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Anomalous Gilbert damping and Duffing features of the
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Yu. M. Shukrinov ,1,2,3 I. R. Rahmonov ,1,4 A. Janalizadeh ,5 and M. R. Kolahchi 5

1BLTP, JINR, Dubna, Moscow Region 141980, Russia
2Department of Nanotechnology and New Materials, Dubna State University, Dubna 141980, Russia

3Moscow Institute of Physics and Technology, Dolgoprudny, Moscow 141700, Russia
4Umarov Physical Technical Institute, TAS, Dushanbe 734063, Tajikistan

5Department of Physics, Institute for Advanced Studies in Basic Sciences, P.O. Box 45137-66731 Zanjan, Iran

(Received 6 July 2021; revised 13 December 2021; accepted 16 December 2021; published 30 December 2021)

We study the phase dynamics, IV characteristics, and magnetization dynamics of the ϕ0 Josephson junction at
small values of spin-orbit interaction, ratio of the Josephson junction to magnetic energy, and Gilbert damping.
We demonstrate that the coupled Landau-Lifshitz-Gilbert-Josephson dynamics is reduced to a scalar nonlinear
Duffing oscillator. The resulting Duffing equation incorporates the Gilbert damping in a special way across the
dissipative term and the restoring force. An anomalous shift of the ferromagnetic resonance frequency with
decreasing Gilbert damping is found. We demonstrate that there is a critical damping value at which nonlinearity
comes into play, and it changes the damping dependence of the ferromagnetic resonance.
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I. INTRODUCTION

The Josephson junctions (JJs) with the current-phase
relation I = Ic sin(ϕ − ϕ0) where the phase-shift ϕ0 is propor-
tional to the magnetic moment of ferromagnetic layer deter-
mined by the parameter of spin-orbit interaction, demonstrate
a number of unique features important for superconducting
spintronics and modern information technology [1–8]. The
phase shift allows one to manipulate the internal magnetic
moment using the Josephson current and the reverse phe-
nomenon which leads to the appearance of the DC component
in the superconducting current [9–11]. In the superconducting
circuits, such ϕ0 junctions play the role of phase batteries
producing spontaneous currents [12–14], important for super-
conducting electronics and rapid single-flux quantum logics.
A remarkable feature of the coupling between the Josephson
current and the magnetic moment in the ϕ0 junction is the
possibility of stimulating a magnetization reversal in the ferro-
magnetic weak link by the supercurrent. It creates an effective
mechanism for the magnetic moment control in the devices of
superconducting spintronics [4,6,15–21].

Interactive fields can bring nonlinear phenomena of both
classical and quantum natures. A basic example is the
magnons as quasiparticles strongly interacting with mi-
crowave photons [22]. As a result we could name the
Bose-Einstein condensation of the magnons [23,24], and the
synchronization of spin torque nano-oscillators as they coher-
ently emit microwave signals in response to the DC current
[25]. It is interesting that (semi)classical anharmonic effects
in the magnetodynamics described by the Landau-Lifshitz-
Gilbert (LLG) model in thin films or heterostructures [26,27],
and the quantum anharmonicity in the cavity magnonics [28]
can well be modeled by so simple a nonlinear oscillator as

Duffing. The Duffing equation contains a cubic term and de-
scribes the oscillations of the various nonlinear systems [29].

Despite the fact that nonlinear features of LLG have been
studied in different systems, manifestation of the Duffing
oscillator in the framework of the LLG model is still not
completely studied. Closer to our present paper, the resonant
response of the antiferromagnetic bimeron under an alter-
nating current is described by the dynamics of the Duffing
equation too. This has applications in weak signal detec-
tion [26,30,31]. As another application with the Duffing
oscillator at work, we can mention the ultrathin Co20Fe60B20

layer and its large-angle magnetization precession under
microwave voltage. There are also “ foldover” features, char-
acteristic of the Duffing spring, in the magnetization dynamics
of the Co/Ni multilayer excited by a microwave current
[27,32,33]. But nonlinear features of ϕ0-Josephson junctions
have yet to be studied in detail. It is our main purpose here
to show properties of a magnetically coupled ϕ0 Josephson
junction that come as a consequence of nonlinearity.

