower-current end of the rc-branch, the chaotic region can be made
wider (or narrower) by reducing (or increasing) the rc-frequency.

Chaotic behavior in arrays of intrinsic Josephson junctions was
seen at intermediate values of coupling and dissipation parameters.37

For specific values of dissipation and coupling parameters, the sys-
tem shows instability, branching for overcritical currents appears on
the I–V characteristic as well as for subcritical currents and chaotic
behavior confirmed by the positive Lyapunov exponent.

In Ref. 38, the authors investigated the control of chaos and
coexisting attractors and collective dynamics in a model of lin-
ear resistive-capacitive-inductive shunted Josephson junction. It was
shown that the chaos in the system could be suppressed by a sin-
gle feedback controller. Moreover, a linear augmentation control
method can destroy the coexisting attractors between chaos and
limit cycles. To understand the network behavior, the collective
behavior of the system was analyzed through a two-dimensional
lattice array.

Hybrid structures, such as the nanomagnet coupled to Joseph-
son junction (NM-JJ), are important contenders for the develop-
ment of spintronic devices.39,40 In the latter structures, the dynamics
of a magnetic nanoparticle and that of the JJ are governed by a
nonlinear differential system of equations, which includes the LLG
equation,18 and resistively and capacitively shunted Josephson junc-
tion model.41 The coupling in the NM-JJ system can be established in
different ways, particularly, through spin–orbit coupling in the ϕ0-
junction.42 Another type of coupling is realized in the NM-JJ, when
electromagnetic coupling takes place between spin-waves and the
Josephson phase.43–50

Nonlinear dynamics of the JJ is sensitive to the orientation of
magnetization,51–59 and rich physics was predicted due to this type
of coupling between the Josephson and magnetic subsystems: for

example, supercurrent-induced magnetization dynamics.59–62 In the
NM-JJ, the reversal of the magnetic moment by the supercurrent
pulse,57 the appearance of devil’s staircase,43 and Kapitza pendulum
effects39,63,64 were investigated.

In Refs. 39 and 63, the authors introduced the Kapitza pendu-
lum as a mechanical analog to the NM-JJ system and demonstrated
the reorientation of the easy axis of the magnetic moment of the
nanomagnet. In this case, the Josephson to magnetic energy ratio G
plays the role of the drive amplitude of the variable force, and the
Josephson frequency �J plays the role of the drive frequency in the
Kapitza problem. The average magnetization component mz charac-
terizes the changes of the stability position. However, at present, to
the best of our knowledge, there is no systematic study of the nonlin-
ear dynamic features in the NM-JJ system. Therefore, in this paper,
the dynamical equations, which describe the coupling in this sys-
tem in the framework of the voltage-biased Josephson junction, are
studied. We investigate magnetization bifurcations and chaos that
appear in the system due to the interplay of superconductivity and
magnetism and calculate the bifurcation diagrams, Lyapunov expo-
nents, and Poincaré sections. Several precessional motions related to
chaotic behavior and periodic orbits in the ferromagnetic resonance
region (FMR) are demonstrated. The chaos driven by the external
periodic signal is also investigated. The estimation of the model
parameters shows that there is a possibility for the experimental
observation of the predicted phenomenon.

The plan for the rest of the paper is as follows. In Sec. II, we
describe the model and present the estimation of the model param-
eters. The dynamics and reorientation features of the nanomagnet
coupled to Josephson junction are demonstrated in Sec. III. This
is followed by a discussion of bifurcation diagrams and Poincaré
sections. In Sec. IV, we discuss the chaos driven by an external peri-
odic signal. Here also, the appearance of quasiperiodic motion is
presented. Finally, we conclude with Sec. V.

II. MODEL

We consider a short Josephson junction (JJ) with length l, cou-
pled to a single-domain nanomagnet with magnetization M and
easy axis in the y-direction. The nanomagnet is located at a distance
rM = aêx from the center of the junction, as shown in Fig. 1. The
magnetic field of the nanomagnet alters the Josephson current, while
the magnetic field generated by the Josephson junction acts on the
magnetization of the nanomagnet. Thus, there is an electromagnetic
interaction between the Josephson junction and the nanomagnet.

