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Abstract

For 6D, N = (1, 1) SYM theory formulated in N = (1, 0) harmonic superspace as a theory of interacting 
gauge multiplet and hypermultiplet we construct the N = (1, 1) supersymmetric Heisenberg-Euler-type 
superfield effective action. The effective action is computed for the slowly varying on-shell background 
fields and involves, in the bosonic sector, all powers of a constant abelian strength.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The low-energy effective action in quantum field theory is a functional of the slowly varying 
strengths of the vector gauge fields and the matter fields (see e.g., [1]). It provides quantum 
corrections to the “microscopic” action of given model. The effective action can serve as a bridge 
between superstring theory and supersymmetric gauge theory. On the one hand, some kind of 
effective action can be evaluated in string theory; on the other hand, it can be calculated in the 
framework of the field theory. As a result, there emerges a principal possibility to study the low-
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energy effects in string theory by field theory methods (see [2] for review of the effective action 
in string theory).

The first example of effective action for a quantum field in a constant external electromagnetic 
field was constructed by Heisenberg and Euler in the pioneer paper [3]. Later, it was reformu-
lated in a covariant way by Schwinger [4]. The Heisenberg-Euler effective action provides the 
quantum corrections to the Maxwell equations involving all powers of the field strength. The 
remarkable feature of the Heisenberg-Euler effective action is its non-perturbative dependence 
on the coupling constant. Later on, the Heisenberg-Euler effective action was computed in one-
and two-loop approximations in different field theory models and employed for studying their 
various properties, such as quantum corrections to the classical equations of motion, particle cre-
ation in external fields, finding the low-energy amplitudes, etc (see, e.g., [5] for a general review, 
and [6], [7] for a review of some supersymmetric applications).

In our previous work [8] we have computed the leading low-energy contribution to the one-
loop effective action of the six-dimensional N = (1, 1) SYM theory in the harmonic superspace 
approach.1 The contributions to effective action we have found include, in the bosonic sector, 
the leading terms of the fourth order in the abelian gauge field strength FMN . Such an effective 
action is in a correspondence with the massless gluon amplitudes in 6D, N = (1, 1) SYM theory 
and is related to the tree-level amplitudes of the massless string modes in the double-scaled little 
string theory [10], [11] (see [12], [13] for a review of little strings).2

The present paper is a natural continuation of [8]. We calculate the total superfield Heisenberg-
Euler-type effective action for N = (1, 1) SYM theory. This effective action can hopefully be 
relevant to the little string theory and admit an equivalent formulation within its context.

Like in our previous publications, we deal with the six-dimensional N = (1, 1) supersymmet-
ric gauge theory formulated in N = (1, 0) harmonic superspace [17], [18], [19] (for the harmonic 
superspace approach, see [20], [21]). The theory is quantized in the framework of the harmonic 
superfield background method which was originally developed for 4D, N = 2 SYM theories in 
[22], [23], [24]3 and then generalized to 6D, N = (1, 0) gauge theories in [8], [25], [26], [27].

Note that 6D, N = (1, 1) SYM theory is non-renormalizable by power counting. However, 
it was found that this theory is on-shell finite at one and two loops [28], [29], [30], [31], [32], 
[33], [34], [35]. Recently, the aspects of renormalizability of the theory under consideration were 
studied by harmonic superspace techniques. It was shown that there is a gauge choice at which the 
one-loop divergences are completely canceled off shell [25], [26], [27]. Some two-loop harmonic 
supergraphs are also finite [36].4 These results guarantee that the one-loop effective action for 
the background fields satisfying the classical equations of motions is finite.

The paper is organized as follows. In Section 2 we recall the formulation of the six-
dimensional N = (1, 1) SYM theory in terms of interacting N = (1, 0) gauge multiplet and 
hypermultiplet. Assuming that the hypermultiplet is in the adjoint representation of gauge group, 
we gain an additional implicit N = (0, 1) supersymmetry and, as a result, obtain the complete 
N = (1, 1) supersymmetric gauge theory. Then, in Section 3, we formulate the one-loop effec-
tive action of the theory in the framework of the superfield background method. The effective 

1 These results were recently confirmed by the component calculations in [9].
2 The relationships of the 6D, N = (1, 1) SYM theory with the low-energy dynamics of D5 branes are discussed in 

[14], [15], [16].
3 Review of various applications of the background harmonic superfields for studying the effective actions of 4D, N =

2, 4 SYM theories was given in [6], [7].
4 Gauge dependence of the one-loop divergences was studied in [37].