There are a series of recent experiments demonstrating
the modification of Gilbert damping by the superconducting
correlations (see Ref. [34] and citations therein). In partic-
ular, the pronounced peaks in the temperature dependence
of Gilbert damping have been observed for the insulating
ferromagnetic/superconductor multilayers [35] which might
be explained by the presence of spin-relaxation mechanisms,
such as the spin-orbit scattering [34]. Here, we use the non-
centrosymmetric ferromagnetic material as a weak link in
ϕ0 junctions. The suitable candidates may be MnSi or FeGe
where the lack of inversion center comes from the crystalline
structure [9].

The Gilbert damping determines the magnetization dy-
namics in ferromagnetic materials, but its origin is not well
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FIG. 1. Schematic of SFS ϕ0 Josephson junction. The external
current is applied along the x direction, and the ferromagnetic easy
axis is along the z direction.

understood yet. Effect of nonlinearity on damping in the
system is very important for application of these materials in
fast switching spintronics devices. Our paper clarifies such
effects. In Ref. [36], the authors discuss the experimental
study of temperature-dependent Gilbert damping in permalloy
thin films of varying thicknesses by ferromagnetic resonance
and provide an important insight into the physical origin of
the Gilbert damping in ultrathin magnetic films.

In this paper, we demonstrate an anomalous dependence
of the ferromagnetic resonance frequency with increas-
ing Gilbert damping. We find that the resonance curves
demonstrate features of the Duffing oscillator, reflecting
the nonlinear nature of Landau-Lifshitz-Gilbert-Josephson
(LLGJ) system of equations. The resulting Duffing equation
incorporates the Gilbert damping in a special way across the
dissipative term and the restoring force. The damped preces-
sion of the magnetic moment is dynamically driven by the
Josephson supercurrent, and the resonance behavior is given
by the dynamics of the Duffing spring. We demonstrate that
the resonance frequency ωF of the magnetic part without
dissipation cannot be realized in the LLGJ system. There is
a critical damping value at which nonlinearity comes into
play, and the damping dependence of ferromagnetic resonance
changes. A resonance method for the determination of spin-
orbit interaction in noncentrosymmetric materials which play
the role of the barrier in ϕ0 junctions is proposed.

II. MODEL AND METHODS

In the considered superconductor-ferromegnet-
superconductor (SFS) the ϕ0 Josephson junction (see Fig. 1),
the superconducting phase difference ϕ, and magnetization
M of the ferromagnetic layer are two coupled dynamical
variables. Their dynamics is described by a coupled
system of equations we call the LLGJ system of equations.
Namely, taking into account LLG equation with effective
magnetic-field Heff , resistively capacitively shunted junction
model, and Josephson relation, we come to the LLGJ system
of equations, which in normalized variables can be written in
the form [21,37,38]

dm
dt

= ωF heff × m + α

(
m × dm

dt

)
,

heff = Gr sin(ϕ − rmy )̂y + mẑz,

dV

dt
= 1

βc

[
I − V + r

dmy

dt
− sin(ϕ − rmy)

]
,

dϕ

dt
= V. (1)

The first term on the right-hand side describes the preces-
sion of magnetization vector m of a ferromagnetic system
around the effective field heff , calculated as the variational
derivative of energy with respect to the magnetization. The
second term is the damping term, which relaxes the system
to an equilibrium state, where m and heff are parallel, and no
torque is exerted on the magnetization.

The magnetization vector with components mx,y,z is nor-
malized to the M0 = ‖M‖, and it is satisfied by the constraint∑

i=x,y,z m2
i (t ) = 1. The ferromagnetic resonance frequency

of the magnetic part of the system ωF = �F /ωc with �F =
γ K/ν determines, by gyromagnetic ratio γ , anisotropic con-
stant K and the volume of the ferromagnetic F layer ν is. The
vector of effective field heff is normalized to the K/M0 (heff =
Heff M0/K), voltage V is normalized to the Vc = IcR with the
Ic—critical current of JJ and R—resistance of JJ. The other
parameters are as follows: α is a phenomenological damping
constant (Gilbert damping), G = EJ/(Kν) is the relation of
Josephson energy to the magnetic one, r is a parameter of
spin-orbit coupling, βc is the McCumber parameter, I is bias
current normalized to the Ic. In this system of equations, time t
is normalized to ω−1

c , where ωc = 2eIcR/h̄ is the characteristic
frequency. In the chosen normalization, the average voltage
corresponds to the Josephson frequency ωJ .