The magnetization dynamics in the NM-JJ can be described by
the LLG equation,65,66

dM

dt
= −γ M × Heff +

α

M0

(

M × dM

dt

)

, (1)

where α is the Gilbert damping parameter and γ is the gyromagnetic
factor.11,26 The effective field in the LLG equation is given by Ref. 42,

Heff = − 1

VF

∂E

∂M
, (2)

where VF is the volume of the nanomagnet, and the total energy (E)
of the system is the sum of magnetic anisotropy energy (EM), Joseph-
son energy (EJ), and Zeeman energy (EZ). The first two terms are
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FIG. 1. Schematic diagram showing the geometry of the nanomagnet coupled to
short Josephson junction (NM-JJ) studied in this work. In the equivalent circuit for
the Josephson junction, Vdc is the bias voltage, Vac is the ac external drive, IS is
the superconducting current, IR is the resistive current, and ID is the displacement
current.

given by

EM = −KanVF

2

(

My

M0

)2

, (3)

EJ = εJ

[

1 − cos

(

2π

80
Vdct + ϕm

)]

. (4)

Here, Kan is the magnetic anisotropy constant, M0 =| M | is the sat-
uration magnetization, εJ = 80Ic/2π , Ic is the critical current of the
JJ, 80 is the flux quantum, and Vdc is the bias voltage for JJ. The
phase shift ϕm is induced by the mutual interaction of the nano-
magnet and JJ. This shift can be calculated from the vector potential
Am(r, t), which takes into account the magnetic field of the nano-
magnet created at point r and external magnetic fields, if considered
(see, Refs. 40 and 63 for details). Accordingly,40 the shift is given by

ϕm = −2π

80

∫

dl · Am(r, t) = −k
Mz

M0
,

Am(r, t) = µ0

4π

M × r

r3
,

k = 1

280

µ0M0lVF

a
√

a2 + l2
,

(5)

where the integration goes from one side of the junction to the other,
µ0 is the permeability of free space, and k plays the role of coupling
in the system.

The last term that contributes to the total energy is generated
by the normal current and is given by Refs. 40 and 63,

Ez = −IN

∫

dl · Am(r, t), (6)

where in the dimensionless form IN = [V − kṁz], and V = Vdc/IcR
is the normalized voltage. In our normalization, V = �J, �J = ωJ/ωc,

ωJ is the Josephson frequency ωJ = 2πVdc/80, m = M/M0, t is
normalized to ω−1

c , ωc = 2πIcR/80 is the Josephson characteris-
tic frequency, R is the junction resistance, ωF is the ferromagnetic
resonance frequency, �F = ωF/ωc, and the effective field heff is nor-
malized to the magnetic anisotropy field. According to this, the LLG
equation is

dm

dt
= − �F

(1 + α2)

(

m × heff + α
[

m × (m × heff)
])

, (7)

with

hy = my, hz = ε[sin(�Jt − kmz) + �J − kṁz], (8)

where hy and hz are the components of the effective field in the y-
and z-direction, respectively, ε = Gk, G = εJ/KanVF is the Joseph-
son to magnetic energy ratio, and it can be << 1 or >> 1.42 The
first term in hz represents the magnetic field generated by the super-
conducting current, while the second and third terms represent
the magnetic field due to the quasiparticle current. For experimen-
tal realization of such a system, we introduce an estimation for
model parameters based on Refs. 67–70. We present in Table I
estimations for typical Josephson junctions, in Table II for typical
nanomagnet parameters, and in Table III for model parameters. The
value of k depends on the distance of the nanomagnet from the JJ
and the length of the junction (here, for estimation, we consider
a = 250 µm). Experimental results give the estimation for the ferro-
magnetic resonance frequency of nanomagnets within ∼GHz.71,72 In
the voltage-biased Josephson junction, one can tune the Josephson
frequency within a wide interval around the FMR frequency.

The results presented in the paper have been obtained using
different numerical methods. In particular, we solve Eq. (1) numer-
ically using an implicit Gauss–Legendre method to calculate the
dynamics of the system.73 After allowing for a transient time, which
is on the order of 10 000 dimensionless time units, we calculate the
time average of magnetization components < mi(t) >, i = x, y, z. To
characterize different types of motions manifested in the bifurcation
diagrams, we also calculate the corresponding Poincaré sections and
maximal Lyapunov exponent (λmax), again, after transient time.

TABLE I. Typical Josephson junction parameters.

