
ISSN 0021-3640, JETP Letters, 2019, Vol. 110, No. 3, pp. 160–165. © Pleiades Publishing, Inc., 2019.
Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 3, pp. 149–154.

CONDENSED
MATTER
Ferromagnetic Resonance and the Dynamics of the Magnetic 
Moment in a “Josephson Junction–Nanomagnet” System

Yu. M. Shukrinova, b, *, M. Nashaata, c, I. R. Rahmonova, d, and K. V. Kulikova

a Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia
b Dubna State University, Dubna, Moscow region, 141980 Russia

c Department of Physics, Cairo University, 12613 Cairo, Egypt
d Umarov Physical and Technical Institute, Academy of Sciences of the Republic of Tajikistan,

Dushanbe, 734063 Tajikistan
*e-mail: shukrinv@theor.jinr.ru

Received May 7, 2019; revised June 11, 2019; accepted June 11, 2019

The dynamics of a nanomagnet coupled to a Josephson junction has been studied. Although a magnetic field
induced by the superconducting current in the Josephson junction is very weak, an applied voltage can gen-
erate the nonlinear dynamics of the nanomagnet, which gives a number of interesting phenomena. It has been
shown that a ferromagnetic resonance can occur when the frequency of Josephson oscillations becomes equal
to the eigenfrequency of the magnetic system. It has been demonstrated that the easy axis of the nanomagnet
is reoriented at an increase in the Josephson-to-magnetic energy ratio, as well as in the coupling parameter
between the Josephson current and the magnetic moment and in the frequency of Josephson oscillations. It
has been shown that a current pulse can turn the magnetic moment of the nanomagnet, which opens new
prospects for the application of this system in superconducting spintronics.
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Models describing the interaction between the
superconducting current and magnetic moment in
various superconductor–ferromagnet–superconduc-
tor structures, which are important for a number of
problems of superconducting spintronics, have
recently attracted great attention [1–4]. The authors
of [1] emphasize that studies in spintronics allow
understanding fundamental spin-depending phenom-
ena, as well as developing applications for computer
technologies. In particular, the superconductivity
control of the magnetic state opens new possibilities
for developing ultrafast cryogenic memory.

Coupling between the Josephson junction and
magnet located very close to each other can be due to
different mechanisms. In particular, the Rashba spin–
orbit coupling results in the phase shift in the Joseph-
son junction proportional to the magnetic moment in
the barrier. As a result, the so-called  junction
appears, where the phase difference is directly coupled
to the magnetic moment in the barrier [5, 6], which
provides unique possibilities for controlling the mag-
netic properties of the barrier by the superconducting
current and, in turn, the influence of the magnetic
moment of the barrier on the Josephson current [1–
11]. The possibility of the reorientation of the easy axis
in the presence of the spin–orbit coupling was
reported in [3, 6]. Under the assumption that the easy

axis is initially oriented along the z axis, it was shown
that the superconducting current makes the stable ori-
entation of the magnetization be directed between the
z and y axes depending on the parameters of the sys-
tem. The results obtained open the possibility of devel-
opment of an efficient method for determining the
spin–orbit coupling in ferromagnetic metals. The
development of new efficient methods for the f lip of
the magnetic moment, in particular, by applying a cur-
rent pulse is of great interest for various applications.
Such studies will allow fabricating memory elements
and other elements for quantum computers, as well as
establishing the foundations for the development of
new devices for superconducting spintronics.

Another coupling mechanism was studied in [11],
whose authors considered the electromagnetic inter-
action of the nanomagnet with the Josephson junction
at which the magnetic field of the nanomagnet
changes the superconducting current f lowing through
the junction, whereas the magnetic field generated in
the Josephson junction acts the magnetic moment of
the nanomagnet. The structure considered in [1] dif-
fers from that studied in [6] in geometry, character of
interaction, and finite normal weak coupling resis-
tance, which was taken into account in [1] within the
resistively shunted junction (RSJ) model [13]. The
model with the pure electromagnetic interaction is
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Fig. 1. (Color online) Schematic of the considered system
with the equivalent electric circuit.

Vdc
attractive because of the absence of unknown param-
eters, which is important for its experimental imple-
mentation [11].

