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1 Introduction

Supersymmetric higher-spin field theories attract a vast attention during a long time. There
are at least two reasons for this. First, from the purely theoretical point of view, it is tempt-
ing to construct new supersymmetric models of this kind, as well as to supersymmetrize
the already available higher-spin field bosonic models. The new universal methods to be
developed during these studies could, in particular, shed more light on hidden relation-
ships between fermionic and bosonic degrees of freedom for the higher-spin fields and open
new possibilities for building consistent higher-spin field models due to the appearance of
extended gauge (super)symmetries. Second, since the superstring theory encompasses infi-
nite towers of bosonic and fermionic higher spin states, supersymmetric higher-spin gauge
theory can serve as a bridge between superstring theory and low-energy field theory.

There is a huge literature on higher spin fields. In this introductory section (and over
the whole work) we limit our discussion to the issues related only to supersymmetric higher
spin theories and only to the four-dimensional versions of the latter. Respectively, our
reference list mainly includes the papers of the same trend.

As is well known, there exist two different generic formulations of the supersymmetric
field theories, the component (on-shell) formulation and superfield (off-shell) formulation
(see, e.g., [1–3]). In the first approach, the theory is formulated in a way lacking a manifest
supersymmetry, in terms of bosonic and fermionic fields forming a supermultiplet on the
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mass shell. The algebra of the supersymmetry transformations is open and becomes closed
only upon using the equations of motion. To close the algebra off shell, we are led to intro-
duce the auxiliary fields which vanish on the mass shell. In the second approach, a theory
is formulated in a manifestly supersymmetric way employing superfields. The algebra of
the supersymmetry transformations is automatically off-shell closed and the auxiliary fields
are already built in the superfields. Clearly, due to the manifest off-shell supersymmetry,
the second approach much more suits for setting up various generalizations, e.g., finding
out consistent interactions proceeding from a given free theory. However, the superfield
formulations of some Lagrangian field theory (both classical and quantum) are useful and
efficient only providing that the relevant superfields are not subject to any algebraic con-
straints. For all types of supersymmetries in all dimensions, such unconstrained superfield
formulations are at present generically unknown. What concerns four dimensions, there
exist unconstrained superfield formulations for all N = 1 supersymmetric theories of in-
terest (matter, super Yang-Mills, supergravity) in conventional 4D superspaces, general
and chiral (see, e.g., [1, 2]), and for their N = 2 supersymmetry counterparts in terms of
harmonic superspace [3–5].

Free massless bosonic and fermionic higher-spin field theories have been pioneered by
Fronsdal [6, 7]. The corresponding supersymmetric generalization in the component ap-
proach can be constructed as follows. Lagrangian is written as a sum of Lagrangians for all
fields of the on-shell supermultiplet. Then one should invent the appropriate supersymme-
try transformations and check the invariance of the total Lagrangian. Such a description
was realized for 4D free massless higher-spin N = 1 supersymmetric models in works [8, 9].1
Complete off-shell Lagrangian formulation of 4D free higher-spin N = 1 models has been
developed in terms of N = 1 superfields in works [11–13] (see also section 6.9 in [2]) and
further applied to study quantum effective action generated by N = 1 superfields in AdS
space in [14]. Note that in [13] the massless higher-spin N = 1 supermultiplets in AdS4
were constructed for the first time. The superfield approach to N = 1 supersymmetric
massless higher spin fields was further generalized in [15–23].2 Some additional geometric
aspects of this approach were explored in [25–28]. Also note an activity on N = 1 su-
persymmetric massive higher spin theories (see e.g., [29–31] and the references therein),
however it is out of the subject of our paper.

At present, a manifestly supersymmetric off-shell unconstrained superfield Lagrangian
formulation for extended higher-spin supersymmetric theories is unknown even for the free
case (modulo the superconformal theories [24] which we do not concern here). Progress in
this area is associated either with the realization of extended supersymmetry in terms of
N = 1 superfields [15, 16], or in terms of light-cone N -extended superfields [32], or in the
on-shell component approach (see, e.g., [33] and the references therein). In all cases, the

1Later, it was shown that the free supersymmetric massless higher-spin gauge theory can be also formu-
lated in the framework of the BRST formalism [10].

2It is worth noting the paper [24], where 4D,N = 2 superconformal higher-spin theory was formulated
in terms of unconstrained N = 2 superfields. The program of constructing the massless higher spin N = 2
superfield actions was sketched but not realized there. Here we do not deal with the superconformal theories
at all.
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full extended supersymmetry remains non-manifest. An off-sell Lagrangian formulation of
N = 2 supersymmetric higher-spin theory on AdS space in terms of unconstrained N = 1
superfields (and some Poincaré supersymmetric limits thereof) has been constructed for the
first time in [16] but such a formulation does not reveal a manifest N = 2 supersymmetry.
As a result we can conclude that the problem of complete off-shell description of the higher-
spin extended supersymmetric theories is still open.3

Note that one of the actively developing directions in the theory of higher spin fields is
related with the study of interactions. In particular, recently a substantial understanding
of the structure of cubic interaction vertices for higher spin supersymmetric fields has been
achieved in different component and N = 1 superfield approaches (see, e.g., [32, 35–40]
and the references therein). Other aspects of higher-spin supersymmetric field theory are
related with supersymmetric extension [41–43] of the Vasiliev theory of interacting higher
spin fields (see the reviews [44–46], and the references therein). It is beyond the scope of
our paper to discuss these prospective and advanced studies.

In this paper we construct the completely off-shell manifestly N = 2 supersymmetric
superfield extension of arbitrary 4D integer-spin free massless theory. The construction
is based on the use of the harmonic superspace method [3] which is at present the most
adequate and convenient approach for description of 4D,N = 2 supersymmetric field
theories.

The paper is organized as follows. Section 2 is devoted to a brief description of the
linearized N = 2 Einstein supergravity (linearized massless N = 2 spin 2 theory) in
terms of unconstrained analytic harmonic superfields. In section 3 we generalize the above
results and formulate the free massless N = 2 spin 3 harmonic superfield theory. Section 4
is devoted to further generalization and construction of a completely off-shell invariant
action for the free massless N = 2 gauge theory with an arbitrary maximal integer spin
s of the supermultiplet. The theory is formulated in 4D,N = 2 harmonic superspace in
terms of unconstrained analytic superfields. In section 5 we summarize the results and
discuss possible ways of further development of the approach presented.

2 N = 2 spin 2 theory

2.1 Minimal Einstein N = 2 supergravity in the harmonic approach

We start by a sketch of the basic principles of Einstein N = 2 supergravity (SG) in harmonic
superspace [3, 47]. Its linearized version provides an off-shell N = 2 supersymmetric free
spin 2 action and will serve as a prototype for constructing N = 2 higher spin actions.

We will deal with N = 2 harmonic superspace (HSS) in the analytic basis as the
following set of coordinates [3–5]

Z =
(
xm, θ+µ, θ̄+µ̇, u±

i , θ
−µ, θ̄−µ̇) ≡ (ζ, θ−µ, θ̄−µ̇), (2.1)

3The free equations of motion for higher-spin massless N = 2 superfields have been constructed in the
conventional N = 2 AdS superspace in ref. [34]. As noted by its authors, the issue of constructing the
corresponding Lagrangian formulation remained unresolved in their approach.
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where the standard notation of ref. [3] is used. In particular, u±
i are harmonic variables

parametrizing the internal sphere S2, u+iu−
i = 1, the indices ± denote the harmonic U(1)

charges of various quantities and the index i = 1, 2 is the doublet index of the automorphism
SU(2) group acting only on the harmonic variables. The set (2.1) is closed under the rigid
N = 2 supersymmetry transformations

δεx
m = −2i

(
ε−σmθ̄+ + θ+σmε̄−

)
, δεθ

±µ̂ = ε±µ̂ , δεu
±
i = 0 , ε±µ̂ = εµ̂iu±

i , (2.2)

where we employed the condense notation, µ̂ = (µ, µ̇). These transformations also leave
intact the harmonic analytic subspace of (2.1),

ζ :=
(
xm, θ+µ, θ̄+µ̇, u±

i

)
. (2.3)

The HSS formulation of N = 2 SG is displayed in an extension of the HSS (2.1) by a fifth
coordinate x5,

Z =⇒ (Z, x5) , (2.4)

with the following analyticity-preserving transformation law under N = 2 supersymmetry,

δεx
5 = 2i

(
ε−θ+ − ε̄−θ̄+). (2.5)

This coordinate can be interpreted as associated with the central charge in N = 2 Poincaré
superalgebra.

An important ingredient of the HSS formalism is the harmonic derivatives D++ and
D−− which have the following form in the analytic basis4

D++ = ∂++ − 2iθ+ρθ̄+ρ̇∂ρρ̇ + θ+µ̂∂+
µ̂ + i(θ+̂)2∂5 ,

D−− = ∂−− − 2iθ−ρθ̄−ρ̇∂ρρ̇ + θ−µ̂∂−
µ̂ + i(θ−̂)2∂5 , (2.6)

[D++, D−−] = D0 , D0 = u+i ∂

∂u+i − u
−i ∂

∂u−i + θ+µ̂∂−
µ̂ − θ

−µ̂∂+
µ̂ . (2.7)

The crucial difference between derivatives D++ and D−− is that D++ preserves analyticity,
while D−− does not.

