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Abstract

We study the gauge dependence of the one-loop effective action for the abelian 6D, N = (1, 0) super-
symmetric gauge theory formulated in harmonic superspace. We introduce the superfield ξ -gauge, construct 
the corresponding gauge superfield propagator, and calculate the one-loop two- and three-point Green func-
tions with two external hypermultiplet legs. We demonstrate that in the general ξ -gauge the two-point Green 
function of the hypermultiplet is divergent, as opposed to the Feynman gauge ξ = 1. The three-point Green 
function with two external hypermultiplet legs and one leg of the gauge superfield is also divergent. We 
verified that the Green functions considered satisfy the Ward identity formulated in N = (1, 0) harmonic 
superspace and that their gauge dependence vanishes on shell. Using the result for the two- and three-point 
Green functions and arguments based on the gauge invariance, we present the complete divergent part of 
the one-loop effective action in the general ξ -gauge.
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1. Introduction

Gauge theories with extended supersymmetries in higher dimensions attract a considerable 
attention for a long time [1–8]. On the one hand, such theories are non-renormalizable due to 
the dimensionful coupling constant (see, e.g., [9,10]). On the other hand, one can expect an im-
provement of the ultraviolet behavior due to the extended supersymmetry. It is very interesting 
to check this conjecture on the explicit examples of higher-dimensional supersymmetric theo-
ries. To be more realistic, one can expect that the full canceling of divergences is presumably 
possible only in the lowest loops even in the maximally extended theories (see, e.g., [11]). The 
problem reveals clear analogies with the most interesting case of gravity. However, the analysis 
in supersymmetric gauge theories is much simpler.

In order to fully display the underlying properties of theories with some symmetries it is highly 
desirable to be aware of the regularization and quantization schemes which do not break these 
symmetries. In the case of extended supersymmetries these purposes can be achieved within 
the harmonic superspace approach [12–17]. For 6D supersymmetric gauge theories (which will 
be the subject of the present paper) this formalism [18–23] ensures manifest N = (1, 0) super-
symmetry. With the use of the background field method in harmonic superspace [16,24], gauge 
symmetry can also be made manifest. For these reasons the harmonic superspace formalism 
seems to be most suitable for quantum calculations in 6D supersymmetric theories (note that 
6D, N = (1, 0) theories are in general anomalous, see, e.g., [25–28]).

Recently, some explicit calculations based on the harmonic superspace method were done 
for N = (1, 0) and N = (1, 1) gauge theories [29–33], following the general pattern of Ref. [4]. 
These calculations were basically performed in the Feynman gauge ξ = 1, which ensures the sim-
plest form of the propagator of the gauge superfield. This considerably simplifies the calculation 
of quantum corrections. However, the gauge dependence of the results obtained by the harmonic 
superspace technique has not yet been analyzed. Meanwhile, the calculations in non-minimal 
gauges are frequently rather useful as compared to those in the Feynman gauge, because they are 
capable to make manifest divergences in the lower loops. For example, for N = 1 supersymmet-
ric gauge theories in the one-loop approximation ghosts are not renormalized in the Feynman 
gauge, while divergences appear for ξ �= 1 [35]. For calculations in higher orders, the knowl-
edge of gauge dependence in the lower-order approximations is also essential, see, e.g., [36]. 
These are the reasons why a vast literature is devoted to calculations in non-minimal gauges. As 
a characteristic example, let us mention a recent paper [37].

In the present paper we consider the simplest 6D, N = (1, 0) supersymmetric gauge the-
ory, namely, N = (1, 0) supersymmetric electrodynamics, and investigate the structure of the 
gauge-dependent contributions to the effective action by the harmonic superspace technique. In 
particular, we demonstrate that (unlike the case of the Feynman gauge considered, e.g., in [29]) 
the two-point Green function of hypermultiplets is divergent already at the one-loop level. The 
gauge-dependent divergences are also present in the gauge multiplet – hypermultiplet Green 
functions. In this paper we explicitly calculate the one-loop three-point Green function and find 
its divergent part. Moreover, we derive the Ward identity in the harmonic superspace and ver-
ify that the Green functions obtained by calculating harmonic supergraphs satisfy this identity, 
as expected. This result is a non-trivial verification of the correctness of our calculations. One 
more test, which has also been done in this paper, is the demonstration of the property that the 
gauge dependence of the effective action vanishes on shell (this is a consequence of the general 
theorem, see Refs. [38–43]). Using the results for the two- and three-point Green functions, we 
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also restore the complete result for the one-loop divergences, based on the gauge invariance of 
the theory under consideration.

The paper is organized as follows: In Sect. 2 we recall some basic points of the formula-
tion of 6D, N = (1, 0) supersymmetric electrodynamics in harmonic superspace. We present the 
superfield action for this theory, write down the Ward identity, and formulate the harmonic su-
perspace Feynman rules. In particular, we construct the propagator of the gauge superfield in the 
non-minimal gauges which are analogs of the ξ -gauges in the usual electrodynamics. In Sect. 3, 
using these Feynman rules, we investigate the gauge dependence of the one-loop two-point Green 
functions of the gauge superfield and the hypermultiplet. We also calculate the one-loop three-
point gauge superfield – hypermultiplet Green function. Checking the Ward identities for these 
Green functions is the subject of Sect. 4. The vanishing of the gauge dependence on shell in the 
approximation we are considering is demonstrated in Sect. 5. The total divergent part of the one-
loop effective action (which is an infinite series in V ++) is constructed in Sect. 6, by invoking 
the arguments based on the gauge invariance. Also we verify that the gauge dependence of the 
expression obtained vanishes on shell. Some technical details are collected in two Appendices.

2. Harmonic superspace formulation of 6D, N = (1, 0) electrodynamics

2.1. The harmonic superspace action

The harmonic superspace is very convenient for formulating 6D, N = (1, 0) supersymmetric 
theories, because it ensures manifest supersymmetry at all steps of quantum calculations. It is 
parametrized by the coordinate set (xM, θai, u±

i ) which will be referred to as the central basis. 
Here xM with M = 0, . . .5 are the usual coordinates of the six-dimensional Minkowski space. 
The Grassmann anticommuting coordinates θai with a = 1, . . .4 and i = 1, 2 form a left-handed 
6D spinor. The harmonic variables u±

i satisfy the condition u+iu−
i = 1, with u−

i = (u+i )∗. The 
analytic basis of the harmonic superspace is parametrized by the coordinates

xM
A = xM + i

2
θ−γ Mθ+; θ±a = u±

i θai; u±
i , (1)

where γ M are 6D γ -matrices. The coordinate subset (xM
A , θ+a, u±

i ) parametrizes the analytic 
harmonic subspace which is closed on its own under 6D, N = (1, 0) supersymmetry transfor-
mations.