I.L. Buchbinder et al. / Nuclear Physics B 954 (2020) 114995 3
action constructed in this way depends on all fields of N = (1, 1) gauge multiplet. We restrict 
our consideration to the slowly varying background superfields which are solution of the clas-
sical equations of motion, since such an approximation suffices for finding out the low-energy 
effective action. Section 4 is devoted to deriving the complete one-loop Heisenberg-Euler-type 
superfield effective action. We follow the 6D, N = (1, 0) harmonic superspace version of the 
procedure developed in [38], [39], construct the superfield heat kernel for the Green function 
of the gauge multiplet and find the explicit expression for the Green function in the coincident-
points limit. This expression directly yields the low-energy effective action. Section 5 contains a 
brief summary of our results and a list of possible further studies. In Appendix we give the defi-
nition and outline the basic properties of the parallel displacement operator [39] in the harmonic 
superspace. This operator is of need while constructing the heat kernel for the Green function of 
gauge multiplet.

2. The model and conventions

We formulate the 6D, N = (1, 1) SYM theory in terms of the gauge multiplet V ++ and 
hypermultiplet q+

A .5 Both these harmonic superfields satisfy the Grassmann analyticity condi-
tions D+

a V ++ = 0 and D+
a q+

A = 0, where the spinor derivative in the analytic basis [21] reads 
D+

a = ∂
∂θ−a . The superfield action of N = (1, 1) SYM theory is written as a sum of the actions 

for the gauge multiplet and for the hypermultiplet

S0[V ++, q+] = 1

f2

{ ∞∑
n=2

(−i)n

n
tr

∫
d14z du1 . . . dun

V ++(z, u1) . . . V ++(z, un)

(u+
1 u+

2 ) . . . (u+
n u+

1 )

−1

2
tr

∫
dζ (−4) q+A∇++q+

A

}
, (2.1)

where f is a dimensionful coupling constant ([f] = −1). We include the integration over harmon-
ics into the integration measure over the analytic subspace, dζ (−4) = d6x(an) du (D−)4. In the 
action (2.1) the hypermultiplet is minimally coupled with the gauge multiplet by means of the 
covariant harmonic derivative ∇++,

∇++q+
A = D++q+

A + i[V ++, q+
A ] . (2.2)

The action (2.1) is invariant under the infinitesimal gauge transformations

δV ++ = −∇++�, δq+
A = i[�,q+

A ] , (2.3)

where �(ζ, u) = �̃(ζ, u) is a real analytic gauge parameter.
We also introduce the non-analytic superfield V −− as a solution of the zero curvature condi-

tion [21]

D++V −− − D−−V ++ + i[V ++,V −−] = 0 , (2.4)

and define one more covariant harmonic derivative ∇−− = D−− + iV −−. Using the superfield 
V −− we construct the N = (1, 0) gauge superfield strength

5 The Pauli-Gürsey indices [21] are raised and lowered by εAB : q̃+
A

≡ q+A = εABqB , A, B = 1, 2 and ε21 =
−ε12 = 1.
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W+a = − i

6
εabcdD+

b D+
c D+

d V −− (2.5)

with the useful off-shell properties

∇++W+a = ∇−−W−a = 0 , W−a = ∇−−W+a . (2.6)

Let us introduce an analytic superfield F++,

F++ = (D+)4V −− , D+
a F++ = ∇++F++ = 0 , (2.7)

and evaluate the classical equations of motion corresponding to the action (2.1)

F++ + 1
2 [q+A,q+

A ] = 0 , ∇++ q+
A = 0 . (2.8)

We assume that both V ++ and q+A superfields take values in the adjoint representation of the 
gauge group. Hence the action (2.1) possesses the extra implicit N = (0, 1) supersymmetry,

δ0V
++ = ε+Aq+

A , δ0q
+A = −i(D+)4(ε−

AV −−) , ε±
A = εaAθ±a , (2.9)

which completes the manifest N = (1, 0) supersymmetry to N = (1, 1). It is convenient to use 
the following representation for the variation δ0q

+A

δ0q
+
A = −εaA(θ−aF++ − W+a), (2.10)

which is expressed through the superfield strengths F++ and W+
a .

3. One-loop effective action in the background superfield method

Let us apply the background superfield method to the six-dimensional SYM theory.6 Follow-
ing to the method we split the superfields V ++, q+ into the sum of the “background” superfields 
V ++, Q+ and the “quantum” ones v++, q+,

V ++ → V++ + fv++, q+
A → Q+

A + fq+
A . (3.1)

Then we have to expand the action in a power series with respect to the quantum fields. The 
one-loop quantum correction 	(1) to the classical action for the model (2.1) is given by

ei	(1)[V++,Q+] = Det1/2 


�
∫

DvDq DbDcDϕ eiS2[v++,q+,b,c,ϕ,V++,Q+] , (3.2)

where

S2 = Sgh − 1

2
tr

∫
dζ (−4) v++ 


� v++ − 1

2
tr

∫
dζ (−4) q+A∇++q+

A

− i

2
tr

∫
dζ (−4)

{
Q+A[v++, q+

A ] + q+A[v++,Q+
A]

}
, (3.3)