We will be interested in the simplest version of Einstein N = 2 SG which is obtained
from the conformal N = 2 SG by invoking the so called nonlinear multiplet as one of
the two necessary compensating multiplets. In the HSS formalism, one uses a gauge in
which the analytic superfield which accommodates this compensating multiplet is gauged
away to yield the fundamental group of the resulting Einstein N = 2 SG as the following
analyticity-preserving superdiffeomorphisms

δλx
m = λm(x, θ+, u), δλx

5 = λ5(x, θ+, u) , (2.8)
δλθ

+µ = λ+µ(x, θ+, u), δλθ̄
+µ̇ = λ̄+µ̇(x, θ+, u),

δλθ
−µ = λ−µ(x, θ+, θ−, u), δλθ̄

−µ̇ = λ̄−µ̇(x, θ+, θ−, u), (2.9)
δλu

±
i = 0. (2.10)

4Hereafter, we use the notations µ̂ ≡ (µ, µ̇), ∂±
µ̂ = ∂/∂θ∓µ̂, (θ+̂)2 ≡ (θ+)2−(θ̄+)2 and ∂αα̇ = σmαα̇∂m. The

summation rules are ψχ = ψαχα, ψ̄χ̄ = ψ̄α̇χ̄
α̇, Minkowski metric is diag(1,−1,−1,−1) and 2 = ∂m∂m =

1
2∂

αα̇∂αα̇.
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Notice that neither the gauge parameters nor any of the geometrical objects used in the
paper depend on the fifth coordinate x5.

Next one defines a generalization of the flat harmonic derivatives (2.6), D±±, such that
they were covariant under (2.9)

δD±± = 0 ⇒ (2.11)

D++ = D++ + h++m∂m + h++µ̂+∂−
µ̂ + h++µ̂−∂+

µ̂ + h++5∂5 , (2.12)
D−− = D−− + h−−m∂m + h−−µ̂+∂−

µ̂ + h−−µ̂−∂+
µ̂ + h−−5∂5 . (2.13)

The components of the vielbein h++M in (2.12) are analytic superfields, h++M = h++M (ζ),
as the constraints of N = 2 SG in the HSS formulation require that [47]

[∂+
µ̂ ,D

++] = 0 . (2.14)

The negatively charged vielbeins in (2.13) are expressed in terms of those in (2.12) from
the conditions implied by the harmonic constraint

[D++,D−−] = D0 , (2.15)

which is just a generalization of the flat superspace condition (2.7). The explicit form of
the relevant relations will be given below for the linearized theory. The transformation
properties of the vielbeins h++M and h−−M are uniquely determined by (2.11), whence,
in particular, δλD0 = 0. Here we present them for h++M , postponing those for h−−M also
until the linearized case,

δλh
++m = D++λm + 2iλ+ασmαα̇θ̄

+α̇ + 2iθ+ασmαα̇λ̄
+α̇ ,

δλh
++5 = D++λ5 − 2iλ+µ̂θ+

µ̂ ,

δλh
++µ̂+ = D++λ+µ̂ ,

δλh
++µ̂− = D++λ−µ̂ − λ+µ̂ . (2.16)

Note, that the non-analytic vielbein h++µ̂− and the non-analytic parameter λ−µ̂ have
exactly the same component contents. Therefore, this vielbein can be entirely gauged
away,

h++µ̂− = 0 . (2.17)
In this gauge we have the “analytic gauge” condition

D++λ−µ̂ = λ+µ̂ , (2.18)

which fully specifies λ−µ̂ in terms of the components of λ+µ̂.
Now, using the transformations (2.16), one can display the field content of the vielbeins

in the Wess-Zumino gauge:

h++m = −2iθ+σaθ̄+Φm
a + (θ̄+)2θ+ψmiu−

i + (θ+)2θ̄+ψ̄miu−
i + (θ+)2(θ̄+)2V m(ij)u−

i u
−
j ,

h++5 = −2iθ+σaθ̄+Ca + (θ̄+)2θ+ρiu−
i + (θ+)2θ̄+ρ̄iu−

i + (θ+)2(θ̄+)2S(ij)u−
i u

−
j ,

h++µ+ = (θ+)2θ̄+
µ̇ P

µµ̇ +
(
θ̄+
)2
θ+
ν

[
εµνM + T (µν)

]
+ (θ+)2(θ̄+)2χµiu−

i , h++µ̇+ = h̃++µ+ . (2.19)
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This is just the content of the “minimal” N = 2 Einstein supergravity multiplet [48, 49]
(note that the fields M,Pµµ̇, T (µν) entering h++µ+ in (2.19) are complex). So the analytic
superfields h++m, h++µ̂+, h++5 are the unconstrained gauge potentials of the “minimal”
N = 2 Einstein supergravity. The physical fields are Φm

a , ψ
mi
µ̂ , Ca, the remaining ones are

auxiliary. After eliminating them from the appropriate action, we are left with the on-
shell superspin 1, superisospin 0 multiplet (2,3/2,3/2,1). With taking into account the
residual gauge freedom of the WZ gauge (2.19) (see below), the complete set of essential
off-shell degrees of freedom is 40 + 40.

2.2 Linearized theory

In what follows, we will be interested in the linearized version of the above construction.
In general, the negatively charged vielbeins in (2.13) obey rather complicated nonlin-

ear harmonic equations following from the condition (2.15). However, at the linearized
level these conditions are essentially simplified: they are reduced to the linear harmonic
equations for the gauge potentials:

D++h−−αα̇ −D−−h++αα̇ + 4i
(
h−−α+θ̄+α̇ + θ+αh−−α̇+) = 0 ,

D++h−−5 −D−−h++5 − 2i
(
h−−α+θ+

α − θ̄+
α̇ h

−−α̇+) = 0 , (2.20)
D++h−−α+ −D−−h++α+ = 0 , D++h−−α̇+ −D−−h++α̇+ = 0 ,

D++h−−α− − h−−α+ = 0 , D++h−−α̇− − h−−α̇+ = 0 . (2.21)

These constraints are invariant under the following linearized form of the superfield gauge
transformations (2.16) and their counterparts for the negatively charged vielbeins

δλh
++m = D++λm + 2i

(
λ+ασmαα̇θ̄

+α̇ + θ+ασmαα̇λ̄
+α̇) ,

δλh
++5 = D++λ5 − 2i

(
λ+αθ+

α − θ̄+
α̇ λ̄

+α̇),
δλh

++µ̂+ = D++λ+µ̂ , (2.22)
δλh

−−m = D−−λm + 2i
(
λ−ασmαα̇θ̄

−α̇ + θ−ασmαα̇λ̄
−α̇) ,

δλh
−−5 = D−−λ5 − 2i

(
λ−αθ−

α − θ̄−
α̇ λ̄

−α̇),
δλh

−−µ+ = D−−λ+µ − λ−µ , δλh
−−µ̇+ = D−−λ+µ̇ − λ̄−µ̇ , (2.23)

δλh
−−µ− = D−−λ−µ , δλh

−−µ̇− = D−−λ−µ̇ . (2.24)

These transformations can still be used to choose the Wess-Zumino gauge (2.19) for ana-
lytic superfields h++M in the linearized theory as well, though in this approximation h++M

and h−−M loose their geometric meaning of vielbeins. Similarly, the analytic gauge pa-
rameters λ++m,5 and λ+µ̂ loose their original geometric meaning of the parameters of the
coordinate superdiffeomorphisms preserving the analytic subspace (2.3). The non-analytic
gauge parameter λ−µ̂ satisfies the linearized form of eq. (2.18),

D++λ−µ̂ = λ+µ̂ . (2.25)

– 6 –
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As usual, fixing WZ gauge does not fully capture symmetry. The residual gauge
freedom of the theory is spanned by the parameters:

λm ⇒ am(x) ,
λ5 ⇒ b(x) ,
λµ+ ⇒ εµi(x)u+

i + θ+ν l
µ)

(ν (x) ,
λ̄µ̇+ ⇒ ε̄µ̇i(x)u+

i + θ̄+ν̇ l
µ̇)

(ν̇ (x) .

(2.26)

It is natural to make the following identification:

• am(x) are the remnants of the diffeomorphism parameters which now form the basic
gauge freedom of the free spin 2 field;

• b(x) is the parameter of Abelian gauge transformations acting on the “graviphoton”
Am;

• εµ̂i(x) originate from the parameters of local supersymmetry which are now N = 2
counterparts of the local am transformations;

• l(µν) and l(µ̇ν̇) are the former parameters of local Lorentz transformations which
can be used to gauge away the antisymmetric part of Φm

a and so to leave only the
symmetric part in the latter (traceless “conformal graviton” and the trace itself).