It is convenient to define the spinor covariant derivatives

D+
a = u+

i Di
a; D−

a = u−
i Di

a, (2)

such that {D+
a , D−

b } = i(γ M)ab∂M , and to introduce the notation

(D+)4 = − 1

24
εabcdD+

a D+
b D+

c D+
d . (3)

Also we will need the harmonics derivatives in the central basis

D++ = u+i ∂

∂u−i
; D−− = u−i ∂

∂u+i
; D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
. (4)

They satisfy the commutation relations of the SU(2) algebra. The analytic basis form of these 
derivatives can be easily found and is given, e.g., in [34].
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For constructing the N = (1, 0) invariants we need the invariant superspace integration mea-
sures:∫

d14z =
∫

d6x d8θ;
∫

dζ (−4) =
∫

d6x d4θ+; (5)∫
d6x d8θ =

∫
d6x d4θ+(D+)4. (6)

In this paper we consider N = (1, 0) supersymmetric electrodynamics, which is a particular 
abelian case of N = (1, 0) supersymmetric Yang–Mills theory with hypermultiplets. The har-
monic superspace form of the action of 6D, N = (1, 0) supersymmetric Yang–Mills theory was 
pioneered in Ref. [20]. As opposed to the analogous 4D, N = 2 construction, the gauge theory 
coupling constant f0 in 6D has the dimension m−1. In the harmonic superspace approach the 
gauge superfield V ++(z, u) satisfies the analyticity condition

D+
a V ++ = 0 (7)

and is real with respect to the special conjugation denoted by ̃ , i.e. ˜V ++ = V ++. The hyper-
multiplets are described by the analytic superfield q+ and its ̃ -conjugate ̃q+.

Like in the non-supersymmetric case, the action of N = (1, 0) electrodynamics is quadratic 
in the gauge superfield. It can be written as

S = 1

4f 2
0

∫
d14z

du1du2

(u+
1 u+

2 )2
V ++(z, u1)V

++(z, u2) −
∫

dζ (−4)du q̃+∇++q+, (8)

where

∇++ = D++ + iV ++ (9)

and D++ is taken in the analytic basis. The gauge transformations have the form

V ++ → V ++ − D++λ; q+ → eiλq+; q̃+ → e−iλq̃+, (10)

where λ is an analytic superfield parameter which is real with respect to the ̃ -conjugation.
It is useful to introduce the non-analytic superfield

V −−(z, u) =
∫

du1
V ++(z, u1)

(u+u+
1 )2

. (11)

It satisfies the conditions D++V −− = D−−V ++ and transforms as

V −− → V −− − D−−λ (12)

under the gauge transformations. Starting from this superfield, it is possible to construct the 
analytic superfield F++ = (D+)4V −−, which is gauge invariant in the abelian case.

For further use, we also define the non-analytic superfield q− as a solution of the equation

q+ = ∇++q− = (D++ + iV ++)q−. (13)

From this definition one can derive that the gauge transformations act on q− as

q− → eiλq−. (14)
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In the explicit form the solution of Eq. (13) can be expressed as the series

q− =
∫

du1

(u+u+
1 )

q+
1 − i

∫
du1 du2

(u+u+
1 )(u+

1 u+
2 )

V ++
1 q+

2

−
∫

du1 du2 du3

(u+u+
1 )(u+

1 u+
2 )(u+

2 u+
3 )

V ++
1 V ++

2 q+
3 + . . .

=
∞∑

n=1

(−i)n−1
∫

du1 . . . dun

V ++
1 . . . V ++

n−1

(u+u+
1 ) . . . (u+

n−1u
+
n )

q+
n , (15)

where subscripts numerate the harmonic “points”.
For quantizing the theory (8) it is necessary to fix the gauge. This can be done by adding the 

gauge-fixing term to the action,

Sgf = − 1

4f 2
0 ξ0

∫
d14z du1du2

(u−
1 u−

2 )

(u+
1 u+

2 )3
D++

1 V ++(z, u1)D
++
2 V ++(z, u2), (16)

where ξ0 is the bare gauge-fixing parameter. This term corresponds to the ξ -gauge in the usual 
electrodynamics. In particular, the Feynman gauge amounts to the choice ξ0 = 1. In the abelian 
case we are considering it is not necessary to introduce the ghosts superfields. Therefore, the 
generating functional for our theory can be written as

Z =
∫

DV ++ Dq̃+ Dq+ exp
{
i(S + Sgf + Ssources)

}
, (17)

where Ssources is a sum of the source terms,∫
dζ (−4) du

[
V ++J (+2) + j (+3)q+ + j̃ (+3)q̃+]

. (18)

Here J (+2) is the analytic source for the gauge superfield, while j (+3) and j̃ (+3) denote sources 
for the hypermultiplet superfields. The effective action is constructed from the generating func-
tional for the connected Green functions W = −i lnZ by making the Legendre transformation,

	 = W − Ssources, (19)

where it is necessary to express the sources in terms of the fields with the help of the equations

V ++ = δW

δJ (+2)
; q+ = δW

δj(+3)
; q̃+ = δW

δj̃ (+3)
. (20)

2.2. Ward identity

In the abelian gauge theory at the quantum level the gauge invariance is encoded in the Ward 
identity [44], which is a particular case of the Slavnov–Taylor identities [45,46]. The harmonic 
superspace analog of this identity can be formulated, using the standard technique. For this pur-
pose we make the transformation (10) in the generating functional (17) which evidently remains 
invariant. Taking into account that the classical action is gauge invariant, in the lowest order in λ
we obtain

0 =
〈∫

dζ (−4) du
[
− δSgf

++ D++λ − J (+2)D++λ + ij (+3)λq+ − ij̃ (+3)λq̃+]〉
, (21)
δV
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where we used the notation〈
A(V ++, q+, q̃+)

〉
= 1

Z

∫
DV ++ Dq̃+ Dq+ A(V ++, q+, q̃+) exp

{
i(S+Sgf +Ssources)

}
.

(22)

Integrating in Eq. (21) by parts with respect to the derivatives D++, using an arbitrariness of λ, 
and expressing the result in terms of superfields, we obtain

0 = D++ δSgf

δV ++ − D++ δ	

δV ++ − iq+ δ	

δq+ + iq̃+ δ	

δq̃+ , (23)

where 	 is the effective action defined by Eq. (19), and we also took into account that the gauge-
fixing term is quadratic in the gauge superfield. Introducing

�	 = 	 − Sgf, (24)

the Ward identity can be written in a more compact form,

D++ δ�	

δV ++ = −iq+ δ�	

δq+ + iq̃+ δ�	

δq̃+ . (25)

It is important that this equation is valid for arbitrary non-zero values of the involved superfields. 
Differentiating Eq. (25) with respect to various superfields we derive an infinite set of identities 
relating the longitudinal part of the (n +1)-point Green functions to the n-point Green functions. 
For example, differentiating with respect to V ++

2 and setting all fields equal to zero at the end, 
we obtain that quantum corrections to the two-point Green function of the gauge superfield are 
transversal,

D++
1

δ2�	

δV ++
1 δV ++

2

= 0. (26)

Differentiating Eq. (25) with respect to q+
2 and ̃q+

3 and setting the fields equal to zero at the end 
give an analog of the usual Ward identity relating three- and two-point Green functions:

D++
1

δ3�	

δV ++
1 δq+

2 δq̃+
3

= −i(D+
1 )4δ14(z1 − z2)δ

(−3,3)(u1, u2)
δ2�	

δq+
1 δq̃+

3

+ i(D+
1 )4δ14(z1 − z3)δ

(−3,3)(u1, u3)
δ2�	

δq+
2 δq̃+

1

. (27)

When deriving this equation, we have taken into account the property implied by the Grassmann 
analyticity

δq+
1

δq+
2

= (D+
1 )4δ14(z1 − z2)δ

(−3,3)(u1, u2) , (28)

where

δ14(z1 − z2) = δ6(x1 − x2)δ
8(θ1 − θ2). (29)

It is convenient to multiply the identity (27) with the analytic superfields λ1, q+
2 , and ̃q+

3 , and 
integrate the expression obtained over both analytic arguments,
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∫
dμ q̃+

3 D++λ1q
+
2

δ3�	

δV ++
1 δq+

2 δq̃+
3

= i

∫
dζ

(−4)
1 du1 dζ

(−4)
3 du3 q̃+

3 λ1q
+
1

δ2�	

δq+
1 δq̃+

3

− i

∫
dζ

(−4)
1 du1 dζ

(−4)
2 du2 q̃+

1 λ1q
+
2

δ2�	

δq+
2 δq̃+

1

, (30)

where∫
dμ =

∫
dζ

(−4)
1 du1 dζ

(−4)
2 du2 dζ

(−4)
3 du3. (31)

This form of the Ward identity is most convenient, when checking it for one or another particular 
class of diagrams.

2.3. The Feynman rules

For the explicit calculation of quantum correction it is necessary to formulate the relevant 
Feynman rules. This can be accomplished quite similarly to the 4D, N = 2 case considered in 
detail in Refs. [13,14]. To find the propagator of the gauge superfield in the ξ -gauge, we consider 
the sum of the gauge superfield action and the gauge-fixing term

Sgauge + Sgf = 1

4f 2
0

(
1 − 1

ξ0

)∫
d14z du1du2

1

(u+
1 u+

2 )2
V ++(z, u1)V

++(z, u2)

+ 1

4f 2
0 ξ0

∫
dζ (−4) duV ++(z, u)∂2V ++(z, u), (32)

where we made use of the identity

D++
1

1

(u+
1 u+

2 )3
= 1

2
(D−−

1 )2δ(3,−3)(u1, u2) (33)

and took into account that, when acting on the analytic superfields,

1

2
(D+)4(D−−)2 ⇒ ∂2. (34)

Following Ref. [31], we consider the free theory and solve the equation of motion for the super-
field V ++ in the presence of the source term,

1

2ξ0f
2
0

∂2V ++(z, u1) + 1

2f 2
0

(
1 − 1

ξ0

)
×

∫
du2

1

(u+
1 u+

2 )2
(D+

1 )4V ++(z, u2) + J (+2)(z, u1) = 0. (35)

The solution can be presented as

V ++(z, u1) = −2ξ0f
2
0

∂2 J (+2)(z, u1)

+ 2f 2
0 (ξ0 − 1)

∂4

∫
du2

1

(u+
1 u+

2 )2
(D+

1 )4J (+2)(z, u2), (36)

whence one extracts the ξ -gauge form of the propagator of the gauge superfield
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Fig. 1. The propagators of the gauge superfield V ++ and of the hypermultiplets.

Fig. 2. The only vertex comes from the interaction of the hypermultiplet with the gauge superfield.

G
(2,2)
V (z1, u1; z2, u2) = −2f 2

0

( ξ0

∂2 (D+
1 )4δ(2,−2)(u2, u1)

− ξ0 − 1

∂4 (D+
1 )4(D+

2 )4 1

(u+
1 u+

2 )2

)
δ14(z1 − z2). (37)

The second term vanishes in the Feynman gauge ξ0 = 1. Such a choice considerably simplifies 
calculation of quantum corrections. However, the purpose of the present paper is to investigate 
the ξ0-dependence of various Green functions for the generic choice of ξ0.

In the left part of Fig. 1, the propagator (37) is depicted by the wavy line with the ends 
corresponding to the points 1 and 2.

For completeness, we also present the expression for the hypermultiplet propagator,

G(1,1)
q (z1, u1; z2, u2) = (D+

1 )4(D+
2 )4 1

∂2 δ14(z1 − z2)
1

(u+
1 u+

2 )3
, (38)

which is denoted by the solid line in the right part of Fig. 1.

The only vertex of the theory (8) is presented in Fig. 2 and stands for the interaction of the 
hypermultiplet with the gauge superfield

SI = −i

∫
dζ (−4) du q̃+V ++q+. (39)

The superficial degree of divergence in the theory under consideration has been calculated in 
Ref. [29]:

ω = 2L − Nq − 1

2
ND. (40)

Here L is a number of loops, Nq is a number of external hypermultiplet legs, and ND is a number 
of spinor supersymmetric covariant derivatives acting on external legs. This formula implies that 
in the one-loop approximation only diagrams without external hypermultiplet legs or with two 
such legs can be divergent.

3. Gauge dependence of the one-loop divergences

3.1. Two-point function of the gauge superfield

In the one-loop approximation the two-point function of the gauge superfield V ++ is di-
vergent. In the abelian case this divergence comes only from the diagram pictured in Fig. 3. 
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Fig. 3. The diagram representing the one-loop two-point Green function in the abelian case.

Fig. 4. The two-point Green function of the hypermultiplet in the one-loop approximation.

However, this diagram does not contain propagators of the gauge superfield and is therefore 
gauge-independent.

Thus, in the one-loop approximation this Green function in the ξ -gauge is the same as in the 
Feynman gauge. It is given by the expression [29]∫

d6p

(2π)6

∫
d8θ du1 du2 V ++(p, θ,u1)V

++(−p, θ,u2)

× 1

(u+
1 u+

2 )2

[ 1

4f 2
0

− i

2

∫
d6k

(2π)6

1

k2(k + p)2

]
. (41)

The corresponding divergent part of the effective action is gauge-independent and in the di-
mensional reduction scheme1 can be written as

− 1

6ε(4π)3

∫
dζ (−4) du (F++)2, (42)

where ε = 6 − D.

3.2. Two-point hypermultiplet Green function

In the one-loop approximation the two-point Green function of the hypermultiplet is con-
tributed to by the single logarithmically divergent diagram presented in Fig. 4.

In the Feynman gauge this superdiagram vanishes. However, it includes the propagator of the 
gauge superfield, for which reason we can expect that the result for it is in fact gauge-dependent. 
Using the Feynman rules defined above, the expression for this diagram in the generic ξ -gauge 
can be written as

−2if 2
0

∫
dζ

(−4)
1 du1 dζ

(−4)
2 du2 q̃+(z1, u1)q

+(z2, u2)
1

(u+
1 u+

2 )3

(D+
1 )4(D+

2 )4

∂2

× δ14(z1 − z2)
( ξ0

∂2 (D+
1 )4δ(2,−2)(u2, u1) − ξ0 − 1

∂4 (D+
1 )4(D+

2 )4 1

(u+
1 u+

2 )2

)
δ14(z1 − z2).