Sgh = tr
∫

dζ (−4) b(∇++)2c + 1

2
tr

∫
dζ (−4) ϕ(∇++)2ϕ . (3.4)

The action for ghosts superfields Sgh (3.4) involves the actions for the Faddeev-Popov ghosts 

b and c and also for the Nielsen-Kallosh ghost ϕ. The covariantly-analytic d’Alembertian 



� is 

6 The background superfield method for 4D, N = 2 gauge theories in harmonic superspace was worked out in [22]
and generalized for six-dimensional gauge theory in N = (1, 0) harmonic superspace in the works [25], [26], [27].
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defined as 



�= 1
2 (D+)4(∇−−)2, where the harmonic covariant derivative ∇−− = D−− + iV−−

contains the background superfield V−−. While acting on an analytic superfield, the operator 



�
is given by




�= ηMN∇M∇N + W+a∇−
a + F++∇−− − 1

2
(∇−−F++) , (3.5)

where ηMN = diag(1, −1, −1, −1, −1, −1) is the six-dimensional Minkowski metric, M, N =
0, .., 5, and ∇M = ∂M + iAM is the background-dependent vector supercovariant derivative (see 
[19] for details).

The action S2 (3.3) contains terms with mixed quantum superfields v++ and q+. For further 
use, we diagonalize this quadratic form by means of the special substitution of the quantum 
hypermultiplet variables in the path integral (3.2), such that it removes the mixed terms,

q+
A (1) = h+

A(1) − i

∫
dζ

(−4)
2 G(1,1)(1|2)A

B [v++(2),Q+
B(2)] , (3.6)

with h+
n being a set of new independent quantum superfields. It is evident that the Jacobian of the 

variable change (3.6) is equal to one. Here G(1,1)(ζ1, u1|ζ2, u2)A
B =

i〈0|Tq+
A (ζ1, u1)q

+B(ζ2, u2)|0〉 is the superfield hypermultiplet Green function in the τ -frame. 
This Green function is analytic with respect to its both arguments and satisfies the equation

∇++
1 G(1,1)(1|2)A

B = δA
Bδ

(3,1)

A (1|2) . (3.7)

In the τ -frame the Green function can be written in the form G(1,1)(1|2)A
B = δA

BG(1,1)(1|2), 
where

G(1,1)(1|2) = (∇+
1 )4(∇+

2 )4




�1

δ14(z1 − z2)

(u+
1 u+

2 )3
. (3.8)

Here δ(3,1)
A (1|2) is the covariantly-analytic delta-function.

After performing the shift (3.6), the quadratic part of the action S2 (3.3) splits into few terms, 
each being bilinear in quantum superfields:

S2 = Sv
2 − tr

∫
dζ (−4) h+A∇++h+

A

+tr
∫

dζ (−4) b(∇++)2c + 1

2
tr

∫
dζ (−4) ϕ(∇++)2ϕ (3.9)

Sv
2 = 1

2
tr

∫
dζ

(−4)
1 dζ

(−4)
2 v++

1

{ 


� δ
(3,1)
A (1|2) − Q+A(1)G(1,1)(1|2)Q+

A(2)
}
v++

2 . (3.10)

In the action (3.2) the background superfields V++ and Q+ are analytic but unconstrained 
otherwise. The gauge group of the theory (2.1) is assumed to be SU(N). For the further consid-
eration, we will also assume that the background fields V++ and Q+ align in a fixed direction in 
the Cartan subalgebra of su(N)

V++ = V ++(ζ, u)H , Q+ = Q+(ζ, u)H , (3.11)
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where H ia a fixed generator in the Cartan subalgebra generating some abelian subgroup U(1).7

Our choice of the background corresponds to the spontaneous symmetry breaking SU(N) →
SU(N − 1) × U(1).

The classical equations of motions (2.8) for the background superfields V ++ and � are free

F++ = 0 , D++Q+
A = 0 . (3.12)

In that follows we assume that the background superfields solve the classical equation of motion 
(3.12). We will also assume that the background is slowly varying in space-time, i.e.,

∂MW+a 	 0 , ∂MQ+
A 	 0 . (3.13)

Thus we end up with abelian background analytic superfields V ++ and Q+
A , which satisfy the 

classical equation of motion (3.12) and the conditions (3.13). Under these assertions the gauge 
superfield strength W+a is analytic,8 D+

a W+b = δb
aF++ = 0. For further analysis it is convenient 

to use the N = (0, 1) transformation for gauge superfield strength W+a [19]. In the case of the 
slowly varying abelian on-shell background superfields the hidden N = (0, 1) supersymmetry 
transformations have a simple form,

δQ+
A = εaAW+a δW+a = 0 . (3.14)

We choose the Cartan-Weyl basis for the SU(N) gauge group generators, so that the quantum 
superfield v++ has the decomposition

v++ = v++
i Hi + v++

α Eα , i = 1, ..,N − 1, α = 1, ..,N(N − 1) , (3.15)

where Eα is the generator corresponding to the root α normalized as tr (EαE−β) = δαβ and Hi
are the Cartan subalgebra generators, [Hi, Eα] = αHi