For the further consideration, it will be instructive to explicitly see (before any gauge-
fixing) how the gauge freedom (2.22) allows to remove all the “superfluous” SU(2) singlet
bosonic spins from the basic gauge superfields. The relevant shifting local symmetries
are contained in the supergauge parameter λ+α, λ̄+α̇, while the physical dimension SU(2)
singlet spins in h++m,5. Passing, for the convenience, to the spinor notation, h++

αα̇ =
(σm)αα̇h++m , we identify these particular components as

h++
αα̇ ⇒ (θ+)2ωαα̇ + (θ̄+)2ω̄αα̇ − 2iθ+β θ̄+β̇Φββ̇αα̇ ,

h++5 ⇒ (θ+)2ω + (θ̄+)2ω̄ + iθ+β θ̄+β̇Cββ̇ ,

λ+α ⇒ θ+α l + θ+βl
α)

(β + θ̄+β̇lα
β̇
, λ̄+α̇ ⇒ θ̄+α̇ l̄ + θ̄+β̇ l̄

α̇)
(β̇ − θ+β l̄α̇β . (2.27)

From the transformation laws (2.22) we find

δωαα̇ = 2i lαα̇ , δω̄αα̇ = −2i l̄αα̇ , δω = −2il , δω̄ = 2il̄ , δCαα̇ = −2(lαα̇ + l̄αα̇),
δΦββ̇αα̇ = −2

(
εαβ l̄(β̇α̇) + εα̇β̇l(βα)

)
. (2.28)

Decomposing
Φββ̇αα̇ = Φ(βα)(β̇α̇) + εαβΦ(β̇α̇) + εα̇β̇Φ(βα) + εαβεα̇β̇Φ , (2.29)

we observe that the complex fields ωαα̇ and φ are purely gauge degrees of freedom: they can
be put equal to zero in accordance with the WZ gauge (2.19); using the local parameters
lαα̇, l̄αα̇ one can gauge away as well the spin 1 parts of the field Φββ̇αα̇, to end with the off-
shell spin 2 field (Φ(βα)(β̇α̇),Φ) and the spin 1 field Cαα̇ as the only surviving physical bosonic

– 7 –
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gauge fields. The standard residual gauge transformations of these fields are associated with
the local parameters am(x) and b(x) coming from the gauge superfunctions λm(ζ), λ5(ζ):

δλΦββ̇αα̇ = 1
2
(
∂αα̇aββ̇ + ∂ββ̇aαα̇

)
, δλΦ = 1

4∂αα̇a
αα̇ , (2.30)

δλCαα̇ = −2∂αα̇ b . (2.31)

It was taken into account in (2.30) that the gauge choice Φ(βα) = 0 (and c.c.) expresses
the parameters lαα̇, l̄αα̇ as

lαβ = 1
4∂(αα̇a

α̇
β) , lα̇β̇ = 1

4∂β(α̇a
β

β̇) . (2.32)

In what follows, an important role is played by the realization of the rigid N = 2
supersymmetry on the superfields h±±. Even before passing to the linearized approxima-
tion, it is immediately seen that under the N = 2 transformations (2.2) the covariantized
harmonic derivatives (2.12), (2.13) are invariant provided the vielbeins have the following
unusual transformation rules

δεh
++m = −2i

(
h++µ+σmµµ̇ε̄

−µ̇ + ε−µσmµµ̇h
++µ̇+) ,

δεh
++5 = 2i

(
h++µ+ε−µ − ε̄−µ̇ h

++µ̇+) ,
δεh

++µ̂+ = 0 , (2.33)
δεh

−−m = −2i
(
h−−µ+σmµµ̇ε̄

−µ̇ + ε−ρσmρµ̇h
−−µ̇+) ,

δεh
−−5 = 2i

(
h−−µ+ε−µ − ε̄−µ̇ h

−−µ̇+) ,
δεh

−−µ̂+ = δh−−µ̂− = 0 . (2.34)

These transformation laws are valid in the linearized limit too. The difference between
the nonlinear and linearized cases is that in the former case these rigid transformations
form a subgroup of the gauge group (2.16) (and its counterpart for the negatively charged
vielbeins), while in the latter case they constitute an independent symmetry (which form
a semi-direct product with the relevant gauge transformations (2.23) and (2.24)).

Now, let us define the non-analytic objects which behave as the standard N = 2
superfields

G++m := h++m + 2i
(
h++µ+σmµµ̇θ̄

−µ̇ + θ−µσmµµ̇h
++µ̇+) , (2.35)

G++5 := h++5 − 2i
(
h++µ+θ−

µ − θ̄−
µ̇ h

++µ̇+) , (2.36)
G−−m := h−−m + 2i

(
h−−µ+σmµµ̇θ̄

−µ̇ + θ−µσmµµ̇h
++µ̇+) , (2.37)

G−−5 := h−−5 − 2i
(
h−−µ+θ−

µ − θ̄−
µ̇ h

−−µ̇+) . (2.38)

It is easy to check that5

δεG
++m = δεG

++5 = δεG
−−m = δεG

−−5 = 0 . (2.39)
5We denote by δε the so called passive transformations differing from the more accustomed “active”

transformations δ∗
ε by the “transport term”, δ∗

ε = δε − δεZM∂M .
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The newly introduced objects also possess simple transformation properties under the gauge
transformations (2.22)–(2.24)

δλG
±±m = D±±Λm , δλG

±±5 = D±±Λ5 , (2.40)
Λm = λm + 2i

(
λ+σmθ̄− + θ−σmλ̄+) , Λ5 = λ5 − 2i

(
λ+θ− − θ̄−λ̄+), (2.41)

and satisfy the flatness conditions

D++G−−m = D−−G++m , D++G−−5 = D−−G++5 (2.42)

as a direct consequence of the harmonic equations (2.20)–(2.21). The invariant linearized
action of N = 2 SG can be constructed just from these objects.

Let us pass to the spinor notation,

G±±αα̇ = (σ̃m)αα̇G±±m , δλG
±±αα̇ = D±±Λαα̇ ,

Λαα̇ = λαα̇ + 4i
(
λ+αθ̄−α̇ + θ−αλ̄+α̇) ,

G±±αα̇ = h±±αα̇ + 4i
(
h±±α+θ̄−α̇ + θ−αh̄±±α̇+) , (2.43)

and consider the manifestly N = 2 supersymmetric action

S1 =
∫
d4xd8θduG++αα̇G−−

αα̇ . (2.44)

Its gauge variation, with taking into account the relation (2.42), can be reduced to the
expression

δλS1 = 2
∫
d4xd8θduD−−Λαα̇G++

αα̇ . (2.45)

Next, we pass to the integral over the analytic subspace using∫
d4xd8θdu =

∫
dζ−4du(D+)4 , (D+)4 = 1

16(D̄+)2(D+)2 . (2.46)

After some algebra, using the relation

{D+
α , D̄

−
α̇ } = −2i∂αα̇ , D−

α = [D−−, D+
α ] (and c.c.) ,

as well as the property that both Λαα̇ andG++
αα̇ are linear in θ−

α , θ̄
−
β̇
with analytic coefficients,

we can represent this variation as

δλS1 = 8i
∫
dζ−4du

(
∂ββ̇λ

+βh++β̇+ − ∂ββ̇λ̄
+β̇h++β+). (2.47)

As the second step, we define

S2 =
∫
d4xd8θduG++5G−−5 (2.48)

and, applying similar manipulations, find

δλS2 = −2i
∫
dζ−4du

(
∂ββ̇λ

+βh++β̇+ − ∂ββ̇λ̄
+β̇h++β+). (2.49)
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So we come to the conclusion that the sum

S(s=2) ∼ S1 + 4S2 = −1
4

∫
d4xd8θdu

(
G++αα̇G−−

αα̇ + 4G++5G−−5) (2.50)

is invariant under both rigid N = 2 supersymmetry and linearized gauge transformations.
So it is the invariant action of the linearized N = 2 SG and the true N = 2 extension of the
free spin 2 action. It was firstly given in [50].6 The choice of the normalization constant
in this action will become clear after considering its component bosonic sector in the WZ
gauge (2.19). Note that, while proving gauge invariance of S1 +4S2, we did not make use of
the precise structure of G−−

αα̇ and G−−5, only the flatness conditions (2.42) were employed.

2.3 Passing to components

When calculating the component action, the most annoying problem is to restore the
negatively charged non-analytic gauge superfields by the basic analytic ones h++

αβ̇
, h++5

and h+3
α by using eqs. (2.20)–(2.21) (or (2.42) for G±±

αβ̇
and G±±5). We shall present the

full N = 2 component actions for any spin elsewhere; here we limit ourselves to their
bosonic sectors. Moreover, we will be basically interested in the actions for the physical
gauge fields; in all cases, the auxiliary bosonic fields produce some bilinear terms and so
vanish on shell.

For the considered spin 2 case we should firstly substitute the bosonic reduction of
the WZ gauge (2.19), with the additional gauge choice Φαα̇ββ̇ = Φ(αβ)(α̇β̇) + εαβεα̇β̇Φ,
to eqs. (2.20)–(2.21). Since the latter are linear, one can solve them separately for each
term in the analytic gauge superfield. The relevant solution for the appropriate set of
negatively charged gauge potentials will contain this fixed component field together with
its x-derivatives. As an important example, consider the following analytic monomial

h++A
(Φ) = G++A

(Φ) := iθ+βθ+β̇ΦA
ββ̇
, (2.51)

where the precise value of the external index A is of no interest for us for the moment. For
the corresponding part of the negatively charged gauge potential we obtain

G−−A
(Φ) = iθ−β θ̄−β̇ΦA

ββ̇
− (θ−)2θ̄−(ρ̇θ̄+β̇)∂βρ̇ΦA

ββ̇
+ (θ̄−)2θ−(ρθ+β)∂β̇ρΦA

ββ̇

− i(θ−)2(θ̄−)2θ+ρθ̄+ρ̇
[
2ΦA

ρρ̇ −
1
2∂ρρ̇∂

ββ̇ΦA
ββ̇

]
. (2.52)

To find the component (C, Φ) action, one should also take into account that the field
Pαβ̇ in h++α+ in (2.19) (and its conjugate P̄ α̇β in h++α̇+) is transformed under the gauge
spin 2 transformations,

δλP
αβ̇ = i∂β̇β l

αβ = − i4

(
2aαβ̇ − 1

2∂
αβ̇ ∂γγ̇aγγ̇

)
,

and so one needs to pass to the inert field P̃αα̇ through the redefinition

Pµµ̇ = P̃µµ̇ + iBµµ̇, P̄µµ̇ = ˜̄Pµµ̇ − iBµµ̇ , (2.53)
6The linearized N = 2 SG in the ordinary N = 2 superspace was considered in [51].
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where

Bββ̇ = 1
4
{

3∂ββ̇Φ− ∂αα̇Φ(αβ)(α̇β̇)

}
, δλBαβ̇ = −1

4

(
2aαβ̇ −

1
2∂αβ̇ ∂

γγ̇aγγ̇

)
. (2.54)

All other auxiliary bosonic fields entering (2.19) are inert under gauge transformations and
all, besides the tensorial one T (µν), produce bilinear component actions and so disappear
on shell. The tensorial field plays an interesting role and should be retained.