(43)

1 Here we use the regularization by dimensional reduction [47]. However, for calculating power divergences one should 
use another regularization, e.g., some modifications of the higher covariant derivative regularization [48,49]. At least for 
4D, N = 2 supersymmetric theories such a regularization can be formulated in the harmonic superspace [50].
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Fig. 5. The diagram representing the three-point gauge – hypermultiplet function in the one-loop approximation.

The derivatives (D+
1 )4(D+

2 )4 in the hypermultiplet propagator can be used to convert the inte-
grations over dζ (−4) into those over d14z,

−2if 2
0

∫
d14z1 du1 d14z2 du2 q̃+(z1, u1)q

+(z2, u2)
1

(u+
1 u+

2 )3

1

∂2 δ14(z1 − z2)

×
( ξ0

∂2 (D+
1 )4δ(2,−2)(u2, u1) − ξ0 − 1

∂4 (D+
1 )4(D+

2 )4 1

(u+
1 u+

2 )2

)
δ14(z1 − z2). (44)

Taking into account the identities

δ8(θ1 − θ2) (D+
1 )4δ8(θ1 − θ2) = 0, (45)

δ8(θ1 − θ2) (D+
1 )4(D+

2 )4δ8(θ1 − θ2) = (u+
1 u+

2 )4 δ8(θ1 − θ2), (46)

we find that the first term in this expression vanishes, reducing (44) to the form

2if 2
0

∫
d6x1 d6x2 d8θ du1 du2 q̃+(x1, θ, u1)q

+(x2, θ, u2)

× (ξ0 − 1)

(u+
1 u+

2 )

1

∂2 δ6(x1 − x2)
1

∂4 δ6(x1 − x2). (47)

This expression can be rewritten in the momentum representation as

−2if 2
0

∫
d6p

(2π)6

d6k

(2π)6

1

k4(k + p)2

∫
d8θ du1 du2

(ξ0 − 1)

(u+
1 u+

2 )
q̃+(p, θ,u1)q

+(−p, θ u2).

(48)

We observe that this expression is logarithmically divergent and does not vanish, unless the Feyn-
man gauge is chosen. If the theory is regularized by dimensional reduction, the corresponding 
contribution to the divergent part takes the form

− 2f 2
0

ε(4π)3

∫
d14z du1 du2

(ξ0 − 1)

(u+
1 u+

2 )
q̃+(z, u1)q

+(z, u2). (49)

3.3. Three-point gauge-hypermultiplet Green function

According to Eq. (40), all diagrams containing two external hypermultiplet legs are loga-
rithmically divergent, irrespective of the number of the external gauge legs. That is why in 
calculating the one-loop divergences it is necessary to take into account such Green functions. 
The simplest of them is the three-point gauge superfield – hypermultiplet Green function. In the 
one-loop approximation, it is contributed to by the single supergraph depicted in Fig. 5.
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Calculating this diagram by Feynman rules in the general ξ -gauge, we obtain

−2f 2
0

∫
dζ

(−4)
1 du1 dζ

(−4)
2 du2 dζ

(−4)
3 du3 q̃+(z1, u1)q

+(z3, u3)V
++(z2, u2)

×
( ξ0

∂2 (D+
1 )4δ(2,−2)(u3, u1) − (ξ0 − 1)

∂4 (D+
1 )4(D+

3 )4 1

(u+
1 u+

3 )2

)
δ14(z1 − z3)

1

(u+
1 u+

2 )3

× (D+
1 )4(D+

2 )4

∂2 δ14(z1 − z2)
1

(u+
2 u+

3 )3

(D+
2 )4(D+

3 )4

∂2 δ14(z2 − z3). (50)

To work out this expression, we, first, convert the integrals over dζ (−4) in it into integrals over 
d14z using Eq. (6):

−2f 2
0

∫
d14z1 d14z2 d14z3 du1 du2 du3 q̃+(z1, u1)q

+(z3, u3)V
++(z2, u2)

( ξ0

∂2 (D+
1 )4

× δ(2,−2)(u3, u1) − (ξ0 − 1)

∂4 (D+
1 )4(D+

3 )4 1

(u+
1 u+

3 )2

)
δ14(z1 − z3)

1

(u+
1 u+

2 )3(u+
2 u+

3 )3

× (D+
2 )4

∂2 δ14(z1 − z2)
1

∂2 δ14(z2 − z3). (51)

Next, we integrate by parts with respect to (D+
2 )4 (assuming that D+

2 acts on z1), taking into 
account that

δ8(θ1 − θ2)

N∏
n=1

D+
inan

δ8(θ1 − θ2) = 0 for arbitrary odd N. (52)

In the term containing the harmonic δ-function we further integrate over du3. Integrating also 
over θ2, we finally obtain for (50):

2f 2
0

∫
d6x1 d6x2 d6x3 d8θ1 d8θ3 δ8(θ1 − θ3)

{∫
du1 du2 q̃+(x1, θ1, u1)q

+(x3, θ3, u1)

× V ++(x2, θ1, u2)
ξ0

(u+
1 u+

2 )6

(D+
1 )4(D+

2 )4

∂2 δ14(z1 − z3)
1

∂2 δ6(x1 − x2)
1

∂2 δ6(x2 − x3)

+
∫

du1 du2 du3 V ++(x2, θ1, u2)q
+(x3, θ3, u3)

(ξ0 − 1)

(u+
1 u+

3 )2(u+
1 u+

2 )3(u+
2 u+

3 )3

× 1

∂2 δ6(x1 − x2)
1

∂2 δ6(x2 − x3)

[
(D+

2 )4q̃+(x1, θ1, u1)
(D+

1 )4(D+
3 )4

∂4 δ14(z1 − z3)

+ q̃+(x1, θ1, u1)
(D+

2 )4(D+
1 )4(D+

3 )4

∂4 δ14(z1 − z3)

− 1

4
εabcdD+

2aD
+
2b q̃+(x1, θ1, u1)

D+
2cD

+
2d(D+

1 )4(D+
3 )4

∂4 δ14(z1 − z3)

]}
. (53)

As the further step, we use the identities (45), (46) together with

δ8(θ1 − θ2)D+
2aD

+
2b(D

+
1 )4(D+

3 )4δ8(θ1 − θ2)

= −i(γ M)ab(u
+u+) (u+u+) (u+u+)3 δ8(θ1 − θ2)∂M ; (54)
2 1 2 3 1 3
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δ8(θ1 − θ2) (D+
2 )4(D+

1 )4(D+
3 )4δ8(θ1 − θ2)