In this work, we study the dynamics of the nano-
magnet coupled to the Josephson junction. We show
that the ferromagnetic resonance is manifested on the
dependence of the maximum amplitude of oscillations
of the nanomagnet on the voltage applied to the
Josephson junction and the easy axis of the nanomag-
net is reoriented under the variation of the parameters
of the system. To demonstrate the prospects of the
application of the studied system, we show the possi-
bility of the f lip of the magnetic moment of the nano-
magnet by a current pulse.

The schematic of the considered system consisting
of a Josephson junction and a nanomagnet coupled to
it is shown in Fig. 1. The Josephson junction has the
length l and the nanomagnet is located at the distance a
from the center of the Josephson junction. It is
assumed that the easy axis of the nanomagnet is
directed along the y axis and the voltage V is applied to
the Josephson junction.

The dynamics of the magnetic moment is
described by the Landau–Lifshitz–Gilbert equations
[14, 15]; in dimensionless quantities, these equations
have the form

(1)

Here, mi = Mi/Ms is the normalized component of the
magnetic moment, where Ms is the saturation magnetic
moment; ΩF = ωF/ωc is the normalized frequency of
the ferromagnetic resonance, where ωc = 2eRIc/ћ and

Ic is the critical current; , where

 and  is the magnetic f lux quantum; m is the
absolute value of the magnetic moment; α is the Gil-
bert damping parameter; the time t is measured in
units of ; and the voltage V is measured in units of

( )[Ω= − α
+ α

F
2 2(1 )

x
y z x y

dm h m m m
dt m

( )  
 
 

− α + + α + ,
2 2

z x z y x y zh m m m h m m

( )[Ω= − α +
+ α

F
2 2(1 )

y
x x y z

dm
h m m m

dt m

( )  
 
 

+ − α + α + ,
2 2

z x y z y x zh m m m h m m

Ω=
+ α + Ω α +

F
2 2 2 2

F1 ( )
z

x y

dm
dt m k m me

 
 
 

× α − + +
2 2[sin( ) ]z x yVt km V m me

( ) ( )]− + α + − α .y x y z x y x zh m m m h m m m

μπ=
Φ +

0 s
2 2

0

2 M lk
a l a

= | |Ma r Φ0

−ω 1
c

JETP LETTERS  Vol. 110  No. 3  2019
ћωc/(2e). The components of the dimensionless effec-
tive magnetic field  are given by the expression [11]

(2)

Here, , where G = ,  = Φ0Ic/(2π) is
the Josephson energy,  is the volume of the nano-
magnet, and Kan is the magnetic anisotropy constant.
The components of the effective magnetic fields are
measured in units of HF = ωF/γ, where γ is the gyro-
magnetic ratio.

Josephson oscillations in the Josephson junction
excite the precession of the magnetic moment of the
nanomagnet, which leads to the ferromagnetic reso-
nance when the precession frequency becomes equal
to the eigenfrequency ΩF of the magnetic system. To
describe the resonance, the system of Eqs. (1) was
solved by the Gauss–Legendre method [12] at a fixed
voltage V. As a result, we determined the time depen-
dences of the magnetic moment components and cal-
culated the maximum amplitude of oscillations of the
magnetic moment component in the time domain for
each given voltage.

Figure 2a shows the calculated maximum ampli-
tude of oscillations  as a function of the voltage V
across the Josephson junction at ΩF = 0.5 and two
damping parameters α = 0.001 and 0.3. In the chosen
normalization, V = ΩJ; for this reason, a ferromagnetic
resonance peak is observed at the voltage correspond-
ing to the frequency of Josephson oscillations ΩJ = 0.5.