Firstly we consider the part G++5G−−5 in (2.50). The C-gauge field sector is deter-
mined by the analytic gauge potential

G++5
(C) = iθ+ρθ̄+ρ̇Cρρ̇ . (2.55)

In accord with the general formula (2.52):

G−−5
(C) = iθ−β θ̄−β̇C

ββ̇
− (θ−)2θ̄−(ρ̇θ̄+β̇)∂βρ̇Cββ̇ + (θ̄−)2θ−(ρθ+β)∂β̇ρCββ̇

− i(θ−)2(θ̄−)2θ+ρθ̄+ρ̇
[
2Cρρ̇ − ∂ρρ̇∂mCm

]
. (2.56)

As for the tensorial auxiliary field, it gives contributions to both G++αα̇ and G++5, so
we are led to compute both G−−αα̇ and G−−5. However, it can be shown that G++αα̇

(T ) G−−
αα̇(T )

does not contribute to the component Lagrangian, only G++5
(T ) and G−−5

(T ) do. For them we
have the following expressions

G++5
(T ) = −2i(θ̄+)2θ+

ν θ
−
µ T

(µν) − 2i(θ+)2θ̄+
ν̇ θ̄

−
µ̇ T̄

(µ̇ν̇) , (2.57)

G−−5
(T ) = −2i(θ̄−)2θ+

ν θ
−
µ T

(µν) − 2i(θ−)2θ̄+
ν̇ θ̄

−
µ̇ T̄

(µ̇ν̇)

+ 2(θ̄−)2(θ−)2θ̄+ρ̇θ+
µ ∂ρρ̇T

(µρ) + 2(θ−)2(θ̄−)2θ+ρθ̄+
µ̇ ∂ρν̇ T̄

(µ̇ν̇). (2.58)

The total contribution of

G++5
(C) G

−−5
(C) +G++5

(T ) G
−−5
(T ) +G++5

(C) G
−−5
(T ) +G++5

(T ) G
−−5
(C)

to the component Lagrangian in (2.50) reads

L(C,T ) = 1
4F

mnFmn −
[
T (α̇γ̇)T(α̇γ̇) + T (αγ)T(αγ)

]
+ i
[
T (α̇γ̇)∂β(α̇Cβγ̇) − T (βρ)∂β̇(βCρ)β̇

]
, (2.59)

where

∂β̇(βCρ)β̇ = i

2(σmn)βρFmn , ∂β(α̇Cβγ̇) = − i2(σ̃mn)α̇γ̇Fmn , Fmn = ∂mCn − ∂nCm .

We observe the mixing between T (αβ), T (α̇β̇) and the gauge field strength Fmn. After
removing this mixing by redefining the tensorial fields as

T(αβ) = T̃(αβ) + i

2∂
β̇
(αCβ)β̇ , T(α̇β̇) = T̃(α̇β̇) −

i

2∂
β
(α̇Cββ̇) (2.60)
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we obtain

L(C,T ) = −1
4F

mnFmn −
[
T̃ (α̇γ̇)T̃(α̇γ̇) + T̃ (αγ)T̃(αγ)

]
. (2.61)

We see that the sign of kinetic term of the gauge field has changed after this procedure
and this explain the choice of the normalization factor before the action (2.50).7

The pure spin 2 part of the action (2.50) is obtained from the following expressions for
the pure gravitation parts of G++

αα̇ and G++5 given below.

G++αα̇
(Φ) = −2iθ+β θ̄+β̇Φαα̇

ββ̇
+ 4(θ+)2θ̄+β̇ θ̄−α̇Bα

β̇
− 4(θ̄+)2θ+βθ−αBα̇

β , (2.62)

G++5
(Φ) = −2(θ+)2θ̄+ρ̇θ−

µB
µ
ρ̇ − 2(θ̄+)2θ+β θ̄−

ρ̇ B
ρ̇
β . (2.63)

The expressions for the relevant negatively charged potentials G−−αα̇
(Φ) and G−−5

(Φ) , are rather
bulky and are given in appendix (eqs. (A.1) and (A.2)).

After some simple though time-consuming computation we find the contribution of
G++αα̇

(Φ) G−−
(Φ)αα̇ + 4G++5

(Φ) G
−−5
(Φ) to the component spin 2 Lagrangian

L(Φ) = −1
4
[
Φ(αβ)(α̇β̇)2Φ(αβ)(α̇β̇) − Φ(αβ)(α̇β̇)∂αα̇∂

ρρ̇Φ(ρβ)(ρ̇β̇)

+2 Φ∂αα̇∂ββ̇Φ(αβ)(α̇β̇) − 6Φ2Φ
]
. (2.64)

It is easy to check that this Lagrangian is invariant, up to a total derivative, under the
gauge transformations (2.30). It has a correct sign agreed with that of the spin 1 La-
grangian (2.61).

So in the gauge bosonic sector we are left with the spin 2 fields
(
Φ(αβ)(α̇β̇),Φ

)
and the

spin 1 field Cαα̇ with the correct Lagrangians and gauge transformations. This directly
extends to the N = 2, s > 2 cases.

3 Generalization to N = 2 spin 3 theory

3.1 Superfield contents and gauge symmetries

In the N = 2 supersymmetric theory of the free spin 2 described above, the basic analytic
superfield objects have a nice geometric meaning, being linearized versions of the N =
2 supergravity analytic supervielbein covariantizing the analyticity-preserving harmonic
derivative D++ with respect to the superdiffeomorphism group (2.8)–(2.9). For spins s > 2
we are not aware of such a nice geometric picture. Nevertheless, it turns out that the
problem of constructing the relevant off-shell formalism can be solved just by properly
generalizing the formalism of the linearized N = 2 supergravity described in section 2.2.

We start with s = 3. We introduce the real N = 2 bosonic superfields h++(αβ)(α̇β̇)(ζ),
h++αα̇(ζ) (of scaling dimension −1) and the conjugated fermionic superfields h++(αβ)α̇+(ζ),

7This sign is inherited from the total N = 2 SG action [3], where the Maxwell superfield h++5 plays
the role of compensator for the underlying gauge N = 2 superconformal group and, as is common for
compensators, its action has a wrong sign as compared to any other Maxwell multiplet. E.I. thanks Bernard
de Wit for useful correspondence on this issue.
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h++(α̇β̇)α+(ζ) (of dimension −1/2), all being unconstrained analytic. We ascribe to them
the following gauge transformation rules as a direct generalization of (2.22):

δh++(αβ)(α̇β̇) = D++λ(αβ)(α̇β̇) + 4i
[
λ+(αβ)(α̇θ̄+β̇) + θ+(αλ̄+β)(α̇β̇)],

δh++αα̇ = D++λαα̇ − 2i
[
λ+(αβ)α̇θ+

β + λ̄+(α̇β̇)αθ̄+
β̇

]
, (3.1)

δh++(αβ)α̇+ = D++λ+(αβ)α̇ ,

δh++(α̇β̇)α+ = D++λ̄+(α̇β̇)α . (3.2)

Like in the s = 2 case, let us first to see which kind of unremovable bosonic SU(2)
singlet (“white”) gauge fields is retained in the newly defined gauge potentials. As in the
case of spin 2, a simple analysis shows that all shifting SU(2) singlet local symmetries are
concentrated in the gauge parameters λ+(αβ)α̇, λ̄+(α̇β̇)α, while all bosonic gauge fields in
the potentials h++(αβ)(α̇β̇) and h++αα̇. Singling out in both sets of the objects the relevant
SU(2) singlet components, we find

h++(αβ)(α̇β̇) ⇒ (θ+)2ω(αβ)(α̇β̇) + (θ̄+)2ω̄(αβ)(α̇β̇) − 2iθ+
γ θ̄

+
γ̇ Φγγ̇(αβ)(α̇β̇) ,

h++αα̇ ⇒ (θ+)2ωαα̇ + (θ̄+)2ω̄αα̇ − 2iθ+
γ θ̄

+
γ̇ C

γγ̇αα̇ ,

λ+(αβ)α̇ ⇒ l(αβ)α̇γθ+
γ + l(αβ)α̇γ̇ θ̄+

γ̇ ,

λ̄+(α̇β̇)α ⇒ l̄(α̇β̇)αγ̇ θ̄+
γ̇ − l̄

(α̇β̇)αγθ+
γ . (3.3)

The transformation laws (3.1) imply the following gauge transformations for “white” com-
ponent fields:

δωαα̇ = il
(αβ)α̇

β , δω̄αα̇ = −il̄(α̇β̇)α
β̇
,

δCγγ̇αα̇ = 1
2
[
l̄(α̇γ̇)αγ − l(αγ)α̇γ̇] ,

δω(αβ)(α̇β̇) = 2il(αβ)(α̇β̇) , δω̄(αβ)(α̇β̇) = −2il̄(α̇β̇)(αβ) ,

δΦγγ̇(αβ)(α̇β̇) = −2
[
l(αβ)(α̇γεβ̇)γ̇ + l̄(α̇β̇)(αγ̇εβ)γ].