= (u+
1 u+

2 )2 (u+
1 u+

3 )2 (u+
2 u+

3 )2 δ8(θ1 − θ2)∂
2 (55)

in order to do the integrals over the Grassmann coordinate θ2. After renaming θ1 → θ , the ex-
pression for the diagram in question in the momentum representation is written as

2f 2
0

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ

{
−

∫
du1 du2 q̃+(q + p, θ,u1)V

++(−p, θ,u2)

× q+(−q, θ,u1)
ξ0

k2(q + k)2(q + k + p)2

1

(u+
1 u+

2 )2

+
∫

du1 du2 du3

[
(D+

2 )4 q̃+(q + p, θ,u1)V ++(−p, θ,u2)

× q+(−q, θ,u3)
(ξ0 − 1)

k4(q + k)2(q + k + p)2

(u+
1 u+

3 )2

(u+
1 u+

2 )3(u+
2 u+

3 )3

− q̃+(q + p, θ,u1)V ++(−p, θ,u2) q+(−q, θ,u3)
(ξ0 − 1)

k2(q + k)2(q + k + p)2

× 1

(u+
1 u+

2 )(u+
2 u+

3 )
− D+

2aD
+
2b q̃+(q + p, θ,u1)V

++(−p, θ,u2) q+(−q, θ,u3)

× (ξ0 − 1)(γ̃ M)abkM

2k4(q + k)2(q + k + p)2

(u+
1 u+

3 )

(u+
1 u+

2 )2(u+
2 u+

3 )2

]}
, (56)

where (γ̃ M)ab = εabcd(γ M)cd/2. The divergent part of this expression can now be found after 
the Wick rotation. There remains only one divergent integral∫

d6k

(2π)6

1

k2(k + q)2(k + q + p)2 , (57)

which, after regularizing it by dimensional reduction, is reduced to

−i

∫
dDK

(2π)6

1

K2(K + Q)2(K + Q + P)2 = − i

ε(4π)3 + finite terms, (58)

where the capital letters denote Euclidean momenta. Thus, the divergent part of the diagram in 
Fig. 5 can be presented as

2if 2
0

ε(4π)3

∫
d14z

{∫
du1 du2 q̃+

1 V ++
2 q+

1
ξ0

(u+
1 u+

2 )2

+
∫

du1 du2 du3 q̃+
1 V ++

2 q+
3

(ξ0 − 1)

(u+
1 u+

2 )(u+
2 u+

3 )

}
, (59)

where the subscripts on the superfields refer to the relevant harmonic arguments.

4. Verification of the Ward identities

To be convinced of the correctness of the results obtained in the previous sections, let us check 
that the two- and three-point Green functions derived above satisfy the Ward identities.
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First, for completeness, we verify the Ward identity (26). The two-point Green function of the 
gauge superfield is obtained by differentiating Eq. (41) with respect to V ++, using Eq. (28). This 
gives

δ2�	

δV ++
1 δV ++

2

= GV (i∂M)
1

(u+
1 u+

2 )2
(D+

1 )4(D+
2 )4δ14(z1 − z2), (60)

where

GV (pM) = 1

2f 2
0

− i

∫
d6k

(2π)6

1

k2(k + p)2 + . . . (61)

Therefore,

D++
1

δ2�	

δV ++
1 δV ++

2

= GV (i∂M)D−−
1 δ(2,−2)(u1, u2) · (D+

1 )4(D+
2 )4δ14(z1 − z2)

= GV (i∂M)
[
D−−

1

(
δ(2,−2)(u1, u2)(D

+
1 )4(D+

2 )4
)

− δ(2,−2)(u1, u2)
(
D−−

1 (D+
1 )4

)
(D+

2 )4
]
δ14(z1 − z2) = 0. (62)

Thus, we have verified that the Ward identity (26) is indeed satisfied.
The two-point Green function of the hypermultiplet is obtained by differentiating Eq. (48)

with respect to q+ and ̃q+. These derivatives are calculated with the help of Eq. (28). We obtain

δ2	

δq+
2 δq̃+

1

= Gq(i∂M)
1

(u+
1 u+

2 )
(D+

1 )4(D+
2 )4δ14(z1 − z2), (63)

where

Gq(pM) = −2if 2
0

∫
d6k

(2π)6

(ξ0 − 1)

k4(k + p)2 + . . . (64)

The three-point gauge superfield – hypermultiplet Green function can be constructed quite 
similarly, starting from Eq. (56), but we prefer not to present the expression for it explicitly. 
Instead, we will check for it the Ward identity in the form (30). From Eq. (56) we obtain∫

dζ
(−4)
1 du1 dζ

(−4)
2 du2 dζ

(−4)
3 du3 q̃+

3 D++λ1q
+
2

δ3�	

δV ++
1 δq+

2 δq̃+
3

= 2f 2
0

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ

{
−

∫
du1 du2 q̃+(q + p, θ,u2)D

++
1 λ(−p, θ,u1)

× q+(−q, θ,u2)
ξ0

k2(q + k)2(q + k + p)2

1

(u+
1 u+

2 )2

+
∫

du1 du2 du3

[
(D+

1 )4 q̃+(q + p, θ,u3)D++
1 λ(−p, θ,u1)

× q+(−q, θ,u2)
(ξ0 − 1)

k4(q + k)2(q + k + p)2

(u+
3 u+

2 )2

(u+
3 u+

1 )3(u+
1 u+

2 )3

− q̃+(q + p, θ,u3)D++λ(−p, θ,u1)
1



I.L. Buchbinder et al. / Nuclear Physics B 936 (2018) 638–660 651
× q+(−q, θ,u2)
(ξ0 − 1)

k2(q + k)2(q + k + p)2

1

(u+
3 u+

1 )(u+
1 u+

2 )
− D+

1aD
+
1b q̃+(q + p, θ,u3)

× D++
1 λ(−p, θ,u1) q+(−q, θ,u2)

(ξ0 − 1)(γ̃ M)abkM

2k4(q + k)2(q + k + p)2

(u+
3 u+

2 )

(u+
3 u+

1 )2(u+
1 u+

2 )2

]}
.

(65)

Next, we integrate by parts with respect to the harmonic derivatives D++
1 , taking into account 

the identity

D++
1

1

(u+
1 u+

2 )n
= 1

(n − 1)! (D
−−
1 )n−1δ(n,−n)(u1, u2)

= (−1)n−1

(n − 1)! (D−−
2 )n−1δ(2−n,n−2)(u1, u2). (66)

After some algebra (described in Appendix A), this gives∫
dμ q̃+

3 D++λ1q
+
2

δ3�	

δV ++
1 δq+

2 δq̃+
3

= −2f 2
0

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6

1

k4(k + q + p)2

∫
d8θ du1 du3

× (ξ0 − 1)

(u+
1 u+

3 )
q̃+(q + p, θ,u3)λ(−p, θ,u1)q

+(−q, θ u1)

− 2f 2
0

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6

1

k4(k + q)2

×
∫

d8θ du1 du2
(ξ0 − 1)

(u+
1 u+

2 )
q̃+(q + p, θ,u1)λ(−p, θ,u1)q

+(−q, θ u2). (67)

The right-hand side of this equation can be rewritten as

i

∫
dζ

(−4)
1 du1 dζ

(−4)
3 du3 q̃+

3 λ1q
+
1

δ2	

δq+
1 δq̃+

3

− i

∫
dζ

(−4)
1 du1 dζ

(−4)
2 du2 q̃+

1 λ1q
+
2

δ2	

δq+
2 δq̃+

1

, (68)

thus demonstrating that the Green functions (48) and (56) satisfy the Ward identity (30), as it 
should be. Obviously, they also satisfy the Ward identity in the original form (27). This completes 
checking the correctness of our calculation.