Parameter
Al/Al2O3/Al

(SISa)
Nb/PdAu/Nb

(SNSb)

l (length) 141 nm 20 nm
Ic(Critical current) 20 nA 6 mA
εJ (Josephson energy) 6.58 × 10−24 J 1.97 × 10−18 J
Rc (Junction resistance) 10 k� 0.003 �

ωc (Characteristic frequency) ∼600 GHz ∼54 GHz

aFrom Ref. 67.
bFrom Ref. 69.
cIn the subgap region of voltages V < Vg, the junction resistance can
be replaced by linear subgap resistor Rs and by the junction normal
resistance R at voltages V > Vg, where Vg = 21/e is the gap voltage
and 1 is the superconducting energy gap in S-electrodes.75 In this
case, the estimation of ωc may increase or decrease in comparison to
the values in Table I.
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TABLE II. Nanomagnet parameters.

Parameter
SmCo5

(NM-1)
Fe65Co35

(NM-2)

M0 (Magnetization) (kA/m) 907 1950
Kan (Anistropic constant) (kJ/m3) 17 000 20
Curie temperature (K) 995 1210
VF (Volume) ∼1.979 × 10−23 m3

α (Gilbert damping) ∼ 0.0001 − 0.1
a (Distance of NM) ∼250 nm

Bifurcation (or orbit) diagrams are a useful tool to deter-
mine the long-term behavior and structural changes of the system’s
motion as one of the control parameters (in this case G, or �J)
are varied.74 In this work, we use the Josephson period τJ = 2π/�J

as the sectional plane for constructing bifurcation diagrams such
as those shown in Fig. 3. The system of equations (1) is inte-
grated at each specific parameter value for 10 000 dimensionless
time units using a fixed time step of 1t = 10−4. To avoid recording
any transient behavior, we only save the coordinates of the magne-
tization components for the last 200 “crossings,” i.e., at values of
time t = pτJ, (p + 1)τJ, . . . (p + 200)τJ, where p is some large pos-
itive integer. When the coordinate of a particular component (say
mx) coincides for all 200 successive crossings, we have period-1
behavior in mx, which we denoted by P1 in Fig. 3(a), for example.
When there are only two distinct crossing points, we have period-2
(P2) behavior and similarly for period-3 (P3), period-4 (P4), etc. On
the other hand, a continuum of points on the bifurcation diagram
may reflect either quasiperiodic or chaotic behavior. To distinguish
between the latter two types, we calculate the largest Lyapunov expo-
nent λmax.20,26 When λmax is zero to within a set numerical tolerance,
it indicates either periodic or quasiperiodic motion. A negative λmax

shows that the system approaches the fixed point mx = my = 0,
mz = 1, for which the time average < mz(t) >= 1. A positive λmax

is a signature of the chaotic behavior. To find λmax as a function of
G, we first calculate the magnetic moment dynamics with the initial
conditions m = (0, 1, 0) and then randomly shift the initial condi-
tion by δ ≈ 10−5. After that, we calculate λmax from mx, my, mz and
mx + δ, my + δ, mz + δ and average it over time.

If it not mentioned, we consider the ferromagnetic resonance
frequency �F = 1, the coupling constant between the JJ and the
nanomagnet k = 0.05, and the Gilbert damping parameter α = 0.1.

TABLE III. NM-JJ parameters.

Parameter Al/Al2O3/Al Nb/PdAu/Nb

k (Coupling constant)
NM-1 0.011 0.0017
NM-2 0.023 0.0037

G (Energy ratio)
NM-1 1.9 × 10−8 0.006
NM-2 1.6 × 10−5 4.977

We have chosen the Josephson to magnetic energy ratio G and the
Josephson frequency �J as control parameters. All our calculations
start with minimum value of G = 0.01π .