III. FERROMAGNETIC RESONANCE IN THE
ϕ0 JUNCTION

The ferromagnetic resonance features are demonstrated by
the voltage dependence of the maximal amplitude of the my

component (mmax
y ), taken at each value of the bias current.

We begin with the analytical results for such dependence
in the ferromagnetic resonance region. As was discussed in
Refs. [9,37,39], in cases Gr � 1, mz ≈ 1, and neglecting
quadratic terms mx and my, we get

ṁx = ξ [−my + Gr sin ωJt − αmx]

ṁy = ξ [mx − αmy], (2)

where ξ = ωF /(1 + α2). This system of equations can
be written as the second-order differential equation with
respect to my,

m̈y = −2αξ ṁy − ξ 2(1 + α2)my + ξ 2Gr sin ωJt . (3)

The corresponding solution for my has the form

my(t ) = ω+ − ω−
r

sin ωJt − α+ + α−
r

cos ωJt, (4)

where

ω± = Gr2ωF

2

ωJ ± ωF

[(ωJ ± ωF )2 + (αωJ )2]
, (5)

and

α± = Gr2ωF

2

αωJ

[(ωJ ± ωF )2 + (αωJ )2]
. (6)

We see that when Josephson frequency ωJ is approaching the
ferromagnetic one ωF , my demonstrates resonance with dissi-
pation. The maximal amplitude mmax

y as a function of voltage
(i.e., Josephson frequency ωJ ) at different αs, calculated using
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FIG. 2. (a) Analytical results for maximal amplitude mmax
y in the

ferromagnetic resonance region for different αs; (b) the same for
numerical results based on the system of Eqs. (1). The inset shows
the manifestation of the resonance subharmonics. Parameters are as
follows: βc = 25, G = 0.05, r = 0.05, ωF = 0.5.

(4), is presented in Fig. 2(a). It shows the usual characteristic
variation of the resonance curve with an increase in dissipa-
tion parameter where the maximal amplitude and the position
of the resonance peak correspond to the damped resonance.
We note that the analytical result in Eq. (4) was obtained for
Gr � 1. Figure 2(b) shows the results of numerical simula-
tions mmax

y (V ), based on the system of equation (1) at different
values of dissipation parameter. The subharmonics appear at
ω = 1/2, 1/3, 1/4 as demonstrated in the inset of Fig. 2(b).
The presence of subharmonics already points to nonlinear
effects.

The results given in Fig. 2(b) results demonstrate the es-
sential differences with the analytical ones. We stress two
important features of the ϕ0 junction followed from the
presented results. First, the ferromagnetic resonance curves
show the foldover effect, i.e., the features of the Duffing
oscillator. Different from a linear oscillator, the nonlinear
Duffing demonstrates a bistability under external periodic
force [40].

FIG. 3. (a) α effect: Starting from α = 0.02, decreasing damping
shifts the maximum of the resonance curve mmax

y (V ) presented in
Fig. 2 away from ωF . Variation of α is in the interval [0.006–0.2].
The dashed line indicates ferromagnetic resonance ωF of the mag-
netic subsystem at α = 0; (b) Comparison of the resonance curves
mmax

y (V ) calculated by full LLGJ equation (1) and the approximate
equation (A5).

Second, the ferromagnetic resonance curves demonstrate
an unusual dependence of the resonance frequency on Gilbert
damping α. As shown in Fig. 3(a), an increase in damping
leads to a nonuniform change in the resonant frequency, i.e.,
with an increase in damping the resonance maximum shifts to
ωF at small α, but then moves to the opposite side. So, with
an increase in α, the unusual dependence of the resonance
voltage transforms to the usual one. For the parameters cho-
sen, the critical value of the damping parameter of this
transformation is around α = 0.02 to 0.03. We call this un-
usual damping dependence of mmax

y an “α effect.” The essence
of the α effect is that the resonance frequency ωF of the
magnetic subsystem without dissipation cannot be realized in
the LLGJ system. At critical damping, the nonlinearity comes
into play, and the Vpeak (α) dependence changes.