Eα . In this case the background covariant 
d’Alembertian (3.5) under the conditions (3.12) acts on the quantum superfield v++ as




� v++ = 1

2
(D+)4

{
(D−−)2v++ + iαH D−−V −−v++

α Eα

+iαH V −−D−−v++
α Eα − α2

H (V −−)2v++
α Eα

}
(3.16)

= 


�H v++
α Eα + ∂M∂M v++

i Hi , (3.17)

where we have introduced the operator



�H := ∇ab∇ab + αH W+aD−
a . (3.18)

The one-loop effective action (3.2) with the action S2 (3.9) for the background superfields 
V ++ and Q+ subjected to the conditions (3.12) and (3.13) thus reads

	(1) = i

2
Tr (2,2) ln

( 


�H −α2
H Q+AG(1,1)Q+

A

)
− i

2
Tr (4,0) ln




�H . (3.19)

The first term in the expression (3.19) is the contribution from the gauge multiplet (3.9), while 

the second one comes from Det1/2 


� in (3.2). The contributions from the Faddeev-Popov and 
Nielsen-Kallosh ghosts are canceled by the contribution from quantum hypermultiplet.

7 We denote the H component of V++ by the same letter V ++ as the original non-abelian harmonic connection, with 
the hope that this will not create a misunderstanding. The same concerns the abelian superfield strength W+a .

8 In general this is not true and F++ 
= 0.
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We use the standard definition for the functional trace over harmonic superspace in (3.19)

Tr (q,4−q)O = tr
∫

dζ
(−4)
1 dζ

(−4)
2 δ

(q,4−q)

A (1|2)O(q,4−q)(1|2) .

Here δ(q,4−q)

A (1|2) is an analytic delta-function [21] and O(q,4−q)(ζ1, u1|ζ2, u2) is the kernel of 
an operator acting in the space of analytic superfields with the harmonic U(1) charge q .

As the next step, we rewrite the contribution from Det1/2 


� as the functional integral over a 
zero-charge analytic superfield σ with the action

−1

2
tr

∫
dζ (−4)σ (∇++

H )2 


�H σ , (3.20)

where ∇++
H = D++ + iαH V ++. Then we divide the superfield v++ into the two orthogonal 

projections (see the reviews [6], [7])

v++ = v++
T + ∇++

H ξ , ∇++
H v++

T = 0 . (3.21)

The transversal component v++
T of the superfield v++ is defined as

v++
T (1) =

∫
dζ

(−4)
2 �

(2,2)
T (1|2)v++

2 , (3.22)

where �(2,2)
T (ζ1, u1; ζ2, u2) is the projector on the space of covariantly analytic transverse super-

fields. After substitution of v++ (3.21) in the quadratic part of the action for the gauge multiplet 
(3.10) we obtain an additional contribution from the bosonic superfield ξ ,

1

2
tr

∫
dζ (−4) ξ(∇++

H )2 


�H ξ. (3.23)

Note that all mixed terms vanish due to the properties ∇++
H v++

T = 0 and Q+AQ+
A = 0.

The contribution from the superfields ξ and σ cancel each other in the one-loop effective 
action and finally we obtain

	(1) = i

2
Tr T ln

( 


�H −α2
H Q+AG(1,1)Q+

A

)
, (3.24)

where trace is over the space of analytic superfields v++
T constrained by the condition 

∇++
H v++

T = 0.
Let us consider the quadratic action which produces the effective action (3.24),

S(2) = 1

2
tr

∫
dζ

(−4)
1 dζ

(−4)
2 v++

T (1)
{ 


�H δ
(3,1)
A (1|2) − α2

H Q+A(1)G(1,1)(1|2)Q+
A(2)

}
v++

T (2) .

First of all we study the non-local term Q+A(1)G(1,1)(1|2)Q+
A(2) in this expression in the coin-

cident harmonic points (u2 → u1) limit. We rewrite the Green function G(1,1) as follows [40]

G(1,1)(1|2) = (D+
1 )4




�

{
(D−

1 )4(u+
1 u+

2 ) − �−−
1 (u−

1 u+
2 )+ 


�
(u−

1 u+
2 )2

(u+
1 u+

2 )

}
δ14(z1 − z2), (3.25)

where �−− = i∇ab∇−
a ∇−

b −W−a∇−
a + 1

4 (∇−
a W−a). According to its definition (3.8), the Green 

function G(1,1)(1|2) is analytic with respect to its both arguments. The representation (3.25)
preserves the analyticity in the second argument, though in some implicit way (see, e.g., [40]).
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The third term in (3.25) is singular in the u2 → u1 limit. To avoid the singularity, we expand 
Q+