III. IRREGULAR REORIENTATION BEHAVIOR,

BIFURCATION, AND CHAOS

As we mentioned above, in the present model, the magnetic
field takes into account both the superconducting and quasiparticle
currents. This leads to two different reorientation mechanisms of
the nanomagnet easy axis. One mechanism is related to the mag-
netic field created by the quasiparticle current, while the other is
related to the oscillating magnetic field generated by the supercon-
ducting current. The second mechanism reflects the Kapitza feature
observed in the magnetization dynamics of the NM-JJ system39,63

and ϕ0-junction.64

The reorientation phenomenon is actually very complex. Here
we investigate the details of the magnetic moment dynamics at
different system parameters. Figure 2 shows the average magnetic
moment component < mz(t) > as a function of the Josephson to
magnetic energy ratio G at two values of �J. One can see a lin-
ear change of the reorientation value from zero to one at �J = 5,
where the stabilization of the magnetic moment dynamics and com-
plete reorientation occurs (< mz(t) >= 1). However, for �J = 1
(FMR condition), the fluctuations of < mz(t) > appear before the
complete reorientation. To understand the origin of these fluctua-
tions, we analyze the dynamics of the system in two cases, at FMR
(�J = �F) and away from it.

FIG. 2. The average magnetization component < mz(t) > as a function of G,
demonstrating the Kapitza pendulum features in the NM-JJ system.39,63 The blue
solid line indicates the results calculated at�J = 1. The black dashed line shows
the same at �J = 5.
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A. Dynamical effects at FMR

To investigate the motion of the magnetic moment in the
parameter space (�J, G) at the FMR, we calculate the bifurca-
tion diagrams.26 Figures 3(a)–3(c) show the bifurcation tree of the
Poincaré section of magnetization components (mi-Poin, i = x, y, z)
as a function of G before complete reorientation. In what follows,
we describe all types of motion that are revealed in the bifurcation
tree. As we can see, the bifurcation diagram starts with the fixed
point (FP), (mx,z = 0, my = 1) and then demonstrates period one
(P1) motion. The first period doubling occurs at G = 6, and the
P2 motion persists up to G < 7.9 after which there is the second
period doubling followed by P4 motion for mx. The chaotic bands
appear in the intervals (8, 11.5) and (16, 20), interrupted by peri-
odic motion. In the periodic region within the intervals (12.7, 16)
and (30, 43.5), the system demonstrates P2 motion for mx and my,
while mz shows the regular P1 motion. In addition to this, two
folding bifurcations are revealed [indicated by the hollow arrows in

FIG. 3. Bifurcation diagrams of magnetization components (a)mx-Poin, (b)my-Poin,
and (c) mz-Poin. The average value of the mz-component is shown in (d), and
(e) shows the largest Lyapunov exponent as a function ofG at�J = 1. The folding
bifurcations are indicated by hollow arrows.

FIG. 4. The orbits of motion (blue curve) of the system and the corresponding
Poincaré sections (red dots). (a) at G = 9 with chaos; (b) at G = 12 with P2
motion. Both panels are for the case with �J = 1. The Poincaré sections with
one point only indicate P1 motion, with two points—P2 motion, and so on.

Fig. 3(a)]. Finally, the system approaches the stable fixed point (FP)
at G = 43.5 corresponding to the complete reorientation of the easy
axis (mx,y = 0, mz = 1).

The transition from one type of motion to another, in this
system, is accompanied by abrupt changes in the values of aver-
age magnetization components. We demonstrate such changes in
Fig. 3(d), where the irregular reorientation behavior of < mz(t) >

appears before complete reorientation. The λmax calculation con-
firms the chaotic behavior of magnetization [see Fig. 3(e)]. The
intervals with positive values of λmax coincide with the chaotic bands
observed in the bifurcation diagrams.

To study the dynamics of the system in more detail at specific
values of G, we calculate the Poincaré sections along with the orbits
of motion. These results are presented in Fig. 4. Figure 4(a) con-
firms the chaotic nature of those states. Figure 4(b) demonstrates the
trajectories and the Poincaré section of the P2 motion at G = 12.

So we have demonstrated the transformations of the magneti-
zation dynamics between different types of motion presented in the
bifurcation diagrams and the Poincaré sections. These transforma-
tions lead to fluctuations in the reorientation processes of the easy
axis. However, now the question arises, how the dynamics of the
system changes with changing parameters.

B. Effect of �J on the dynamics

The magnetic moment dynamics drastically changes at
�J > �F in comparison to the case �J = �F. Figures 5(a)–5(c) show
the bifurcation trees of magnetization as a function of G at �J = 1.5.
In this case, a simpler bifurcation structure is observed for preces-
sional motion as compared to �J = 1. Chaos does not appear and
the bifurcation trees at �J = 1.5 demonstrate motions with differ-
ent periods. The λmax equals zero within the whole calculation range
(not shown here). The average < mz(t) > as a function of G in
Fig. 5(d) reflects the transformation of the system from one kind
of periodic motion to another.