Both the α effect and the Duffing features in our system
appear due to the nonlinear features of the system dynamics
at small G, r, α � 1. To prove it, we have carried out the
numerical analysis of each term of the LLGJ full equation
[first two equations in (1)] for the set of model parameters
G = 0.05, r = 0.05 α = 0.005. After neglecting the terms on
the order of 10−6, we have

ṁx

ξ
= −mymz + Grmz sin(ϕ − rmy) − αmxm2

z ,

ṁy

ξ
= mxmz − αmym2

z ,

ṁz

ξ
= −Grmx sin(ϕ − rmy) + αmz(m2

x + m2
y ), (7)

In this approximation, we observe both the α effect and
the Duffing oscillator features. Neglecting here the last term
αmz(m2

x + m2
y ) in the third equation for ṁz, which is on the

order of 10−4, leads to losing the Duffing oscillator features,
but still keeps the α effect. We note that Eq. (7) keep the
time invariance of the magnetic moment, so that term plays an
important role for the manifestation of the Duffing oscillator
features by the LLGJ equation.

224511-3



YU. M. SHUKRINOV et al. PHYSICAL REVIEW B 104, 224511 (2021)

IV. THE GENERALIZED DUFFING EQUATION
FOR THE ϕ0 JUNCTION

The LLG is a nonlinear equation, and in the case of
simple effective field, it can be transformed to the Duffing
equation [26,29]. Such a transformation was used in Ref. [29]
to demonstrate the nonlinear dynamics of the magnetic vortex
state in a circular nanodisk under a perpendicular alternating
magnetic field that excites the radial modes of the magnetic
resonance. They showed Duffing-type nonlinear resonance
and built a theoretical model corresponding to the Duffing
oscillator from the LLG equation to explore the physics of the
magnetic vortex core polarity switching for magnetic storage
devices.

As we mentioned above, the approximated LLGJ system
of Eq. (7) describes both the α effect and the features of the
Duffing oscillator. We demonstrate in the Appendix that the
generalized Duffing equation for the ϕ0 junction,

m̈y + 2ξαṁy + ξ 2(1 + α2)my − ξ 2(1 + α2)m3
y

= ξ 2Gr sin ωJt (8)

can be obtained directly from the LLGJ system of equations.
As we see here, for small enough G and r, it is only the dimen-
sionless damping parameter α in (A5) that plays a role in the
dynamics of the system. We can think of a harmonic spring
with a constant that is hardened or softened by the nonlinear
term. For a usual Duffing spring with independent coefficients
of the various terms, the resonance peak relative to the har-
monic (linear) resonant frequency folds over to the smaller
(softening) or larger (hardening) frequencies. In the frequency
response, the interplay of the specific dependence of each
coefficient on α plays an important role and as Fig. 3(a) shows,
there is a particular α that brings the maximum of the resonant
curve closest to ferromagnetic resonance.

Simulations of the my dynamics in the framework of the
Duffing equation can explain the observed foldover effect in
the frequency dependence of mmax

y . Comparison of the results
following from the analytically approximate equation (A5)
and the results from the full equation (1) for maximal ampli-
tude mmax

y in the ferromagnetic resonance region is presented
in Fig. 3(b). We see a very close qualitatively similar behavior.
So, the magnetization dynamics in the SFS ϕ0 junction due
to the voltage oscillations can effectively be described by a
scalar Duffing oscillator, synchronizing the precession of the
magnetic moment with the Josephson oscillations.

V. EFFECT OF SPIN-ORBIT INTERACTIONS

The spin-orbit interaction plays an important role in dif-
ferent fields of modern physics (see, for example, Ref. [41]
and citations therein). Coupling of superconducting current
and magnetization and its manifestation in the magnetization
dynamics opens a venue for the resonance methods determi-
nation of spin-orbit intensity in noncentrosymmetric materials
playing the role of barrier in ϕ0 junctions. Here we have
suggested a method for its determination in real noncen-
trosymmetric ferromagnetic materials, such as MnSi or FeGe
where the lack of inversion center comes from the crystalline
structure [9]. As we see below, based on the obtained results,

FIG. 4. (a) Voltage dependence of mmax
y in the ferromagnetic

resonance region at different values of spin-orbit interaction based
on (1) at G = 0.05, α = 0.01. The inset enlarges the main har-
monic; (b) The same for α = 0.1; (c) The shift of mmax

y peak as a
function of spin-orbit interaction at two values of Gilbert damping;
(d) r dependence of the main harmonic and subharmonic peaks in
case (a); (e) the same for case (b).