5. The vanishing of the gauge dependence on shell

According to the general theorem of Refs. [38–43], the gauge-dependent terms should disap-
pear on shell. Let us verify that our results are in agreement with this statement.

It is convenient to represent the effective action in the form

	 = 	ξ0=1 + 	̃, (69)

where
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	ξ0=1 = S + Sgf − i

2

∫
d6p

(2π)6

∫
d8θ du1 du2 V ++(p, θ,u1)V

++(−p, θ,u2)
1

(u+
1 u+

2 )2

×
∫

d6k

(2π)6

1

k2(k + p)2 −
∫

d6p

(2π)6

d6q

(2π)6
d8θ du1 du2 q̃+(q + p, θ,u1)

× V ++(−p, θ,u2)q
+(−q, θ,u1)

1

(u+
1 u+

2 )2

∫
d6k

(2π)6

2f 2
0

k2(q + k)2(q + k + p)2 + . . . (70)

is the effective action in the Feynman gauge and

	̃ = −2if 2
0

∫
d6p

(2π)6

d6k

(2π)6

1

k4(k + p)2

×
∫

d8θ du1 du2
(ξ0 − 1)

(u+
1 u+

2 )
q̃+(p, θ,u1) q+(−p, θ u2)

+ 2f 2
0

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ

×
{

−
∫

du1 du2 q̃+(q + p, θ,u1)V
++(−p, θ,u2)q

+(−q, θ,u1)

× (ξ0 − 1)

k2(q + k)2(q + k + p)2

1

(u+
1 u+

2 )2

+
∫

du1 du2 du3

[
(D+

2 )4 q̃+(q + p, θ,u1)V ++(−p, θ,u2)

× q+(−q, θ,u3)
(ξ0 − 1)

k4(q + k)2(q + k + p)2

(u+
1 u+

3 )2

(u+
1 u+

2 )3(u+
2 u+

3 )3

− q̃+(q + p, θ,u1)V ++(−p, θ,u2) q+(−q, θ,u3)

× (ξ0 − 1)

k2(q + k)2(q + k + p)2

1

(u+
1 u+

2 )(u+
2 u+

3 )
− D+

2aD
+
2b q̃+(q + p, θ,u1)

× V ++(−p, θ,u2) q+(−q, θ,u3)
(ξ0 − 1)(γ̃ M)abkM

2k4(q + k)2(q + k + p)2

(u+
1 u+

3 )

(u+
1 u+

2 )2(u+
2 u+

3 )2

]}
+ . . .

(71)

stands for the gauge-dependent remainder of the effective action.
The purpose of this section is to demonstrate, by an explicit calculation, that in the approxi-

mation considered, 	̃ indeed vanishes on shell. To this end, we use the equations of motion for 
the hypermultiplets following from the action (8),

0 = ∇++q+ = D++q+ + iV ++q+; 0 = ∇++q̃+ = D++q̃+ − iV ++q̃+. (72)

In Appendix B (after some lengthy calculations) we demonstrate that, with these equations taken 
into account, the gauge-dependent part of the one-loop effective action can be cast in the form

	̃ = 2f 2
0

∫
d6p

(2π)6

d6q

(2π)6
d4θ+ du q̃+(q + p, θ,u)V ++(−p, θ,u)q+(−q, θ,u)

×
(
(q + p)2 + q2

)∫
d6k

6

(ξ0 − 1)

2 2 2 + O
(
(V ++)2

)
. (73)
(2π) k (q + k) (q + k + p)
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On shell, where q2 = 0 and (q + p)2 = 0,2 this expression vanishes. Thereby we have proved 
that the gauge dependence is vanishing on shell.

Note that, while deriving this result, we ignored all terms proportional to (V ++)k for k ≥ 2, 
because in this paper we limit our attention only to the diagrams without external gauge superfield 
legs at all, and to those having a single gauge superfield leg. In this approximation, terms of 
higher orders in V ++ are irrelevant.

6. The total divergent part of the one-loop effective action

So far we investigated gauge dependence of the two- and three-point Green functions only. In 
particular, we demonstrated that the corresponding one-loop divergences are gauge-dependent. 
However, according to Eq. (40), the Green functions with an arbitrary number of external gauge 
legs (and two external hypermultiplet legs) are also divergent. Nevertheless, the total divergent 
part of the one-loop effective action can be found using the reasoning based on the gauge in-
variance. Actually, the one-loop divergences corresponding to the two- and three-point Green 
functions (see Eqs. (42), (49), and (59)) have the form

	(1)∞ = − 1

6ε(4π)3

∫
dζ (−4) du (F++)2 − 2f 2

0

ε(4π)3

∫
d14z du1 du2

(ξ0 − 1)

(u+
1 u+

2 )
q̃+

1 q+
2

+ 2if 2
0

ε(4π)3

∫
d14z

{∫
du1 du2 q̃+

1 V ++
2 q+

1
ξ0

(u+
1 u+

2 )2

+
∫

du1 du2 du3 q̃+
1 V ++

2 q+
3

(ξ0 − 1)

(u+
1 u+

2 )(u+
2 u+

3 )

}
+ O

(
q̃+(V ++)2q+)

. (74)

The first term in this equation is gauge invariant. The expression corresponding to the first term 
in the curly brackets can also be rewritten in the explicitly gauge invariant form,

2if 2
0

ε(4π)3

∫
d14z du1 du2 q̃+

1 V ++
2 q+

1
ξ0

(u+
1 u+

2 )2
= ξ0

2if 2
0

ε(4π)3

∫
d14z du q̃+V −−q+

= ξ0
2if 2

0

ε(4π)3

∫
dζ (−4) du q̃+F++q+. (75)

According to Eq. (15), the remaining two terms in Eq. (74) are the lowest terms in the series 
expansion of the gauge invariant expression

−2f 2
0 (ξ0 − 1)

ε(4π)3

∫
d14z du q̃+ q− (76)

in powers of V ++. Thus, the divergent part of the one-loop effective action can be written as

	(1)∞ = − 1

6ε(4π)3

∫
dζ (−4) du (F++)2 + 2if 2

0 ξ0

ε(4π)3

∫
dζ (−4) du q̃+F++q+

− 2f 2
0 (ξ0 − 1)

ε(4π)3

∫
d14z du q̃+ q−. (77)

2 These equations can be derived directly from the hypermultiplet free equation of motion, see Ref. [34] for details.



654 I.L. Buchbinder et al. / Nuclear Physics B 936 (2018) 638–660
Note that this expression does not include O
(
q̃+(V ++)2q+

)
, because for obtaining the gauge 

invariant expression such terms should contain F++ in which the number ND = 4 of spinor 
derivatives acts on V −−. However, according to Eq. (40) these terms are finite and do not con-
tribute to the divergent part of the one-loop effective action. Therefore, Eq. (77) provides the 
exact result for the divergent part of the effective action of the theory in question.