Figure 6 demonstrates the corresponding shrinking of the
orbits of motion with increasing of �J. The increase in the driving
frequency �J reduces also the value of G at which the complete reori-
entation occurs (see the dashed line in Fig. 2).39,63 This explains why
only the P1 motion before the stable FP is observed at �J = 5; this is
shown in Fig. 2 (dashed-line).
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FIG. 5. Bifurcation diagram of the magnetization components (a) mx−Poin,
(b) my−Poin, (c) mz−Poin, and (d) the average value of the mz-component as a
function ofG at�J = 1.5. The folding bifurcation is indicated by the hollow arrow.

To determine the sensitivity of the system to different initial
conditions, we calculate the basins of attraction at different values of
�J. In Fig. 7, we have computed the basins of attraction for G = 10
and two different values of �J. At �J = 1, it shows that all possible

FIG. 6. The orbits of the motion of magnetization (dashed line for �J = 1, solid
line for �J = 1.5) and the corresponding Poincaré sections at G = 5.

initial conditions lead to the chaotic attractor. This is shown by the
light blue color corresponding to C on the color scale. The situation
changes at �J = 1.5 when there is no chaotic attractor. In this case,
different initial conditions may lead to either P1 or P2 motion, as
indicated by red and green color regions. So we have demonstrated
the effect of �J on bifurcation diagrams and basins of attraction,
which shows the disappearance of the chaotic behavior for �J > �F.

C. Regions of chaos

To determine the area of chaotic response in the parameter
space, we calculate 2D maps for λmax as a function of G and �J (see
Fig. 8) at different values of k and α. In Figs. 8(a)–8(d), the λmax

shows only positive values for �J < 1.5, i.e., for �J > 1.5, no chaotic

FIG. 7. Projections onto the mxmy -plane of the basins of attraction at G = 10 and (a) �J = 1, (b) �J = 1.5. Colors (1–7) indicate the periodicity toward which the final
trajectory can be attracted, while the colors marked C corresponds to a chaotic attractor. In both figures, no FP were detected. In (a), all points are attracted to C, while in
(b) the points are either attracted to period-1 (green) or period-2 (red), as indicated in the color scale (same for both figures).
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FIG. 8. The largest Lyapunov exponent as a function of G and �J at different
values of k and α = 0.1 are shown in panels (a)–(c). Panels (b), (d), and (e) show
the same but at different values of α and k = 0.05.

behavior appears. A remarkable finding is that decreasing k [cf. pan-
els (a)–(c)] shifts up the G threshold for the chaotic motion. For
example, at k = 0.05 [see panel (b)], the chaotic region occurs for
G > 5, while at k = 0.01 [see panel (c)], it occurs only for G > 20.
On the other hand, the chaotic response of the system is much less
sensitive to changes in α, over the experimentally relevant range
[cf. panels (b), (d), and (e)].

In the present system, the precession of magnetization is driven
by Josephson oscillations. So the increase in �J forces the magne-
tization to follow the Josephson oscillations, and only the periodic
motion is observed. Therefore, it is the reason why we do not see
any chaotic behavior of magnetization at �J ≥ 1.5. The reorienta-
tion features at �J >> �F demonstrate the Kapitza-like pendulum,
as it is demonstrated in detail in Refs. 39 and 63.

In Fig. 9, we demonstrate the two-dimensional (2D) bifurcation
diagrams that show the periods of magnetic moment components.
Comparing with the result presented in Fig. 8(b), we find precise
agreement in the predicted chaos and periodicity as a function of
G and �J. However, Fig. 9 shows that there are regions where the
system can have different periodicities in the three magnetization
components. The 2D bifurcation diagrams for mx and my are exactly
the same [as shown in panel (a)], while there is a remarkable differ-
ence observed for mz [cf. panels (a) and (b)]. In particular, the large
region of P2 motion shown in red in panel (a) corresponds to P2
motion in mx. To see the regions of synchronization more clearly,
we also show [panel (c)] 2D bifurcation diagrams in which all of
the magnetic components have the same periodicity. The regions
where the periodicity in magnetization components differ from one