We have verified that the gauge freedom associated with the complex parameters l(αβ)α̇γ

and l(αβ)α̇γ̇ (and c.c.) is powerful enough to gauge away fields ωαα̇, ω̄αα̇, ω(αβ)(α̇β̇), ω̄(αβ)(α̇β̇).
Also one can use it to gauge away all the components in Cγγ̇αα̇ apart from

C(γα)(γ̇α̇) + εγαεγ̇α̇C (3.4)

and all the components in Φγγ̇(αβ)(α̇β̇) apart from

Φ(αβγ)(α̇β̇γ̇) + εγ̇(α̇εγ(βΦα)β̇) . (3.5)

So there survive only the pairs of fields C(γα)(γ̇α̇), C and Φ(αβγ)(α̇β̇γ̇),Φαβ̇ needed for the
consistent description of massless spins 2 and 3, respectively [6].

Now we perform a more detailed analysis of the gauge freedom, prior to imposing any
gauge on the gauge fields C and Φ. This analysis leads to the following Wess-Zumino type
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gauge for the considered case

h++(αβ)(α̇β̇) =−2iθ+ρθ̄+ρ̇Φ(αβ)(α̇β̇)
ρρ̇ + (θ̄+)2θ+ψ(αβ)(α̇β̇)iu−

i

+(θ+)2θ̄+ψ̄(αβ)(α̇β̇)iu−
i + (θ+)2(θ̄+)2V (αβ)(α̇β̇)(ij)u−

i u
−
j ,

h++αα̇ =−2iθ+ρθ̄+ρ̇Cαα̇ρρ̇ +(θ̄+)2θ+ραα̇iu−
i +(θ+)2θ̄+ρ̄αα̇iu−

i +(θ+)2(θ̄+)2Sαα̇(ij)u−
i u

−
j ,

h++(αµ)α̇+ = (θ+)2θ̄+
µ̇ P

(αµ)α̇µ̇ +
(
θ̄+
)2
θ+
ν

[
εν(αMµ)α̇ + T α̇(αµν)

]
+ (θ+)2(θ̄+)2χ(αµ)α̇iu−

i ,

h++α(α̇µ̇)+ = ˜(
h++(αµ)α̇+) . (3.6)

The relevant residual gauge freedom is spanned by the following set of parameters

λ(αβ)(α̇β̇) ⇒ a(αβ)(α̇β̇)(x) ,
λαα̇ ⇒ bαα̇(x) ,
λ(µα)α̇+ ⇒ ε(µα)α̇i(x)u+

i + θ̄+α̇n(µα) + θ+ν l
µα)α̇

(ν (x) ,
λ̄α(α̇µ̇)+ ⇒ ε̄α(α̇µ̇)i(x)u+

i + θ+αn(α̇µ̇) + θ̄+ν̇ l
αα̇µ̇)

(ν̇ (x) .

(3.7)

These parameters are identified as:

• a(αβ)(α̇β̇)(x) are local parameters of the spin 3 gauge transformations;

• bαα̇(x) are local parameters of the spin 2 gauge transformations;

• ε(µα)α̇i(x) and ε̄α(α̇µ̇)i(x) are parameters of local spin 3 fermionic symmetry (an analog
of the fermionic local symmetry for spin 2 in (2.26));

• n(µα) and n(α̇µ̇) are parameters of local “Lorentz rotations” (they were present in (2.26)
as well);

• l(νµα)α̇(x) and lα(ν̇α̇µ̇)(x) are new spin 3 analogs of the local “Lorentz rotations”.

Note that the latter two types of parameters have been already used when coming to
the irreducible contents of the bosonic gauge fields (3.4) and (3.5) before attaining the
complete WZ gauge. The bosonic fields Φ(αβ)(α̇β̇)

ρρ̇ , Cαα̇ρρ̇ , and the fermionic ones ψ(αβ)(α̇β̇)i
ρ

(and c.c.) are physical, the remaining fields are auxiliary. Keeping in mind the residual
gauge freedom, we are left with the full set of 104 + 104 off-shell degrees of freedom. On
shell, the multiplet (3,5/2,5/2,2) is retained.

The transformation laws (3.2) imply the following residual bosonic transformation laws:

• Spin 3 sector

δΦ(αγ)(α̇γ̇)
ββ̇

= ∂ββ̇a
(αγ)(α̇γ̇) − 2l αγ)(α̇

(β δ
γ̇)
β̇
− 2l α̇γ̇)(α

(β̇ δ
γ)
β . (3.8)

We decompose the spin 3 field into the irreducible parts as:

Φ(αγ)β(α̇γ̇)β̇ = Φ(αγβ)(α̇γ̇β̇) + Φ(αγβ)(α̇εγ̇)β̇

+ Φ(α(α̇γ̇β̇)εγ)β + Φ(α(α̇εγ̇)β̇εγ)β . (3.9)
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Using the spin 3 Lorentz transformation one can gauge away Φ(αγβ)α̇ and Φα(α̇γ̇β̇),
thus recovering the irreducible field content (3.5):

Φ(αγ)β(α̇γ̇)β̇ = Φ(αγβ)(α̇γ̇β̇) + Φ(α(α̇εγ̇)β̇εγ)β , (3.10)

Φαα̇ = 1
9ε

γβεγ̇β̇Φ(αγ)β(α̇γ̇)β̇ . (3.11)

Residual spin 3 “Lorentz” transformations are determined from preserving the gauge
Φ(αγβ)α̇ = Φα(α̇γ̇β̇) = 0:

δΦ(αγβ)α̇ = 2
3∂(αβ̇a

(β̇
γβ)α̇) − 2l(αγβ)α̇ = 0, ⇒ l(αγβ)α̇ = 1

3∂(αβ̇a
(β̇
γβ)α̇) , (3.12)

δΦα(α̇γ̇β̇) = 2
3∂β(α̇a

(β
γ̇β̇)α) − 2lα(α̇γ̇β̇) = 0, ⇒ lα(α̇γ̇β̇) = 1

3∂β(α̇a
(β
γ̇β̇)α) . (3.13)

For the irreducible pieces in (3.10) we obtain the following transformations

δΦ(αγβ)(α̇γ̇β̇) = ∂(β(β̇aαγ)α̇γ̇) , (3.14)

δΦαβ̇ = 4
9∂

γγ̇a(αγ)(β̇γ̇) = 8
9∂

mamαβ̇ . (3.15)

These are the correct gauge transformation laws for the spin 3 fields.

• Spin 2 sector
The transformation law of the spin 2 field Cαα̇ρρ̇ entering the analytic potential h++αα̇

reads:
δCαα̇ρρ̇ = ∂ρρ̇b

αα̇ − nα̇ρ̇ δαρ + nαρ δ
α̇
ρ̇ . (3.16)

After decomposing this field into the irreducible parts,

Cαβα̇β̇ = C(αβ)(α̇β̇) + C(αβ)εα̇β̇ + C(α̇β̇)εαβ + Cεαβεα̇β̇ , (3.17)

one can gauge away C(αβ) and C(α̇β̇), using local “Lorentz” shifts. The residual
transformations are found from preserving this “physical” gauge:

2δC(αβ) = ∂(αα̇b
α̇
β) + 2nαβ = 0 ⇒ nαβ = −1

2∂(αα̇b
α̇
β) , (3.18)

2δC(α̇β̇) = ∂β(α̇b
β

β̇) − 2nα̇β̇ = 0 ⇒ nα̇β̇ = 1
2∂β(α̇b

β

β̇) . (3.19)

Finally, the spin 2 field is represented as:

Cαβα̇β̇ = C(αβ)(α̇β̇) + Cεαβεα̇β̇ , C = 1
4ε

αβεα̇β̇Cαβα̇β̇ , (3.20)

with the following transformation laws for the constituent fields:

δCαβα̇β̇ = 1
2
(
∂αα̇bββ̇ + ∂ββ̇bαα̇

)
, (3.21)

δC(αβ)(α̇β̇) = ∂(β(β̇bα)α̇), δC = 1
4∂αα̇b

αα̇ . (3.22)

Thus the spin 2 fields have the correct transformation properties under the gauge bαα̇
symmetry.
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• Auxiliary fields
Like in the previous section, the bosonic auxiliary field P (αµ)dotαµ̇ in (3.6) is not inert
under the new spin 3 Lorentz-like transformations

δP (αµ)α̇µ̇ = i∂µ̇ρ l
(ρµα)α̇, δP̄αµ(α̇µ̇) = −i∂µρ̇ lα(ρ̇α̇µ̇) . (3.23)

So we are led to redefine these fields to make them inert through adding proper terms
depending on the spin 3 fields. The expressions with the necessary transformation
laws are as follows:

B(αβ)α̇β̇ = −1
2
{
∂γγ̇Φ(αβγ)(α̇γ̇β̇) − ∂(α(α̇Φβ)β̇) − ∂(αα̇Φβ)β̇

}
,

B̄αβ(α̇β̇) = −1
2
{
∂γγ̇Φ(αβγ)(α̇γ̇β̇) − ∂(α(α̇Φβ)β̇) − ∂α(α̇Φββ̇)

}
,

δB(αβ)α̇β̇ = ∂ρα̇l
(ρ
αβ)β̇ , δB̄αβ(α̇β̇) = ∂αρ̇ l̄

(ρ̇
α̇β̇)β . (3.24)

The sought redefinitions are:

P (αµ)α̇µ̇ = P̃ (αµ)α̇µ̇ + iB(αµ)α̇µ̇, P̄αµ(α̇µ̇) = ˜̄Pαµ(α̇µ̇) − iB̄αµ(α̇µ̇) ,

δP̃ (αµ)α̇µ̇ = δ ˜̄Pαµ(α̇µ̇) = 0 . (3.25)

The component fields Mαα̇ and T α̇(αµν) in (3.6) have non-trivial transformation laws
under the spin 2 gauge group