Note that on shell the gauge dependence of Eq. (77) vanishes. Actually, on shell, as the con-
sequence of the equation of motion ∇++q+ = 0, we have the chain of relations

(∇++)2q− = 0 ⇒ (∇++)2∇−−q− = 0 ⇒ ∇++∇−−q− = 0 ⇒ ∇−−q− = 0 . (78)

Acting on the latter equation by ∇++ it is easy to find

q− = ∇−−q+. (79)

In deriving these relations, we made use of the well known properties D++ω−n = 0 → ω−n = 0, 
D−−ω+m = 0 → ω+m = 0 for n ≥ 1, m ≥ 1.

As a consequence of (79), we obtain that on shell∫
d14z du q̃+ q− =

∫
dζ (−4) du (D+)4

(
q̃+ ∇−−q+)

=
∫

dζ (−4) du q̃+ (D+)4
(
(D−− + iV −−)q+)

= i

∫
dζ (−4) du q̃+ F++q+. (80)

Thus, on shell, the one-loop divergence (77) takes the form

	(1)∞ = − 1

6ε(4π)3

∫
dζ (−4) du (F++)2 + 2if 2

0

ε(4π)3

∫
dζ (−4) du q̃+F++q+. (81)

We see that this expression does not depend on the parameter ξ and, hence, on the gauge choice.

7. Summary

In this paper, using the 6D, N = (1, 0) harmonic superspace formalism, we studied the gauge 
dependence of the one-loop effective action for the N = (1, 0) supersymmetric quantum elec-
trodynamics. As compared to the case of the Feynman gauge, in the general ξ -gauge some new 
divergences appear. In particular, we demonstrated that in the general case the hypermultiplet 
Green function is divergent already in the one-loop approximation, as opposed to the case of 
the Feynman gauge, in which this divergence vanishes. Moreover, we calculated the three-point 
gauge – hypermultiplet Green function in the general ξ -gauge. To check the correctness of the 
calculation, we have verified the relevant Ward identity. Also it was checked that the gauge 
dependence vanishes on shell. Taking into account the gauge invariance, we also restored the 
divergent part of the one-loop effective action with terms of higher orders in the gauge superfield 
V ++. It is given by Eq. (77) and contains a new term which is absent in the Feynman gauge. We 
demonstrated that the gauge dependence of this general expression also vanishes on shell.

It would be interesting to investigate the gauge dependence in the non-abelian case. In partic-
ular, from the results of this paper we can expect that in the general ξ -gauge the 6D, N = (1, 1)

sypersymmetric Yang–Mills theory is not finite even in the one-loop approximation, while the 
divergent terms are vanishing on shell.
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Appendix A. Ward identity in harmonic superspace

Let us show how to pass from Eq. (65) to its equivalent form (67). After integrating by parts 
with respect to the derivatives D++

1 and using the identity (66), we obtain∫
dμ q̃+

3 D++λ1q
+
2

δ3�	

δV ++
1 δq+

2 δq̃+
3

= 2f 2
0

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ

{
−

∫
du1 du2 q̃+(q + p, θ,u2)λ(−p, θ,u1)

× q+(−q, θ,u2)
ξ0

k2(q + k)2(q + k + p)2 D−−
2 δ(0,0)(u1, u2)

+
∫

du1 du2 du3

[
(D+

1 )4 q̃+(q + p, θ,u3)λ(−p, θ,u1)q
+(−q, θ,u2)

× (ξ0 − 1)(u+
3 u+

2 )2

k4(q + k)2(q + k + p)2

(
1

2(u+
1 u+

2 )3
(D−−

3 )2δ(−1,1)(u1, u3)

+ 1

2(u+
1 u+

3 )3
(D−−

2 )2δ(−1,1)(u1, u2)

)
− q̃+(q + p, θ,u3) λ(−p, θ,u1)q

+(−q, θ,u2)

× (ξ0 − 1)

k2(q + k)2(q + k + p)2

(
1

(u+
1 u+

3 )
δ(1,−1)(u1, u2) + δ(1,−1)(u1, u3)

1

(u+
1 u+

2 )

)
− D+

1aD
+
1b q̃+(q + p, θ,u3)λ(−p, θ,u1) q+(−q, θ,u2)

× (ξ0 − 1)(γ̃ M)abkM

2k4(q + k)2(q + k + p)2 (u+
3 u+

2 )

×
(

1

(u+
1 u+

2 )2
D−−

3 δ(0,0)(u1, u3) + 1

(u+
1 u+

3 )2
D−−

2 δ(0,0)(u1, u2)

)]}
. (82)

Then we integrate by parts with respect to the derivatives D−− and take off one harmonic in-
tegral with the help of the delta functions. Taking into account that the first term vanishes as 
a consequence of the analyticity of the superfields λ, q̃+, and q+, the expression (82) can be 
further rewritten as

2f 2
0

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6

(ξ0 − 1)

k4(q + k)2(q + k + p)2

∫
d8θ du1 λ(−p, θ,u1)

×
{∫

du2
1

(u+u+)
q+(−q, θ,u2)

[
1

2
(D+

1 )4 (D−−
1 )2q̃+(q + p, θ,u1)
1 2
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− k2q̃+(q + p, θ,u1) + 1

2
(γ̃ M)abkM D+

1aD
+
1bD

−−
1 q̃+(q + p, θ,u1)

]

+
∫

du3
1

(u+
1 u+

3 )

[
1

2
(D+

1 )4 q̃+(q + p, θ,u3) (D−−
1 )2q+(−q, θ,u1)

− k2q̃+(q + p, θ,u3) q+(−q, θ1, u1)

− 1

2
(γ̃ M)abkM D+

1aD
+
1b q̃+(q + p, θ,u3)D−−

1 q+(−q, θ,u1)

]}
. (83)

Once again, integrating by parts and taking into account that

1

2
(D+)4(D−−)2 = ∂2; (γ̃ M)abD+

1aD
+
1bD

−−
1 = −4i∂M (84)

on the analytic superfields, this expression can be cast in the form

−2f 2
0

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6

(ξ0 − 1)

k4(k + q)2

×
∫

d8θ du1 du2
1

(u+
1 u+

2 )
q̃+(q + p, θ,u1)λ(−p, θ,u1)q

+(−q, θ u2)

− 2f 2
0

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6

(ξ0 − 1)

k4(k + q + p)2

∫
d8θ du1 du3

1

(u+
1 u+

3 )
q̃+(q + p, θ,u3)

× λ(−p, θ,u1)q
+(−q, θ u1), (85)

where we have also used the relations

(q + p)2 + k2 + 2kM(q + p)M = (q + k + p)2, q2 + k2 + 2kMqM = (q + k)2. (86)

Appendix B. Gauge-dependent part of the effective action and the hypermultiplet 
equations of motion

In this appendix we verify that the gauge-dependent part of the effective action vanishes on 
shell. This is an important non-trivial check of the correctness of our calculations.