A(2) over harmonics using the property Q+
A(2) = (u+

1 u+
2 )Q−

A(1) − (u−
1 u+

2 )Q+
A(1) [40] and 

reconstruct the full integration measure by taking off the (D+
1 )4 factor from Green function in 

(3.25). We obtain the non-singular expression

−α2
H

2
tr

∫
d14z1dζ

(−4)
2 du1 v++

T (1)v++
T (2)Q+AQ−

A(1)(u−
1 u+

2 )2δ14(z1 − z2) + . . . ,

(3.26)

where dots stand for the rest of terms coming from the expansion of Green function G(1,1)(1|2) in 
(3.25). These terms are proportional to (u+

1 u+
2 ) and vanish in the effective action for the on-shell 

background due to property (u+
1 u+

2 )|2→1 = 0 [21].
The combination Q+AQ−

A is a gauge invariant real superfield. However, the superfield 
Q+AQ−

A is not analytic and only the full expression (3.26) preserves the analyticity. For fur-
ther consideration it will be convenient to replace the background hypermultiplet Q+

A by the 
analytic omega-hypermultiplet �, using the correspondence [21]

Q+
A = u+

A� − u−
AD++�. (3.27)

The N = (0, 1) supersymmetry transformation of Q+
A defined in (3.14) implies the following 

transformation law for the superfield �:

δ� = ε−
a W+a , δ(D++�) = ε+

a W+a , δW+a = 0 . (3.28)

The on-shell condition (3.12) for Q+
A and the definition (3.27) give rise to the equation of motion 

for the � hypermultiplet in the form

(D++)2� = 0 . (3.29)

Now let us discuss the possible structure of effective action (3.24) after passing from the back-
ground Q+

A hypermultiplet to the � hypermultiplet by eq. (3.27). We assume that the background 
superfields satisfy the classical equations of motion and slowly vary in space-time. As shown in 
[8], the hidden N = (0, 1) supersymmetry severely restricts the possible structure of the effec-
tive action (3.24). We consider the analytic contributions to the effective action which respect the 
implicit N = (0, 1) supersymmetry (3.28) and are local in harmonic superspace. Thus for 	(1)

we should have the following general expression:

	(1) =
∫

dζ (−4) (W+)4F(�,D−
a W+b) , (3.30)

where F(�, D−
a W+b) is a real analytic function with zero harmonic U(1) charge. Here we have 

to emphasize that within our approximation the function F can depend only on the background 
superfield � and D−

a W+b . Indeed, including, e.g., the contributions with harmonic derivative 
D++ of superfield � will amount to the necessity to compensate the extra harmonic charge +2. 
One can accomplish this, acting on D++� by the spinor derivatives with negative charge, i.e. by 
passing to D−

a D−
b D++�. Moreover, such contributions are analytic in the constant background 

approximation which we use. But the covariant d’Alembertian (3.18) includes the operator 
D−

a multiplied by the background superfield strength W+a . Thus all contributions of the kind 
D−

a D−
b D++� have to contain W+a and so they immediately vanish due to the presence of the 

maximal power of (W+)4 in the integrand of (3.30). Also we exclude from the consideration 
all contributions containing D−−D++�. Such terms are not analytical and do not contribute to 
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the effective action. So in that follows we take into account only the contributions having no 
harmonic derivatives of the background superfield �.

Keeping in mind this discussion, we rewrite the one-loop effective action (3.24), applying the 
proper-time method

	(1) = − i

2
tr

∫
dζ

(−4)
1

∞∫
0

ds

s
eis(




�1−α2
H �2)�

(2,2)
T (1|2)

∣∣∣∣
2=1

. (3.31)

The covariant analytic projector �(2,2)
T (1|2) in the limit u2 → u1 has the simple form [8,40]

�
(2,2)
T (1|2)

∣∣∣∣
u2=u1

= −(D+
1 )4δ14(z1 − z2) . (3.32)

Also, in order to avoid the dependence of the effective action on the root αH , we have to calculate 
the trace over matrix indices. We will consider the simplest case, when the gauge group of the 
theory is SU(2). We obtain the following final expression for the one-loop effective action

	(1) = i

∫
dζ

(−4)
1

∞∫
0

ds

s
eis(




�1−�2)(D+
1 )4δ14(z1 − z2)

∣∣∣∣
2=1

. (3.33)

The expression (3.33) is the central object of our further consideration. In the next section we will 
calculate it under the simplifying assumptions on the background superfields formulated earlier.