δMαα̇ = −2
3 i∂

α̇
γ n

(αγ) , δT α̇(αµν) = −i∂(αα̇nµν) , (3.26)

where the induced “Lorentz” parameters n(αγ) are defined in (3.18). So these fields
should also be redefined to make them inert. The redefinition required is as follows

T α̇(αµν) = T̃ α̇(αµν) + iH α̇(αµν) , Mαα̇ = M̃αα̇ + iHαα̇ ,

H α̇(αµν) = ∂
(α
β̇
Cµν)(α̇β̇) , Hαα̇ = ∂αα̇C − 1

3∂ββ̇C
(αβ)(α̇β̇) . (3.27)

3.2 Invariant action

To construct the invariant action for N = 2 spin 3 theory we need to define the negative
charge non-analytic superfields analogous to those appearing in the spin 2 case. These
additional gauge potentials are

h−−(αβ)(α̇β̇), h−−αα̇, h−−(αβ)α̇+, h−−(α̇β̇)α+, h−−(αβ)α̇−, h−−(α̇β̇)α− , (3.28)

and they satisfy the following harmonic equations

D++h−−(αβ)(α̇β̇) −D−−h++(αβ)(α̇β̇) + 4i
[
h−−(αβ)(α̇+θ̄+β̇) − h−−(α̇β̇)(α+θ+β)] = 0 ,

D++h−−αβ̇ −D−−h++αβ̇ − 2i
[
h−−(αβ)β̇+θ+

β − θ̄
+
α̇ h

−−(β̇α̇)α+] = 0 ,

D++h−−(α̇β̇)α+ −D−−h++(α̇β̇)α+ = 0 , D++h−−(αβ)α̇+ −D−−h++(αβ)α̇+ = 0 ,
D++h−−(α̇β̇)α− − h−−(α̇β̇)α+ = 0 , D++h−−(αβ)α̇− − h−−(αβ)α̇+ = 0 . (3.29)
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These equations are covariant under the gauge transformations (3.2), provided that
the negatively charged potentials are transformed as

δλh
−−(αβ)(α̇β̇) = D−−λ(αβ)(α̇β̇) + 4i

[
λ−(αβ)(α̇θ̄−β̇) − λ̄−(α̇β̇)(βθ−α)] ,

δλh
−−αβ̇ = D−−λαβ̇ − 2i

[
λ−(αβ)β̇θ−

β + λ̄−(α̇β̇)αθ̄−
α̇

]
,

δλh
−−(αβ)α̇+ = D−−λ+(αβ)α̇ − λ−(αβ)α̇ ,

δλh
−−(α̇β̇)α+ = D−−λ̄+(α̇β̇)α − λ̄−(α̇β̇)α ,

δλh
−−(αβ)α̇− = D−−λ−(αβ)α̇ , δλh

−−(α̇β̇)α− = D−−λ̄−(α̇β̇)α , (3.30)

with
D++λ−(αβ)α̇ = λ+(αβ)α̇ , D++λ̄−(α̇β̇)α = λ̄+(α̇β̇)α . (3.31)

It is now rather straightforward to check that these harmonic equations are also co-
variant under the following modified rigid N = 2 supersymmetry

δεh
±±(αβ)(α̇β̇) = −4i

[
h±±(αβ)(α̇+ε̄−β̇) − h±±(α̇β̇)(α+ε−β)] ,

δεh
±±αβ̇ = 2i

[
h±±(αβ)β̇+ε−β − ε̄

−
α̇h

±±(α̇β̇)α+]. (3.32)

The passive supersymmetry variations of all other gauge potentials are vanishing, like in
the spin 2 case.

The next step is to define the corresponding non-analytic objects transforming as scalar
superfields under N = 2 supersymmetry

G±±(αβ)(α̇β̇) = h±±(αβ)(α̇β̇)+4i
[
h±±(αβ)(α̇+θ̄−β̇)−h±±(α̇β̇)(α+θ−β)] ,

G±±αβ̇ = h±±αβ̇ − 2i
[
h±±(αβ)β̇+θ−

β − θ̄
−
α̇ h

±±(α̇β̇)α+], (3.33)

δεG
±±(αβ)(α̇β̇) = δεG

±±αβ̇ = 0 , (3.34)
D++G−−(αβ)(α̇β̇)−D−−G++(αβ)(α̇β̇) = 0 , (3.35)

D++G−−αβ̇ −D−−G++αβ̇ = 0. (3.36)

These superfields possess simple gauge transformation laws

δλG
±±(αβ)(α̇β̇) = D±±Λ(αβ)(α̇β̇) , δλG

±±αβ̇ = D±±Λαβ̇ , (3.37)
Λ(αβ)(α̇β̇) = λ(αβ)(α̇β̇) + 4i

[
λ+(αβ)(α̇θ̄−β̇) − λ̄+(α̇β̇)(αθ−β)] , (3.38)

Λαβ̇ = λαβ̇ − 2i
[
λ+(αβ)β̇θ−

β − θ̄
−
α̇ λ̄

+(α̇β̇)α] . (3.39)

Passing through the same technical steps as in section 2.3, it is a matter of direct
calculation to check that the manifestly N = 2 supersymmetric action

S(s=3) =
∫
d4xd8θdu

{
G++(αβ)(α̇β̇)G−−

(αβ)(α̇β̇) + 4G++αβ̇G−−
αβ̇

}
(3.40)

is invariant as well under all gauge transformations and so solves the problem of finding an
invariant superfield action for N = 2 supersymmetric spin 3 theory. The coefficient before
this invariant and its sign can be fixed by those of the spin 3 field component action.
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The relevant pieces of the component action come out from the following parts of
G++(αβ)(α̇β̇) and G++αα̇

G
++(αβ)(α̇β̇)
(Φ,B) = −2iθ+γ θ̄+γ̇Φ(αβ)(α̇β̇)

γγ̇ + 4(θ+)2θ̄+γ̇ θ̄−(α̇B
β̇)(αβ)
γ̇

− 4(θ̄+)2θ+γθ−(αB̄β)(α̇β̇)
γ , (3.41)

G++αα̇
(Φ,B) = −2(θ+)2θ̄+ρ̇θ−

µB
(µα)α̇
ρ̇ − 2(θ̄+)2θ+β θ̄−

ρ̇ B̄
α(ρ̇α̇)
β . (3.42)

Second and third terms in (3.41) and both terms in (3.42) follow from the redefinition (3.25).
The corresponding parts of G−−(αβ)(α̇β̇)

(Φ,B) and G−−αβ̇
(Φ,B) are given in appendix (eqs. (A.4)

and (A.5)). Substituting all this in the superfield action (3.40), we obtain the following
component action for the spin 3 fields

S(s=3) =
∫
d4x

{
Φ(α1α2α3)(α̇1α̇2α̇3)2Φ(α1α2α3)(α̇1α̇2α̇3)

− 3
2Φ(α1α2α3)(α̇1α̇2α̇3)∂α1α̇1∂

ρρ̇Φ(ρα2α3)(ρ̇α̇2α̇3)

+ 3Φ(α1α2α3)(α̇1α̇2α̇3)∂α1α̇1∂α2α̇2Φα3α̇3 −
15
4 Φαα̇2Φαα̇

+ 3
8∂α1α̇1Φα1α̇1∂α2α̇2Φα2α̇2

}
. (3.43)

It is straightforward to check that (3.43) is invariant under the spin 3 gauge
group (3.14), (3.15). The action (3.43) involves fields Φ(α1α2α3)(α̇1α̇2α̇3) and Φαα̇ needed
for the consistent description of spin 3 and coincides with the relevant Fronsdal action. For
spin 2 (which is now a superpartner of the spin 3 and is described by the fields C(αβ)(α̇β̇), C)
also a correct Fronsdal-type action can be derived, details are given in appendix B.

More detailed analysis of the component N = 2 supersymmetric spin 2 and spin 3
actions (including the fermionic contributions) will be presented elsewhere.

4 General case: N = 2 integer spin s theory

The construction described above for spins 2 and 3 can rather directly be extended to an
arbitrary integer spin s. Here we sketch its basic steps, without details.

The set of analytic potentials is formed by the following analytic N = 2 superfields

h++α(s−1)α̇(s−1)(ζ), h++α(s−2)α̇(s−2)(ζ), h++α(s−1)α̇(s−2)+(ζ), h++α̇(s−1)α(s−2)+(ζ), (4.1)

where symbols α(s) and α̇(s) denote totally symmetric combinations of s spinor indices,
α(s) := (α1 . . . αs), α̇(s) := (α̇1 . . . α̇s). The first two potentials are bosonic, the last two are
conjugated fermionic. The corresponding gauge group is spanned by the transformations

δλh
++α(s−1)α̇(s−1) = D++λα(s−1)α̇(s−1) + 4i

[
λ+α(s−1)(α̇(s−2)θ̄+α̇s−1)

+ θ+(αs−1 λ̄+α(s−2))α̇(s−1)],
δλh

++α(s−2)α̇(s−2) = D++λα(s−2)α̇(s−2) − 2i
[
λ+(α(s−2)αs−1)α̇(s−2)θ+

αs−1

+ λ̄+(α̇(s−2)α̇s−1)α(s−2)θ̄+
α̇s−1

]
,

δλh
++α(s−1)α̇(s−2)+ = D++λ+α(s−1)α̇(s−2) ,

δλh
++α̇(s−1)α(s−2)+ = D++λ̄+α̇(s−1)α(s−2) . (4.2)
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These transformations can be used to choose the appropriate WZ gauge, like in the
s = 2 and s = 3 cases, and then to show that the physical multiplet involves spins
(s, s− 1/2, s− 1/2, s− 1).