The result for  is qualitatively the same and is not
presented. An enhancement of damping in the system
leads to the broadening of the resonance and its shift
toward lower frequencies, which is seen in Fig. 2a at
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Fig. 2. (Color online) (a) Manifestation of the ferromag-

netic resonance on the dependence . The Gilbert

damping α is indicated. (b) Manifestation of the ferromag-

netic resonance on the dependence  at two indi-

cated ratios G of the Josephson energy to the energy of the
nanomagnet; the effect of the ratio G on the width of the

ferromagnetic resonance is seen.

max
( )zm V

max
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α = 0.3. The positions of peaks at weak damping are in

good agreement with frequencies following from ana-

lytical formulas obtained by the linearization of the

Landau–Lifshitz–Gilbert equations. In particular, if

the deviation of the magnetic moment from the equi-

librium direction caused by the interaction with the

Josephson current is small, i.e.,  and , the

Landau–Lifshitz–Gilbert equations can be linear-

ized. In this case, the resonance frequency is given by

the expression

(3)
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In particular, at , k = 0.01, and ΩF = 0.5,

the resonance frequencies for α = 0.001 and 0.3 are

 and 0.45, respectively, which are fairly
close to the values obtained numerically (see Fig. 2a).

The width of the resonance depends on the Gilbert
damping parameter α, the ratio G of the Josephson
energy to the energy of the nanomagnet, and the cou-
pling parameter k. Figure 2b demonstrates the effect of
the ratio G on the parameters of the ferromagnetic res-
onance. As the ratio G increases, the resonance fre-
quency decreases and the resonance peak becomes
asymmetric with respect to ΩJ = ΩF. In this case, ana-

lytical expressions give  at α = 0.1,

, , and ΩF = 0.5. However, analytical

results at  are overestimated; this means that it
is necessary to take into account higher order terms at

. Thus, the deviation mz in resonance can be

quite large at certain G, k, and α values and can be
manifested under experimental conditions.

Another interesting result of this work is the reori-
entation of the easy axis of the nanomagnet at an
increase in the Josephson-to-magnetic energy ratio,
i.e., a specific manifestation of the properties of the
Kapitza pendulum in the “Josephson junction–nano-
magnet” system. Figure 3 shows the dynamics of the

magnetic moment component  at different G val-
ues. We emphasize that the magnetic moment at the
initial time is directed along the easy axis (y axis). It is

seen the component  at small G values with
increasing time tends to a constant value depending on
G. With an increase in G, this dependence changes sig-

nificantly, and  at  oscillates and tends to
unity at large times; i.e., my vanishes. Thus, the easy

axis of the nanomagnet is reoriented. The magnetic
moment of the nanomagnet in intermediate states is
oriented between the y and z axes. The time of reorien-
tation decreases with increasing G.

Figure 4 shows the dynamics of the component mz
at various ΩJ values. It is seen that the component mz
at low ΩJ values precesses near a certain fixed value,

whereas at large ΩJ values, it oscillates and approaches

unity.

It is known that the stable equilibrium position of
the pendulum changes if its point of suspension oscil-
lates at a high frequency [16]. The Josephson-to-mag-
netic energy ratio G corresponds to the amplitude of a
variable force in the problem of the Kapitza pendu-
lum, which should promote the reorientation of the
easy axis of the ferromagnet. The character of an
increase in the average value of mz as a function of the

Josephson-to-magnetic energy ratio G is illustrated in
Fig. 5, which also demonstrates analogy with the
Kapitza pendulum. A similar behavior is observed at
an increase in the coupling parameter k between the
Josephson and magnetic subsystems.
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Fig. 3. (Color online) Dynamics of the magnetic field

component mz at four indicated G values for k = 0.05 and

α = 0.1.

Fig. 4. (Color online) Dynamics of the magnetic field

component mz at ΩJ = (a) 0.5, (b) 1, and (c) 2, 3, and 5.

The dashed line in panels (a) and (b) is the average value of

the magnetic field component mz.

〉

〈

〈

〉

Fig. 5. (Color online) Average value of the magnetic field

component mz versus the Josephson-to-magnetic energy

ratio G for three indicated Josephson frequencies.

〈
〉

We demonstrate the possibility of the f lip of the
magnetic moment under the action of the external
current pulse. The equation relating the current pulse
to the phase difference has the form

(4)

Here, the external current pulse is specified as

(5)

where  and  are the amplitude and duration of the
current pulse, respectively. Equation (4) is solved
numerically together with the system of equations (1)
including the effective field (2). Note that Vt and V in

Eqs. (1) and (2) are replaced by ϕ and , respec-
tively. The results of the calculation are shown in
Fig. 6. In contrast to [11] (Fig. 3), where f lip was
ensured by the specific variation of the voltage (lin-
early decreasing) in time, the f lip time in the case of
the current pulse is two orders of magnitude shorter,
which is a significant advantage. We note that the
parameters of the calculations are the same in both
cases.