4. Complete contribution to one-loop effective action

To find the complete low-energy effective Lagrangian we should calculate (3.33). We use the 
covariantly constant on-shell gauge and omega-hypermultiplet background superfields subject to 
the constraints (3.12) and (3.29). We also introduce the notation

D−
a W+b = −D+

a W−b = Nb
a , (4.1)

where the superfield Nb
a is related to the gauge field strength Fb

a = i(σMN)baFMN as

Fb
a = D−

a W+b − D+
a W−b = 2Nb

a . (4.2)

We use the following definition for the generator of spinor representation (σMN)ba

(σMN)ab = 1

2
(γ̃ Mγ N − γ̃ Nγ M)ab , (4.3)

where the antisymmetric six-dimensional (γ M)ab and (γ̃ M)ab matrices are related as

(γ̃M)ab = 1
2εabcd(γM)cd , (4.4)

and εabcd is the totally skew-symmetric 4th rank tensor. The matrices γM and γ̃M are subject to 
the basic relations for Weyl matrices

(γM)ac(γ̃N )cb + (γN)ac(γ̃M)cb = −2δa
bηMN, (γ M)ac(γM)cb = 2εabcd . (4.5)

As before, we choose the Minkowski metric ηMN, M, N = 0, .., 5, with the mostly negative 
signature (see its definition after eq. (3.5)).
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Then, as in the 4D, N = 2 case [40], we introduce the operator �,

� =


� −W−αD+
α , (4.6)

which coincides with 



�= ∇ab∇ab + W+aD−
a on the space of covariantly analytic superfields.9

Thus the expression (3.33) takes the form

	(1) = i

∫
dζ

(−4)
1

∞∫
0

ds

s
eis(�1−�2)(D+

1 )4δ14(z1 − z2)

∣∣∣∣
2=1

. (4.7)

Note that the spinor derivative D−
a can act on the superfield W−a in the operator �. However, the 

operator � − �2 standing in the exponential does not commute with (D+)4 even in the case of 
constant on-shell background. Thus, pulling the exponential with the argument � − �2 through 
(D+)4, we obtain

	(1) = i

∫
dζ

(−4)
1

∞∫
0

ds

s
(e−isND+

1 )4eis(�1−�2)δ14(z1 − z2)

∣∣∣∣
2=1

. (4.8)

Let us introduce the heat kernel for the operator � − �2,

K(z1, z2|s) = eis(�1−�2)δ14(z1 − z2) , (4.9)

as a formal solution of the equation(
i

d

ds
+ �1 − �2

)
K(z1, z2|s) = δ14(z1 − z2) . (4.10)

In terms of the kernel K(z1, z2|s) the one-loop effective action (4.8) can be rewritten as

	(1) = i

∫
dζ

(−4)
1

∞∫
0

ds

s
(e−isND+

1 )4K(z1, z2|s)
∣∣
2=1 . (4.11)

We denote by ϒ the first-order operator appearing in �, i.e. write the latter as follows

� = ∇ab∇ab + ϒ, ϒ := W+aD−
a − W−aD+

a . (4.12)

We provide the calculation in the case of a covariantly constant vector multiplet (3.13). The vector 
covariant derivative ∇ab turns out to commute with the operator ϒ, as well as with the additional 
term �2. This allows us to represent eis(�−�2) in the factorized form eis(ϒ−�2)eis∇ab∇ab and to 
calculate the heat kernel K(z1, z2|s)

K(z1, z2|s) = eis(ϒ−�2)eis∇ab∇ab δ14(z1 − z2) = eis(ϒ−�2)K̃(z1, z2|s). (4.13)

The further steps in calculation of (4.11) are similar to those performed in [41]. We use the mo-
mentum representation of the delta function, δ14(z1 −z2) = δ6(x1 −x2)δ

4(θ+
1 −θ+

2 )δ4(θ−
1 −θ−

2 ),

9 Note that in 6D, N = (1, 0) hypermultiplet theory, the operator (4.6) differs from the analogical operator in 
4D, N = 2 hypermultiplet theory [40].
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1δ(14)(z1 − z2) =
∫

d6p

(2π)6
eiρMpM ζ+4ζ−4I (z1, z2) , (4.14)

where I (z1, z2) is a parallel displacement operator in superspace [38,39] (see details in Ap-
pendix) and

ρM = (x1 − x2)
M − 2iζ+a(γ M)abθ

−b
1 , ζ±a = (θ±

1 − θ±
2 )a . (4.15)

The reduced heat kernel K̃(z1, z2|s) can now be evaluated in the same way by generalizing 
the Schwinger construction [38],

K̃(z1, z2|s) = i

(4πis)3 det
1
2

(
sF

sinh sF

)
e

i
4 ρM(F coth sF )MNρN

ζ+4ζ−4I (z1, z2) , (4.16)

where the determinant is taken with respect to Lorentz indices. To compute the kernel K(z1, z2|s)
we need to evaluate the action of eisϒ on K̃(z1, z2|s). However, the operator ϒ does not commute 
with �2 even on shell. To separate its contribution in exp (is(ϒ − �2)), we use the Baker-
Campbell-Haussdorf formula

eis(ϒ−�2) = e(−is�2+ (is)2
2 [ϒ,�2]− (is)3

3! [ϒ,[ϒ,�2]]+... ) eisϒ. (4.17)

Using the explicit expression for the commutator [ϒ, �2] = W+a(D−
a �2), one can show that the 

series in eq. (4.17) can be summed up to the concise expression

eis(ϒ−�2) = e
( exp(−is W+D−)−1

W+D−
)
�2

eisϒ. (4.18)

The complete structure of the last expression is rather complicated but this does not matter. It is 
crucial for us that it has the form

e
( exp(−is W+D−)−1

W+D−
)
�2 = e−is�2+W+afa(W+,N,�2, s) , (4.19)

where the function fa(W
+, N, �2, s) encodes the whole information about the series (4.18).