The next step is to define the appropriate negatively charged potentials

h−−α(s−1)α̇(s−1)(Z), h−−α(s−2)α̇(s−2)(Z) , h−−α(s−1)α̇(s−2)+(Z), h−−α̇(s−1)α(s−2)+(Z)
(4.3)

(the potentials with the charges −3 are not essential, being fully specified by
h−−α(s−1)α̇(s−2)+ and c.c.). These potentials are related to (4.1) by the corresponding
harmonic flatness conditions. Then one finds that these conditions require a non-standard
realization of N = 2 supersymmetry on the sets of potentials introduced. Namely,

δεh
±±α(s−1)α̇(s−1) = −4i

[
h±±α(s−1)(α̇(s−2)+ε̄−α̇s−1) − h±±α̇(s−1)(α(s−2)+ ε−αs−1)] ,

δεh
±±α(s−2)α̇(s−2) = 2i

[
h±±(α(s−2)αs−1)α̇(s−2)+ε−αs−1 + h±±α(s−2)(α̇(s−2)α̇s−1)+ ε̄−α̇s−1

]
(all other potentials have the standard N = 2 superfield “passive” transformation rules,
e.g., δεh±±α(s−1)α̇(s−2)+ = 0).

Next, one constructs N = 2 singlet superfields

G±±α(s−1)α̇(s−1) = h±±α(s−1)α̇(s−1) + 4i
[
h±±α(s−1)(α̇(s−2)+θ̄−α̇s−1)

−h±±α̇(s−1)(α(s−2)+ θ−αs−1)],
G±±α(s−2)α̇(s−2) = h±±α(s−2)α̇(s−2) − 2i

[
h±±(α(s−2)αs−1)α̇(s−2)+θ−

αs−1

+h±±α(s−2)(α̇(s−2)α̇s−1)+ θ̄−
α̇s−1

]
, (4.4)

which are transformed by the gauge group as

δλG
±±α(s−1)α̇(s−1) = D±±Λα(s−1)α̇(s−1) , δλG

±±α(s−2)α̇(s−2) = D±±Λα(s−2)α̇(s−2) ,

where

Λα(s−1)α̇(s−1) = λα(s−1)α̇(s−1) + 4i
[
λ+α(s−1)(α̇(s−2)θ̄−α̇s−1) − λ̄+α̇(s−1)(α(s−2)θ−αs−1)],

Λα(s−2)α̇(s−2) = λα(s−2)α̇(s−2) − 2i
[
λ+(α(s−2)αs−1)α̇(s−2)θ−

αs−1

− θ̄−
α̇s−1 λ̄

+(α̇(s−2)α̇s−1)α(s−2)] . (4.5)

They satisfy the harmonic flatness conditions

D++G−−α(s−1)α̇(s−1) = D−−G++α(s−1)α̇(s−1) ,

D++G−−α(s−2)α̇(s−2) = D−−G++α(s−2)α̇(s−2) .

The invariant action, up to a normalization factor, is written uniformly for any s:

S(s) = (−1)s+1
∫
d4xd8θdu

{
G++α(s−1)α̇(s−1)G−−

α(s−1)α̇(s−1)

+ 4G++α(s−2)α̇(s−2)G−−
α(s−2)α̇(s−2)

}
. (4.6)
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Its N = 2 supersymmetry is manifest, while gauge invariance is checked by bringing the
gauge variation to the form

δλS(s) = 2(−1)s+1
∫
d4xd8θdu

{
D−−Λα(s−1)α̇(s−1)G++

α(s−1)α̇(s−1)

+ 4D−−Λα(s−2)α̇(s−2)G++
α(s−2)α̇(s−2)

}
(4.7)

and further proceeding as in the check of invariance of the actions (2.50) and (3.40). Finally,
one gets δλS(s) = 0.

The component actions can be deduced from (4.6) by means of the same tools as
those used when deriving the component actions for the spin 3 case. In the WZ gauge
the basic bosonic gauge fields are contained in the analytic potentials h++α(s−1)α̇(s−1) and
h++α(s−2)α̇(s−2),

h++α(s−1)α̇(s−1) = −2iθ+αs θ̄+α̇sΦα(s−1)α̇(s−1)
αsα̇s + . . . ,

h++α(s−2)α̇(s−2) = −2iθ+αs−1 θ̄+α̇s−1C
α(s−2)α̇(s−2)
αs−1α̇s−1 + . . . . (4.8)

The residual gauge freedom in the WZ gauge proves to be so powerful that it allows one to
remove from the gauge fields Φα(s−1)α̇(s−1)

αsα̇s and Cα(s−2)α̇(s−2)
αs−1α̇s−1 all the irreducible components

except for {
Φα(s)α̇(s), Φα(s−2)α̇(s−2)}, {

Cα(s−1)α̇(s−1), Cα(s−3)α̇(s−3)} , (4.9)

which are just pairs of tensor fields needed for the consistent off-shell description of the
massless spins s and s− 1 in the Fronsdal approach.8 Their correct gauge transforma-
tion laws can easily be derived from the superfield ones on the pattern of the previously
considered N = 2 supersymmetric spin s = 2 and spin s = 3 models.

The gauge freedom allowing to gauge away all the “white” (SU(2) singlet) bosonic
components from the basic gauge super potentials beyond those in (4.9) is contained in the
following pieces of the spinor gauge superfunctions λ+α(s−1)α̇(s−2), λ̄+α(s−2)α̇(s−1):

λ+α(s−1)α̇(s−2) ⇒ ωα(s−1)βα̇(s−2)θ+
β + ωα(s−1)α̇(s−2)β̇ θ̄+

β̇
, (and c.c.) . (4.10)

5 Summary and outlook

In this paper we presented an off-shell N = 2 supersymmetric extension of the Fronsdal
theory [6] for integer spins in terms of unconstrained N = 2 superfields. For any spin
s ≥ 2 the relevant off-shell multiplet is described by a triad of unconstrained harmonic
analytic superfields h++α(s−1)α̇(s−1)(ζ), h++α(s−2)α̇(s−2)(ζ) and h++α(s−1)α̇(s−2)+(ζ) (and
c.c.), which are subjected to gauge transformations with the analytic superfield parame-
ters. The on-shell content of the spin s multiplet is (s, s− 1/2, s− 1/2, s− 1).9 For these

8Since the on-shell N = 2 supermultiplet contains two integer spins, s and s− 1, after reductions to
components we naturally obtain a sum of Fronsdal actions for spins s and s− 1.

9One can include the spin s = 1 into this hierarchy as well: it is described by a single analytic superfield
h++5 and encompasses the Abelian gauge N = 2 multiplet (spins (1,1/2,1/2,0) on shell). Note that the
off-shell contents of N = 2 multiplets with s = 1,2,3 as the higher spins amount to ns = 2× 8

[
s2+(s− 1)2]

essential degrees of freedom. It would be interesting to derive this universal formula for any spin s from a
purely group-theoretical consideration.
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superfields we found the N = 2 supersymmetric and gauge invariant superfield actions
which surprisingly have the universal form (4.6). For s = 2 and s = 3 we have explicitly
shown that this off-shell superfield action yields the correct gauge invariant actions for the
spin s and s− 1 components of the relevant multiplets.

These findings raise a lot of problems we are going to address in the nearest future.

• A natural next step would be construction of an analogous N = 2 supersymmetric
extensions of theories with the half-integer highest spin [7];

• We would like also to learn how the harmonic superspace construction could be
extended to AdS (and more general conformally-flat) space-time backgrounds;

• It is of interest to explore possible relationships with the N = 2 superconformal
higher spins which recently received some attention [18, 22–24]. N = 2 conformal
supergravity also admits a geometric formulation in HSS [3, 52], so it is natural
to expect that there exist some higher-spin HSS models generalizing the linearized
version of such a formulation;

• There exist a few non-equivalent off-shell versions of Einstein N = 2 SG related
to different choices of the superconformal compensator for N = 2 Weyl multiplet.
Our formulation of N = 2 higher spins is built on a generalization of the minimal
version. It would be interesting to construct analogous off-shell formulations (if exist),
proceeding from the linearizations of other versions of Einstein N = 2 SG;

• As usual, the most difficult problem would be constructing a self-consistent interact-
ing theory with the free actions presented here as a point of departure, and finding
out appropriate deformations of the higher-spin superfield gauge symmetries. As a
first step towards this goal one could attempt to couple the theory to full N = 2
Einstein supergravity by replacing the flat harmonic derivatives D±± altogether by
the covariantized ones D±±, though for the time being it is unclear how to generalize
the action (4.6). Anyway, the interactions will involve the same off-shell analytic
harmonic superfields as the free theory discussed here. It is highly likely that the
interaction case will require considering at once an infinite sequence of such actions
(with all spins), in accord with the well-known Fradkin-Vasiliev arguments [53, 54];

• A related problem is to couple the higher N = 2 spins to the hypermultiplet matter to
which all other matter N = 2 multiplets are related by the proper superfield duality
transformations [3];

• It is known that the 4D,N = 4 super Yang-Mills theory can be formulated in terms
of 4D,N = 2 harmonic superfields as a theory of coupled N = 2 vector multiplet
and hypermultiplet [3]. Based on this analogy, one can hope that it will be possible
to construct N = 4 supersymmetric higher-spin theory in terms of proper N = 2
harmonic superfields;