First, we consider the two-point Green function of the hypermultiplet given by Eq. (48). Using 
the identity

1

(u+
1 u+

2 )
= D++

1

(u−
1 u+

2 )

(u+
1 u+

2 )2
+ D−−

1 δ(1,−1)(u1, u2)

= D++
1 D++

2

(u−
1 u−

2 )

(u+
1 u+

2 )2
+ D−−

1 δ(1,−1)(u1, u2), (87)

we rewrite it as

	̃(2) = −2if 2
0

∫
d6p

(2π)6

d6k

(2π)6

(ξ0 − 1)

k4(k + p)2

∫
d8θ du1 du2

(
D++

1 D++
2

(u−
1 u−

2 )

(u+
1 u+

2 )2

+ D−−δ(1,−1)(u1, u2)
)
q̃+(p, θ,u1)q

+(−p, θ u2). (88)
1
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The second term in this expression vanishes due to the analyticity of the hypermultiplet super-
field, ∫

d8θ duD−−q̃+(p, θ,u)q+(−p, θ,u)

=
∫

d4θ+ du (D+)4
(
D−−q̃+(p, θ,u)q+(−p, θ,u)

)
= 0. (89)

After integrating by parts with respect to the harmonic derivatives, the considered contribution 
to the effective action can be represented as

−2if 2
0

∫
d6p

(2π)6

d6k

(2π)6

(ξ0 − 1)

k4(k + p)2

×
∫

d8θ du1 du2
(u−

1 u−
2 )

(u+
1 u+

2 )2
D++q̃+(p, θ,u1)D++q+(−p, θ u2). (90)

Using the equations of motion for the hypermultiplets

0 = ∇++q+ = (
D++ + iV ++)

q+; 0 = ∇++q̃+ = (
D++ − iV ++)

q̃+, (91)

we see that on shell the expression (90) is proportional to ̃q+(V ++)2q+. However, in this paper 
we do not consider terms quadratic in the gauge superfield V ++. This implies that, within the 
accuracy of our approximation, the part of the one-loop effective action corresponding to the 
hypermultiplet two-point function vanishes on shell.

Next, we consider the gauge dependent part of the three-point gauge superfield – hypermul-
tiplet Green function. It corresponds to the terms proportional to q̃+V ++q+ in the expression 
(71). We will demonstrate that ̃	(3) vanishes on shell (in the approximation when all terms with 
more than one V ++ are omitted).

Using the identity

1

(u+
1 u+

2 )2
= D++

2

(u−
2 u+

1 )

(u+
2 u+

1 )3
+ 1

2
(D−−

2 )2δ(2,−2)(u2, u1) (92)

and discarding terms quadratic in V ++ (coming from D++q+ and D++q̃+ after using the equa-
tions of motion), we obtain∫

d8θ du1 du2 q̃+(q + p, θ,u1)V
++(−p, θ,u2)q

+(−q, θ,u1)
1

(u+
1 u+

2 )2

−→ 1

2

∫
d8θ du q̃+(q + p, θ,u)(D−−)2V ++(−p, θ,u)q+(−q, θ,u)

= 1

2

∫
d4θ+ du q̃+(q + p, θ,u)(D+)4(D−−)2V ++(−p, θ,u)q+(−q, θ,u)

= −p2
∫

d4θ+ du q̃+(q + p, θ,u)V ++(−p, θ,u)q+(−q, θ,u), (93)

where the arrow indicates that we omitted some terms vanishing on shell, as well as O((V ++)2)

terms.
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Using Eq. (87) twice, we have∫
d8θ du1 du2 du3 q̃+(q + p, θ,u1)V

++(−p, θ,u2) q+(−q, θ,u3)
1

(u+
1 u+

2 )(u+
2 u+

3 )

−→ −
∫

d8θ duD−−q̃+(q + p, θ,u)V ++(−p, θ,u)D−−q+(−q, θ,u)

= −2qM(q + p)M

∫
d4θ+ du q̃+(q + p, θ,u)V ++(−p, θ,u)q+(−q, θ,u). (94)

The remaining terms vanish. Indeed, let us consider the expression∫
du1 du2 du3 D+

2aD
+
2b q̃+(q + p, θ,u1)V

++(−p, θ,u2) q+(−q, θ,u3)

× (u+
1 u+

3 )

(u+
1 u+

2 )2(u+
2 u+

3 )2
(95)

and make use of the relation (u+
1 u+

3 ) = D++
1 D++

3 (u−
1 u−

3 ). Then, after integrating by parts with 
respect to the harmonic derivatives D++

1 and D++
3 , up to the terms quadratic in V ++, we observe 

that on shell the resulting expression is proportional to (u−
1 u−

1 ) = 0,

(92) −→
∫

du1 du2 du3 D+
2aD

+
2b q̃+(q + p, θ,u1)V

++(−p, θ,u2)

× q+(−q, θ,u3) (u−
1 u−

3 )D−−
1 δ(2,−2)(u1, u2)D

−−
3 δ(2,−2)(u3, u2) = 0. (96)

Similarly, using the identity (u+
1 u+

3 )2 = D++
1 D++

3

(
(u−

1 u−
3 )(u+

1 u+
3 )

)
, we obtain

∫
du1 du2 du3 (D+

2 )4 q̃+(q + p, θ,u1)V
++(−p, θ,u2) q+(−q, θ,u3)

(u+
1 u+

3 )2

(u+
1 u+

2 )3(u+
2 u+

3 )3

−→ 1

4

∫
du1 du2 du3 (D+

2 )4 q̃+(q + p, θ,u1)V
++(−p, θ,u2) q+(−q, θ,u3)

× (u−
1 u−

3 )(u+
1 u+

3 )(D−−
1 )2δ(2,−2)(u1, u2)(D

−−
3 )2δ(2,−2)(u3, u2) = 0. (97)

Finally, collecting all terms, we conclude that the exploiting of the hypermultiplet equations 
of motion allows us to rewrite the part of 	̃ corresponding to the three-point gauge superfield – 
hypermultiplet Green function in the form

	̃(3) = 2f 2
0

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6

(ξ0 − 1)

k2(q + k)2(q + k + p)2

(
(q + p)2 + q2

)
×

∫
d4θ+ du q̃+(q + p, θ,u)V ++(−p, θ,u)q+(−q, θ,u). (98)

For the on-shell hypermultiplets the relations q2 = 0 and (q + p)2 = 0 are valid, so this expres-
sion vanishes. The conclusion is that the gauge-dependent contributions to the effective action 
are indeed canceled on shell in the approximation we stick to.
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