As the next step, we act by the operator eisϒ on the kernel K̃(z1, z2|s). The formal result reads

K(z1, z2|s) = i

(4πis)3 det
1
2

(
sF

sinh sF

)
e

i
4 ρM(s)(F coth sF )MNρN (s)ζ+4(s)ζ−4(s)I (z1, z2|s) ,

(4.20)

where we denoted,

ζA(s) = eisϒζAe−isϒ , I (z1, z2|s) = eisϒI (z1, z2) , (4.21)

and ζA = (ρa, ζ±a). Using the formula eABe−A = B + [A, B] + . . . and our constraints on the 
background (4.1), we obtain10

ζ+a(s) = ζ+a − W+bN a
b , ζ−a(s) = ζ−a − W−bN a

b , (4.22)

ρM(s) = ρM − 2

s∫
0

dt W−a(t)(γ M)abζ
+b(t) , W−a(s) = W−b

(
eisN

)a

b
. (4.23)

10 Here we use D+
a ζ b− = δb

a and D−
a ζ b+ = −δb

a .
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Here we made use of the definition (4.1) and N b
a := (

eisN−1
N

)b

a
. We do not need the explicit 

expression for I (z1, z2|s). However, it is easy to check, by differentiating with respect to the 
proper time s, that the following identity holds

I (z1, z2| s) = exp

⎡
⎣ s∫

0

dt �(z1, z2| t)
⎤
⎦ I (z1, z2) , (4.24)

�(z1, z2| t) = eitϒ�(z1, z2)e
−itϒ , (4.25)

where �(z1, z2) is defined by the relation

(W+αD−
a − W−αD+

a )I (z1, z2) = �(z1, z2)I (z1, z2) . (4.26)

For what follows it is important that �(z1, z2|s) = W+aρabW
−b + . . . (see (A.7) in the Ap-

pendix).
Now we can come back to the calculation of the effective action (4.11). We need to calculate 

the coincident-points limit for (e−isND+
1 )4Kz1,z2|s . The operator (e−isND+

1 )4 acts on the two-
point function ζ−4(s) and in the coincident-points limit gives the unity

(e−isND+
1 )4ζ−4(s)

∣∣∣
2=1

= 1. (4.27)

For ζ+4(s) we have

ζ+4(s)

∣∣∣
2=1

= (W+)4 det

(
eisN − 1

N

)
. (4.28)

We observe that in the coincident-points limit all terms with ρM(s) and I (z1, z2|s) have the for-
mal structure exp(W+a + . . .). Due to the presence of the maximal power of the gauge superfield 
strength (W+)4 in (4.28) we can replace the exponential in such terms just by unity.

As the result, we obtain

	(1) = 1

(4π)3

∫
dζ (−4) (W+)4 ξ

(
F,N,�2

)
, (4.29)

ξ(F,N,�2) =
∞∫

0

ds

s4 e−s�2
det

(
esN − 1

N

)
det

1
2

(
sF

sin sF

)
. (4.30)

This is the final expression for the complete low-energy effective action in the theory under 
consideration. The effective action (4.29), (4.30) is manifestly gauge invariant and manifestly 
N = (1, 0) supersymmetric by construction. The action (4.29) is also invariant under the im-
plicit N = (0, 1) supersymmetry (3.28). Indeed, according to (3.28), the transformation of �2

is proportional to the superfield strength W+a , δ� ∼ W+a . Consequently, all such terms vanish 
due to the presence of the maximal power of the spinorial superfield (W+)4 in the integrant of 
(4.29).

In our previous work [8] we calculated the leading low-energy contribution to the one-loop 
effective action. It has the form

	
(1)
lead = 1

(4π)3

∫
dζ (−4) (W

+)4

�2 . (4.31)

The expression (4.31) was obtained under the assumption of the simplest background, D−
a W+b =

Nb
a = 0. We see that the leading contribution (4.31) immediately follows from (4.29) when 

N = F = 0. In this case, ξ(0, 0, �2) = 1
2 .
�
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5. Conclusions

In this paper we considered the quantum aspects of the six-dimensional N = (1, 1) SYM 
theory. We used the N = (1, 0) harmonic superspace formulation of the theory in terms of N =
(1, 0) analytic vector gauge multiplet and hypermultiplet. We assumed that both gauge and matter 
N = (1, 0) supermultiplets are in the adjoint representation of gauge group. By construction, 
the theory is invariant under the manifest N = (1, 0) supersymmetry and the second implicit 
N = (0, 1) one.