presented in Fig. 4, we may propose three different versions of
the resonance method for the determination of spin-orbit inter-
action in these materials. Particularly, in Fig. 4(a), we present
the simulation results of maximal amplitude mmax

y based on
LLGJ system (1) at G = 0.05, α = 0.01 at different values of
spin-orbit parameter r in the ferromagnetic resonance region.
This case corresponds to the nonlinear approximation leading
to Duffing equation (A5). The same characteristics calculated
by Eq. (1) for larger value α = 0.1, i.e., corresponding to the
linear approximation (3) are presented in Fig. 4(b). We see
there one order difference in the mmax

y value in these two cases.
As was expected, in the case α = 0.01, the foldover effect is
more distinct.

The simulated r dependence of the resonance peak position
for these two values of damping parameter (α = 0.01 and α =
0.1) are shown in Fig. 4(c). The calculations were performed
for the same set of model and simulation parameters. We see
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clearly a manifestation of nonlinearity of ϕ0 junction at small
damping, leading to the Duffing’s shift of the mmax

y peak of
main harmonic with r.

Despite the noted differences between results for α = 0.01
and α = 0.1, in Fig. 4(c), we found a monotonic linear in-
crease in mmax

y peaks of main harmonic and subharmonics
with r in both cases, demonstrated in Figs. 4(d) and 4(e). Such
linear dependence can be noted from Eq. (6) of Ref. [26], but
the authors did not discuss it. Such dependence of mmax

y peaks
of the main harmonic and subharmonics with r might serve
as a calibrated curve for spin-orbit interaction intensity, thus,
creating the harmonic and subharmonic resonance methods
for r determination.

VI. CONCLUSIONS

Based on the reported features of the ϕ0 Josephson junction
at small values of spin-orbit interaction, the ratio of Josephson
to magnetic energy and Gilbert damping, we have demon-
strated that the coupling of the superconducting current and
the magnetic moments in the ϕ0 junction results in the cur-
rent phase relation intertwining with the ferromagnetic LLGJ
dynamics. The ferromagnetic resonance clearly shows this
interplay, in particular, an anomalous shift of the ferromag-
netic resonance frequency with a decrease in Gilbert damping.
The ferromagnetic resonance curves demonstrate features of
the Duffing oscillator, reflecting the nonlinear nature of the
LLGJ equation. We have shown that due to the nonlinearity as
modeled by the generalized Duffing equation, the parameters
of the system can compensate each other resulting in unusual
response. We have demonstrated that the resonance frequency
ωF of the magnetic subsystem without dissipation cannot be
achieved in the LLGJ system. There is a critical damping at
which nonlinearity comes into play and the (α) dependence
of ferromagnetic resonance changes. There are also foldover
effects that were explained by the nonlinearity of the proposed
model. A linear dependence of main harmonic and subhar-
monic maxima on the spin-orbit parameter might be used for
its determination in noncentrosymmetric materials. A detailed
discussion of this problem will be performed somewhere else.

The experimental testing of our results would involve SFS
structures with ferromagnetic material having small enough
Gilbert damping, in particular, ferromagnetic metals or insu-
lators with damping parameter α ∼ 10−3–10−4. In Ref. [42],
the authors report on a binary alloy of cobalt and iron that
exhibits a damping parameter approaching 10−4, which is
comparable to values reported only for ferrimagnetic insula-
tors [43,44]. Using a superconductor-ferromagnetic insulator
superconductor on a three-dimensional topological insulator
might be a way to have strong spin-orbit coupling needed
for the realization of ϕ0 JJ and small Gilbert dissipation to
observe the α effect [7]. We note in this connection that the
yttrium iron garnet is especially interesting because of its
small Gilbert damping α ∼ 10−5.