FIG. 9. Two-dimensional bifurcation diagrams over the parameter space (�J,G)

for (a) mx (my is identical to mx ); (b) mz; and (c) mx , my , and mz combined show
the periodicity by the color scale. Orange, corresponding to 0, indicates the fixed
point mx = my = 0,mz = 1, while in (c), the blue color corresponding to −1
indicates regions where the periodicity of the three quantities differs. The chaotic
regions are colored black.
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another is shown in the light blue color corresponding to minus one
on the color scale. The presented diagrams show that chaos occurs
only for frequencies near/or less than the FMR frequency for a wide
interval of G (black color). Indeed, the chaos mostly disappears at
frequency larger than the FMR frequency.

At the resolution of Fig. 9, which is 601 × 1201 (width
× height) pixels, there appears to be some type of noise within the
darker chaotic regions. However, these structures are in fact real
islands of periodicity that exist within the surrounding chaotic sea.
They are not related to numerical noise or artifacts. In the litera-
ture on dynamical systems, they are usually referred to as swallows
or shrimps.76–79 A discussion of their role in the chaotic dynamics
would take us beyond the scope of the present work. It suffices to
mention that it has recently been discussed in connection with the
ordinary LLG equation (see Ref. 11).

IV. CHAOS DRIVEN BY EXTERNAL PERIODIC SIGNAL

It is well known that the external periodic signal (PS) leads to
chaotic behavior in the dynamics of the SIS JJ.80 Up to now, there
has been no systematic study of the chaotic features in the NM-JJ
system. Here, we demonstrate the chaotic features in the magneti-
zation dynamics of this system under PS. The total voltage in JJ in
this case consists of dc and ac parts Vtotal = V + A cos(�rt), where
A is the amplitude of the PS normalized to ~ωc/2e and �r is the
frequency of the ac voltage normalized to ωc.

In this case, the effective field component hz in comparison to
Eq. (8) has the following form:40,63

hz = ε

{

sin

(

�Jt − kmz + A

�r

sin(�rt)

)

+ �J − kṁz

+ A cos(�rt) − βcA�r sin(�rt)

}

, (9)

where βc is the McCumber parameter (here we take it 0.25, which
corresponds to over-damped junction) and the higher-order term
(−βckm̈z) is neglected, since we found from our previous esti-
mations that βckm̈z is quite small. We note that the nanomagnet

FIG. 10. (a) Bifurcation diagram of the magnetization component mz−Poin and
(b) the largest Lyapunov exponent as a function ofG at�J = 1 under the external
periodic signal with �r = 0.8 and A = 1.

FIG. 11. (a) Bifurcation diagram of the magnetization componentmz−Poin, (b) the
largest Lyapunov exponent, and (c) average value of the mz-component as a
function of A at �r = 0.8, �J = 1, and G = 5.

effective field includes two types of oscillatory terms. One type is
generated by the superconducting current with the Josepshon fre-
quency �J and amplitude proportional to G. The second type is
related to the PS with frequency �r and amplitude A.

A. Bifurcation structure as a function of G

First, we investigate the effect of G on the bifurcation struc-
ture of the magnetization components under external PS. Figure 10
shows the bifurcation diagram of the magnetization dynamics and

FIG. 12. The Poincaré section (green dot) with P1 motion at A = 0 together
with the quasiperiodic orbit (blue curve) and the corresponding Poincaré section
(red dots) at�r = 0.8, A = 1. Both cases are calculated at�J = 5 and G = 3.
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λmax at �J = 1, �r = 0.8, and A = 1. The bifurcation starts with P5
motion [see Fig. 10(a)]. Then, the chaotic band is observed together
with very narrow windows of the periodic motion in the interval
(3.8, 16), where the λmax values are of the order 10−1 [see Fig. 10(b)].

FIG. 13. (a) Maximal Lyapunov exponent as a function ofA and�J at (a)α = 0.1
and (b)α = 0.01. Other parameters are as follows:G = 5, k = 0.05,βc = 0.25,
�F = 1, and �r = 0.8.

Those windows can be distinguished as the corresponding dips on
λmax within the interval (4, 16).

The magnetization dynamics approaches FP at G ≥ 21.7. Then,
a small region of the periodic motion with high-order modes (P10)
appears in the interval (25.3, 30.5). After that, the trajectory finds
a stable FP corresponding to a complete reorientation of the mag-
netization direction (< mz(t) >= 1). So the external periodic signal
leads to a higher order periodic motion in the system.