We calculated the complete one-loop effective action for the considered theory in the frame-
work of the background superfield method in N = (1, 0) harmonic superspace. We restricted 
our attention to the special case of the slowly varying background superfields satisfying the free 
classical equations of motion. We also assumed that background superfields align in the Cartan 
subalgebra of su(2). The obtained result (4.29) for the effective action is the complete one-loop 
effective action for the six-dimensional N = (1, 1) SYM theory in the constant background ap-
proximation.

A few comments on the calculation procedure are needed. In six dimensions the gauge su-
perfield strength is the spinor superfield W+a . The general analysis of the structure of the 
leading low-energy effective action [8] implies that the effective Lagrangian as a function of 
W+a and the � hypermultiplet has to be an analytic superfield of the U(1) harmonic charge 

+4. Namely, L(+4) = (W+)4ξ
(
F, N, �2

)
, where the function ξ was defined in (4.30). It is an-

alytic and contains the whole information about one-loop quantum corrections. We have also to 
recall that, initially, we formulated the theory in terms of the gauge N = (1, 0) multiplet and 
the charge +1 q+

A -hypermultiplet. But during the calculation we were forced to pass from the 
background q+

A -hypermultiplet to the zero-charge � hypermultiplet. It is known that the matter 
sector of the supersymmetric gauge theories can be equivalently described either by a complex 
q+
A -hypermultiplet or by a real � hypermultiplet [21]. The reason for making use of � is that 

it provides a possibility to define the uncharged analytic superfield combination playing the role 
of the background UV cutoff term in the function ξ (4.30). One can see that the use of the 
q+
A -hypermultiplet does not ensure the analyticity required, because the uncharged combination 

q+Aq−
A is not analytic.

As the final remark, we emphasize that there are two interesting further directions of applying 
the background field method used here. One such direction amounts to studying the structure 
of the effective action in six-dimensional N = (1, 0) SYM theory with higher derivatives [42], 
[43], [44], another one concerns deriving the Born-Infeld-type effective action associated with 
D5-brane. The latter problem will require carrying out the superspace multi-loop calculations 
(see the relevant discussion in [45] on the Born-Infeld-type action related to D3-brane in the 
framework of 4D, N = 4 SYM theory). Some aspects of the superfield two-loop calculations of 
the effective action in 4D, N = 4 SYM theory have been considered in [38], [45], [46], [47], 
[48].
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Appendix A. Parallel displacement operator

Let us briefly discuss the basic properties of the parallel displacement operator I (z, z′). By 
definition, it is defined as a two-point superspace function depending on the gauge superfields 
with the following properties [38,39]:

(i) Under the gauge transformations it transforms as

I (z, z′) = eiτ(z)I (z, z′)e−iτ (z′) ; (A.1)

(ii) It obeys the equation

ζA∇AI (z, z′) = 0 , (A.2)

where ζA = (ρM, ρa±) was defined in (4.15);
(iii) For the coincident superspace points z = z′ it reduces to the identity operator in the gauge 

group,

I (z, z) = 1 . (A.3)

The general form of the superalgebra of covariant derivatives is as follows

[∇A,∇B} = TAB
C∇C + iFAB , (A.4)

where TAB
C is a supertorsion and FAB is a supercurvature for gauge superfield connections. 

In [38] it was proved that, owing to (A.2), the action of the derivative ∇B on I (z, z′) can be 
expressed in terms TAB

C , FAB and their covariant derivatives,

∇BI (z, z′) = i

∞∑
n=1

(−1)n

(n + 1)!
[

− ζAn . . . ζA1∇A1 . . .∇An−1FAn B(z) (A.5)

+ (n − 1)

2
ζAnTAn B

CζAn−1 . . . ζA1∇A1 . . .∇An−2FAn−1 C(z)

]
I (z, z′) .

In our case we do not need the detailed analysis of (A.5), and we addressed only the simplest 
background, Nb

a = 0. We have

D±
a I (z, z′) =

[
1

2
ρabW

b± − i

6
(γ M)abζ

±b
(
ζ+c(γM)cdW−d

+ ζ−c(γM)cdW+d − iρNFNM

)]
I (z, z′) . (A.6)

Then the superfield �(z, z′) introduced in (4.26) has the form
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�(z, z′) = W+aρabW
−b − i

6
(W+a(γ M)abζ

−b − W−a(γ M)abζ
+b)

×(ζ+c(γM)cdW−d + ζ−c(γM)cdW+d − iρNFNM) . (A.7)

Thus the decomposition of the superfield �(z, z′) begins with the gauge superfield strength W+a . 
This is one of the crucial properties used in the computation of the coincident-points limit of the 
kernel K(z1, z2|s).
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