The interaction between the Josephson current and the
magnetization is also determined by the ratio of the
Josephson to the magnetic anisotropy energy G = EJ/(Kν).
The value of the Rashba-type parameter r in a permalloy
doped with Pt and in the ferromagnets without inversion sym-
metry, such as MnSi or FeGe, is usually estimated within the

TABLE I. Numerical analysis of Eq. (A4) terms.

a1
α

ξ
a1ṁ3

y ∼1.76 × 10−5

a2 α2 a2myṁ2
y ∼3.4 × 10−8

a3 ξα3 a3m4
y ṁy ∼7.7 × 10−12

a4 ξ (3α − α3) a4m2
y ṁy ∼2 × 10−5

a5 2ξα a5ṁy ∼6 × 10−4

a6 ξ 2(α2 + 2α4) a6m5
y ∼5.56 × 10−9

a7 ξ 2(1 + α2 − α4) a7m3
y ∼3.7 × 10−3

a8 ξ 2(1 + α2) a8my ∼6.1 × 10−2

c1 Gr c1ṁ2
y sin ϕ ∼3.6 × 10−5

c2 2ξ 2α2Gr c2m4
y sin ϕ ∼5.3 × 10−11

c3 ξ 2Gr(α2 − 2) c3m2
y sin ϕ ∼4.5 × 10−5

A ξ 2Gr A sin ωJt ∼6.25 × 10−4

range 0.1–1 [45]. The value of the product Gr in the material
with weak magnetic anisotropy of K ∼ 4 × 10−5 K A−3 [46],
and in junction with a relatively high critical current density
of 3 × 105 − 5 × 106 A/cm2 [47] is in the range 1–100. This
gives the set of ferromagnetic layer and junction parameters
that make it possible to reach the values used in our numerical
calculations for the possible experimental observation of the
predicted effects. The giant oscillatory Gilbert damping in
the superconducting niobium/nickel iron/niobium junctions
with respect to the nickel iron thickness was experimentally
observed in Ref. [48]. This observation could be impor-
tant for further exploring the exotic physical properties of
ferromagnet/superconductor heterostructures, including the
α effect. The search for technological routes to anoma-
lous Josephson junctions fabrication and the development of
information-processing methods using circuits based on such
junctions are urgent tasks in this area of research [38] and im-
portant also for potential applications in quantum computing.
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APPENDIX: GENERALIZED DUFFING EQUATION

Here, we demonstrate by numerical methods that a gen-
eralized Duffing equation can be obtained directly from the
LLG system of equations for small system parameters of the
SFS junction.

Both the α effect and the Duffing features obtained by the
LLG system of equations appear due to the nonlinear features
of its dynamics at small G, r, α � 1. To prove it, we have
carried out the numerical analysis of each term of the LLG full
equation [first two equations in Eq. (1) of the main text] for the
set of model parameters G = 0.05, r = 0.05, and α = 0.005.
After neglecting the terms on the order of 10−6, we have

ṁx

ξ
= −mymz + Grmz sin(ϕ − rmy) − αmxm2

z ,

ṁy

ξ
= mxmz − αmym2

z ,

ṁz

ξ
= −Grmx sin(ϕ − rmy) + αmz

(
m2

x + m2
y

)
, (A1)
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After expanding mn
z in a series with the degree of (mz − 1),

we can find

mn
z = nmz − (n − 1). (A2)

From expression m2
x + m2

y + m2
z = 1 and (A2), we obtain

mz = 2 − m2
y

2
. (A3)

Using approximation sin(ϕ − rmy) = sin(ωJt ) in (A1),
differentiating the second equation of the system (A1) and
substituting ṁx, mx, and ṁz from the first second and
third equations of system (A1), respectively, and using the
expressions (A2), (A3), and assuming mz = 1 only in denom-
inators, we come to a second-order differential equation with
respect to my,

m̈y = a1ṁ3
y + a2myṁ2

y + a3m4
y ṁy + a4m2

y ṁy + a5ṁy

+ a6m5
y + a7m3

y + a8my − c1ṁ2
y sin ωJt

+ c2m4
y sin ωJt + c3m2

y sin ωJt

+ A sin ωJt . (A4)

The numerical calculation for the used set of model param-
eters allows us to estimate each of the terms in the equation as
presented in Table I.

Now, if we neglect those terms smaller than 10−4, Eq. (A4)
takes on the form of the Duffing equation,

m̈y + 2ξαṁy + ξ 2(1 + α2)my − ξ 2(1 + α2)m3
y

= ξ 2Gr sin ωJt . (A5)

with damping dependent coefficients, i.e., we have a general-
ized Duffing equation. In the main text, this equation is used
to demonstrate the foldover and α effects in ϕ0 Josephson
junctions.
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