We consider above the effect of Josephson oscilla-
tions on the dynamics of the magnetic moment of the
nanomagnet. We now briefly describe the inverse
effect, i.e., the effect of the dynamics of the magnetic
moment on the current–voltage characteristic of the
Josephson junction [17]. The current–voltage charac-
teristic is calculated for the junction with a given cur-
rent. In this case, the system of equations within the
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Fig. 6. (Color online) Demonstration of the f lip of the

magnetic field component my by the base current pulse.

The inset shows the pulse shape.

Fig. 7. (Color online) Current–voltage characteristic of

the Josephson junction (solid line cvc) with and (dashed
line) without the nanomagnet along with the voltage
dependence of the maximum amplitude of the magnetic

field component mz.

cvc
resistively and capacitively shunted junction model
has the form

(6)

(7)

where ϕ is the phase difference in the Josephson junc-

tion and  is the McCumber parameter. Further-
more, to calculate the current–voltage characteristic,
Vt in Eqs. (1) and in expression (2) for the effective
field should be replaced by ϕ.

The current–voltage characteristic of the Joseph-
son junction with and without the nanomagnet
(superconductor–insulator–superconductor junc-
tion) is shown in Fig. 7 together with the voltage
dependence of the maximum component mz and the

calculation parameters. The current–voltage charac-
teristic of the Josephson junction with the nanomag-
net has a feature marked by the arrow, which is absent
on the current–voltage characteristic of the Josephson
junction without the nanomagnet. The voltage posi-
tion of this feature corresponds to the position of the
resonance peak of mz. Thus, the precession of the

nanomagnet is manifested on the current–voltage
characteristic of the Josephson junction, which can be
used to control its dynamics.

We justify the chosen parameter values. The results

shown in Fig. 2a correspond to the parameters 

and , which can be reached for the Josephson

junction with an energy of 4.9 × 10–20 J and the nano-
magnet that has a radius of 20 nm, a thickness of 6 nm,

an anisotropy constant of 20 kJ/m3, and a saturation

 = − ϕ − + − , β  

1
sin[ ] z

z
c

dmdV I km V k
dt dt

ϕ = ,d V
dt

βc

= .0 3G
= .0 01k
magnetization of 1420 kA/m and is located at a dis-
tance of 300 nm. Close parameters were used in [20–

23]. The parameters  and  at which the
easy axis of the nanomagnet is reoriented (Fig. 3) and

the parameters  and  at which the
component my of the nanomagnet is f lipped (Fig. 6)

are obtained for Josephson junctions with energies of

3.3 × 10–21 and 1.45 × 10–18 J, respectively, with the
nanomagnet located at a distance of 65 nm. The pre-
sented estimates indicate that the results obtained in
this work can be experimentally implemented. The
justification of the parameters used in this work and
their correspondence to experimental conditions were
also discussed in [4, 11].

To summarize, we have studied the dynamics of the
nanomagnet coupled to the Josephson junction and
have revealed a number of interesting features of this
dynamics. The precession of the magnetic moment
caused by the superconducting current results in the
ferromagnetic resonance. We have demonstrated that
the easy axis of the nanomagnet is reoriented at an
increase in the frequency of Josephson oscillations,
the Josephson-to-magnetic energy ratio, and the cou-
pling parameter between the Josephson current and
magnetic moment.

At the same time, a number of properties of this
system remain unstudied. In particular, the periodic
impact on the nonlinear system can induce chaotic
states [18]. Chaos induced in the Josephson junction
by the external electromagnetic radiation, which is

simulated by the term  added to the main term
(ω and A are the frequency and amplitude of radiation,

= π3G = .0 05k

= .0 05G = .0 05k

ωsinA t
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respectively), was considered in detail in [19]. We sup-
pose that the precession of the magnetic moment
under the action of superconducting oscillations in the
Josephson junction in the system under study can also
induce chaotic states. Studies in this direction have
not yet been performed but are certainly important for
applications of these systems.
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