B. Bifurcation structure as a function of A

Significant changes in the bifurcation structure can be seen
with increasing amplitude A of external PS, which are shown in
Fig. 11(a) for z-component (x,y components are qualitatively the
same). The figure demonstrates that with slight changes in A, the
system behavior transforms from P1 motion into the higher order
periodic motion (for given simulation parameters, we have P5
motion) and then into chaos. At A > 7, the system demonstrates
windows of P5 periodic motion (marked by green arrows). The tran-
sitions between those states are manifested in λmax [see Fig. 11(b)],
where the positive values indicate a strong chaotic response. We
also note that the increase in A changes the reorientation value, as
it was discussed in Ref. 63. However, at given simulation parame-
ters, a complete reorientation of the easy axis does not occur [see
Fig. 11(c)]. So by changing the amplitude of the external PS, one can
transform the dynamics from the chaotic region to the periodic one.
Therefore, we propose a method to control the chaotic behavior in
the magnetization dynamics and reorientation process of the easy
axis in the NM-JJ system by applying PS with a specific amplitude
and �r.

The NM-JJ system under the external PS reveals another inter-
esting long-term behavior far from the FMR region, namely, the
quasiperiodicity that mostly appears in the weak coupling regime
(at small G).

In this case, the trajectories will never close onto themselves.
Figure 12 demonstrates the transformation of the trajectory from P1
motion (green dot) to the quasiperiodic one (blue curve with red
dots) under the influence of PS at G = 3 and �J = 5.

Finally, in Fig. 13, we determine λmax over the two-dimensional
parameter space, A–�J. We can see that the system undergoes
chaotic behavior even for �J > �F. For A > 10, the maximal expo-
nent is positive only for frequencies near the FMR. Therefore,
chaotic behavior in this system can be controlled by applying the
external periodic signal as a form of chaos control.81

V. SUMMARY AND CONCLUSIONS

A detailed overview of various types of magnetization dynam-
ics possible in the nanomagnet coupled to the Josephson junction
has been provided. The fluctuations in the reorientation of the
easy axis caused by transformations between the different types of
motions of the system were demonstrated. The analysis of the bifur-
cation diagrams revealed the exact regions where the magnetization
exhibits such motions. Chaotic states and orbits with different peri-
odicities were found in the ferromagnetic resonance region. On the
other hand, when the Josephson frequency was larger than the res-
onance frequency, the chaotic behavior disappeared, leaving only
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periodic orbits. We found that an increase in the Josephson fre-
quency reduces the spacial extent of the magnetization trajectory. A
detailed two-dimensional picture of the maximal Lyapunov expo-
nent over the A–�J parameter showed that the application of an
external periodic perturbation could help to avoid chaotic behavior
in practical realizations of this system.

With the applied periodic signal, the system shows an increase
in the chaotic response and the high-order modes of periodic
motion intervals near the resonance. Long-term quasiperiodic
behavior in the magnetization dynamics far from the resonance was
also observed. In addition to this, the amplitude of the external peri-
odic signal also affects the fact whether or not the system behaves
chaotically. Therefore, one can control the chaotic behavior of the
system by applying an external periodic signal of right frequency
and amplitude. Given that it is difficult to adjust the magnetic
energy ratio (G) for any given material, chaos control via externally
applied electromagnetic radiation provides a viable practical way of
suppressing unwanted chaotic behavior in this system.

We have emphasized that the system of nanomagnet coupled to
the Josephson junction evinced nonlinear and chaotic phenomena,
where a small quantitative change in the system parameters caused
a huge qualitative change in its response. As such, the system we
have studied could be used as a prototype for “tipping” behavior,82

well known in the context of complex systems. Our findings can
also be extended to other systems of superconductor spintronics
like ϕ0-junction, which has the same current-phase relation. Nev-
ertheless, there are still many open questions concerning the chaos
in the Josephson junction with magnetic materials. One of them is
why chaotic behavior is seen in certain areas of parameters space
and not others. We, thus, hope that our study will facilitate new
experimental and theoretical research in this field. In particular, we
envisage that it may be of considerable importance for experimen-
tal investigations of resonance and development of superconductor
spintronics devices.
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