• At last, it is interesting to work out an analogous harmonic superspace setting for
higher spins with extended supersymmetry in other dimensions (e.g., in 6D case).
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The above formulation suggests the following geometric conjecture. As was already
pointed out, the basic analytic potentials of the s = 2 case originate from the analytic viel-
bein of N = 2 supergravity in HSS which covariantizes the analyticity-preserving harmonic
derivative D++ and their index structure matches with that of the derivatives ∂

∂xµµ̇
and

∂
∂θµ,µ̇

inside D++. Then it is natural to assume that the higher-spin analogs of these poten-
tials could be associated with some non-trivial extensions of the standard superspace by new
tensorial and spinorial coordinates of the type x(αβ)(α̇β̇), θ+(αβ)α̇, θ̄+(α̇β̇)α (and their multi-
index analogs). In the complete hypothetical supergravity-type theory, the gauge functions
like λ(αβ)(α̇β̇) , λ(αβ)α̇ could geometrically appear as local shifts of these new coordinates.
Also, the plenty of spinor indices α, β, α̇, β̇ . . . which characterize the basic objects of the
theories considered could seemingly be hidden by introducing the commuting twistor-like
spinorial variables τα, τ̄α̇ and contracting the spinor indices with them. Adding such extra
variables could essentially facilitate dealing with various objects of the N = 2 higher-spin
theories constructed and their various generalizations, even though the geometric meaning
of such variables within the present context is as yet unclear.
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A Some technical issues

Spin 2 sector. Here we present the negatively charged potentials for G++αα̇
(Φ) and G++5

(Φ)
defined in eqs. (2.62) and (2.63). The expressions for them are as follows

G−−αα̇
(Φ) = −2iθ−β θ̄−β̇Φαα̇

ββ̇
+ 2(θ−)2θ̄−(ρ̇θ̄+β̇)∂βρ̇Φαα̇

ββ̇
− 2(θ̄−)2θ−(ρθ+β)∂β̇ρΦαα̇

ββ̇

+ 4(θ−)2θ̄+α̇θ̄−β̇Bα
β̇
− 4(θ̄−)2θ+βθ−αBα̇

β − 4i(θ−)2(θ̄−)2θ+ρθ̄+ρ̇Gαα̇ρρ̇ , (A.1)

G−−5
(Φ) = 2(θ−)2θ̄−ρ̇θ+

µB
µ
ρ̇ + i(θ+)2(θ̄−)2(θ−)2∂ρρ̇B

ρρ̇

+2 (θ̄−)2θ−β θ̄+
ρ̇ B

ρ̇
β − i(θ̄

+)2(θ̄−)2(θ−)2∂ρρ̇B
ρρ̇ . (A.2)

In eq. (A.1) the following notation was used

Gαβα̇β̇ = R(αβ)(α̇β̇) − εαβεα̇β̇R (A.3)

and

R(αβ)(α̇β̇) = 1
2∂(α(α̇∂

σσ̇Φβ)σβ̇)σ̇ −
1
22Φ(αβ)(α̇β̇) −

1
2∂(α(α̇∂β)β̇)Φ ,

R = 1
8∂

αα̇∂ββ̇Φ(αβ)(α̇β̇) −
3
42Φ .
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The object Gαβα̇β̇ is just the linearized form of Einstein tensor, R(αβ)(α̇β̇) and R are
related to the linearized scalar curvature R and Ricci tensor Rmn in the tensor notation as:

R(αβ)(α̇β̇) +R εαβεα̇β̇ = (σm)αα̇(σn)ββ̇R(mn) , R = 1
2R ,

R = ∂m∂nhmn −2h , Rmn = 1
2(∂k∂mhnk + ∂k∂nhmk −2hmn − ∂m∂nh),

where
hmn = 1

4(σ̃m)α̇α(σ̃n)β̇β
[
Φ(αβ)(α̇β̇) + Φεαβεα̇β̇ ].

It is straightforward to check that the expressions (A.1) and (A.2), together with (2.62)
and (2.63), solve the harmonic flatness conditions (2.42).

Spin 3 sector. Here we present the negatively charged potentials for G++(αβ)(α̇β̇)
(Φ,B) and

G++αα̇
(Φ,B) defined in eqs. (3.41) and (3.42). The expressions for them are as follows

G
−−(αβ)(α̇β̇)
(Φ,B) = −2iθ−β θ̄−β̇Φ(αβ)(α̇β̇)

ββ̇

+2(θ−)2θ̄−(ρ̇θ̄+β̇)∂βρ̇Φ(αβ)(α̇β̇)
ββ̇

− 2(θ̄−)2θ−(ρθ+β)∂β̇ρΦ(αβ)(α̇β̇)
ββ̇

+ 4(θ−)2θ̄+(α̇θ̄−ρ̇B
β̇)(αβ)
ρ̇ − 4(θ̄−)2θ+ρθ−(αB̄β)(α̇β̇)

ρ

−3i(θ−)2(θ̄−)2θ+ρθ̄+ρ̇G(αβ)(α̇β̇)
ρρ̇ , (A.4)

G−−αα̇
(Φ,B) = 2(θ−)2θ̄−ρ̇θ+

µB
(µα)α̇
ρ̇ + i(θ+)2(θ̄−)2(θ−)2∂ρρ̇B

(ρα)ρ̇α̇

+2 (θ̄−)2θ−β θ̄+
ρ̇ B̄

α(α̇ρ̇)
β − i(θ̄+)2(θ̄−)2(θ−)2∂ρρ̇B̄

ρα(ρ̇α̇) . (A.5)

In eq. (A.4) the following notation was used:

G(α1α2)α3(α̇1α̇2)α̇3 = R(α1α2α3)(α̇1α̇2α̇3) −
4
9R(α1(α̇1εα̇2)β̇εα2)β (A.6)

and

Rα1α̇1 = ∂α2α̇2∂α3α̇3Φ(α1α2α3)(α̇1α̇2α̇3) −
1
4∂α1α̇1∂

α2α̇2Φα2α̇2 −
5
22Φα1α̇1 , (A.7)

R(α1α2α3)(α̇1α̇2α̇3) = ∂(α1(α̇1∂
ρρ̇Φα2α3)ρα̇2α̇3)ρ̇ −

2
32Φ(α1α2α3)(α̇1α̇2α̇3)

− ∂(α1(α̇1∂α2α̇2Φα3)α̇3) . (A.8)

B Spin 2 sector of N = 2 spin 3 theory

Here we present the relevant pieces of the analytic gauge potential in the spin 2 sector
of N = 2 spin 3 theory and the corresponding parts of the negatively charged potentials.
Using them, we derive the component form of the superfield action (3.40) in the spin 2
sector.

As a consequence of the redefinition of (3.27) and relations (3.33) we have in the spin
2 sector:

G
++(αβ)(α̇β̇)
(s=2) = −4(θ̄+)2θ+

ρ θ̄
−(α̇H β̇)ρ(αβ) + 4(θ+)2θ̄+

ρ̇ θ
−(αH̄β)ρ̇(α̇β̇) , (B.1)

G++αα̇
(s=2) = −2iθ+ρθ̄+ρ̇Cαα̇ρρ̇ + 2(θ+)2θ̄+

ρ̇ θ̄
−
µ̇ H̄

αρ̇(µ̇α̇) + 2(θ̄+)2θ+
ρ θ

−
µH

α̇ρ(αµ) . (B.2)
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The negatively charged potentials can be obtained as a solution of eqs. (3.35)
and (3.36):

G
−−(αβ)(α̇β̇)
(s=2) = −4(θ̄−)2θ−

ρ θ̄
+(α̇H β̇)ρ(αβ) + 4(θ−)2θ̄−

ρ̇ θ
+(αH̄β)ρ̇(α̇β̇) + . . . , (B.3)

G−−αα̇
(s=2) = −2iθ−ρθ̄−ρ̇Cαα̇ρρ̇ + 2(θ−)2θ̄−(ρ̇θ̄+β̇)∂βρ̇C

αα̇
ββ̇
− 2(θ̄−)2θ−(ρθ+β)∂β̇ρC

αα̇
ββ̇

(B.4)

+ 2(θ−)2θ̄+
ρ̇ θ̄

−
µ̇ H̄

αρ̇(µ̇α̇) + 2(θ̄−)2θ+
ρ θ

−
µH

α̇ρ(µα) + 4i(θ−)2(θ̄−)2θ+
ρ θ̄

+
ρ̇ G

αρα̇ρ̇ .

Here, Gαρα̇ρ̇ is the linearized form of Einstein tensor (A.3). We also used the notations:

H̄αρ̇(α̇µ̇) := H̄α(ρ̇α̇µ̇) + ερ̇(α̇H̄αµ̇) , H α̇ρ(µα) := H α̇(ρµα) + ερ(αH α̇µ) ,

H̄α(ρ̇α̇µ̇) = − ∂(ρ̇
β C

α̇µ̇)(αβ) , H α̇(ρµα) = ∂
(α
β̇
Cµρ)(α̇β̇) ,

Hµµ̇ = ∂µµ̇C − 1
3∂ρρ̇C

(µρ)(µ̇ρ̇) = −H̄µµ̇ .

Substituting all this in the superfield action (3.40), we obtain the spin 2 action of the
N = 2 spin 3 theory

S(s=2) = 16
∫
d4x Cαβα̇β̇Gαβα̇β̇ = −8

∫
d4x

[
C(αβ)(α̇β̇)2C(αβ)(α̇β̇)

− C(αβ)(α̇β̇)∂αα̇∂
ρρ̇C(ρβ)(ρ̇β̇) + 2C∂αα̇∂ββ̇C(αβ)(α̇β̇) − 6C2C

]
. (B.5)

This action is the linearized Einstein action and, up to a normalization factor, coincides
with the action corresponding to the Lagrangian (2.64).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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