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1. INTRODUCTION

The method of phenomenological Lagrangians is
one of the generally accepted methods of theoretical
description of the physical effects in the spectrum of
observable particles, such that it takes into account the
intermediate states lying outside the energy scales
achievable in current experiments. A classic historical
example is the Lagrangian of the Fermi theory of weak
interactions. As we presently know, a consistent
(though far from complete) theory of these interac�
tions is the Weinberg–Salam Standard Model (SM).
The Fermi theory then emerges effectively, if we inte�
grate out all massive modes of the vector and Higgs
fields and thereby exclude them from consideration. 

Another example of the effective Lagrangians is the
Euler–Heisenberg Lagrangian [1, 2] in QED, which
non�perturbatively describes the quantum interaction
of a charged scalar or spinor field with the classical con�
stant electromagnetic field. Such a Lagrangian is invari�
ant under all symmetries of the classical theory. It
encodes a complete information about the one�loop
amplitude in the form which is most convenient for
studying the various low�energy nonlinear QED effects
including the photon–photon scattering, the change of
the dispersion law and photon splitting, electron–
positron pair production in external fields, etc. 

At present, the effective action is considered as the
fundamental object of the quantum field theory which
allows to describe the entire set of quantum effects. By
definition, the effective action is a generating func�
tional of connected, one�particle irreducible Green
functions. In the framework of effective action the

2=�

2=�

2=�

light fiends are used as a tool to probe the structure of
vacuum of the complete quantum theory. The problem
of constructing the effective action is closely related to
solving such fundamental problems of the quantum
field theory as finding the structure of vacuum and its
low�lying excitations, derivation of quantum correc�
tions to classical equations of motion, the study of
phase transitions and dynamic symmetry breaking, as
well as of quantum dynamics in strong background
fields. The construction of effective action in the
quantum field theory was discussed, for example, in
Refs. [3–7]. The concept of effective action proved
especially useful, while considering various aspects of
quantization and renormalization of gauge theories
(including aspects of anomalies some of which can be
physically relevant; for instance, it is hard to imagine a
realistic four�dimensional field theory lacking a con�
formal anomaly).

The most fruitful approach to constructing the
effective action in quantum theory of gauge fields is
based on the background field method pioneered by
DeWitt [8, 9]. This method is a generalization of the
method of generating functionals in the quantum field
theory [10–14] to the case of non�vanishing classical
background fields and non�Abelian gauge symmetry.
The basic object of the background field method is the
effective action which is invariant under the classical
gauge transformations. 

The effective action allows us to describe all aspects
of the quantum field theory. It determines the ele�
ments of the diagram techniques in perturbation the�
ory (i.e., full propagators and full vertex functions),
with all quantum corrections taken into account and,
hence, sets up the perturbative S�matrix. On the other
hand, the effective action immediately yields the phys�
ical amplitudes in external classical fields and so
makes it possible to capture all quantum effects in
external field (the polarization of vacuum of quantized
fields, particle production, etc.) [15]. 

The effective action functional is an ideal tool to
analyze the structure of physical vacuum in various
models of quantum field theory with spontaneous
symmetry breaking (Higgs vacuum, gluon condensate,
superconductivity). The effective action allows one to
take into account the back reaction of quantum pro�
cesses on the classical background, i.e., derive the
effective equations of motion for the background
fields. However, in this case there arise certain difficul�
ties related to the dependence of the off�hell effective
action on the choice of gauge fixing and the parame�
terization of quantum fields. Nevertheless, in [16, 17]
the gauge�invariant renormalizability of Yang–Mills
type theories in arbitrary gauges was proven. It was
demonstrated that a change of the gauge�fixing condi�
tion is equivalent to a certain canonical transforma�
tion of both the renormalized action and the generat�
ing functional of vertices. This, in turn, implies gauge
invariance of the renormalized S�matrix. In other
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words, the whole dependence of the generating func�
tional of the vertex Green’s functions on gauge param�
eters is entirely accommodated by the argument of the
effective action. 

A manifestly reparameterization�invariant func�
tional that does not depend on the gauge�fixing (the
so�called Vilkovisky “unified” effective action) was
constructed in [18, 19]. The Vilkovisky effective action
was analyzed, for example, in [20] in various models of
the quantum field theory (including Einstein gravita�
tion) and in quantum gravity with higher derivatives. It
was demonstrated in [21] that the unified effective
action for scalar QED and Yang–Mills theory to any
order of perturbation theory coincides exactly with the
gauge�invariant effective action calculated in the Lan�
dau–DeWitt gauge. The Vilkovisky effective action
was further improved by DeWitt [22]. However, this
modification, as a rule, does not alter the results of
one�loop calculations and, in fact, creates certain
problems basically related to the choice of metric on
the configuration space [7]. 

It follows from the above that the calculation of
effective action is of significant interest both in the
context of developing the universal formalism of the
quantum field theory and for specific applications.
The exact calculation of the effective action would
mean finding out an exact solution of the correspond�
ing quantum field theory model, which seems infeasi�
ble in the general case. Therefore, various approxima�
tion approaches (such as the expansions in the number
of loops or powers of derivatives of functional argu�
ments) are used. These expansions allow one to
describe those physical phenomena in which the role
of observables is played by particles and fields with the
masses and energies bounded from above by a certain
characteristic scale. Only the first nonvanishing terms
are kept in the effective action in the leading low�
energy approximation. Just these first terms of the
low�energy effective action make it possible to explore
the vacuum structure of the field�theoretical model
and the dynamics of its low�lying excitations. 

When finding out the effective action, all fields are
split into a background classical part and a quantum
perturbation that propagates upon this background.
The part of classical action that is quadratic in quan�
tum fields defines the propagators of quantum fields in
the background field, and the higher�order terms give
the interaction vertices in the perturbation theory. The
calculation of effective action requires, first of all,
knowing the Green’s functions of quantum fields in
the background of classical fields of various nature. 

Green’s functions in the background fields were
extensively studied. Fock [23] was the first to propose
a method for solving the wave equation in the back�
ground of an electromagnetic field via an integral
transformation with the proper�time parameter. Later,
Schwinger [2] has generalized the proper�time
method and applied it to the calculation of one�loop

effective action. DeWitt [8] has reformulated the
proper�time method in geometric terms and in the
presence of a background gravitational field. Note that
this development revealed a close relation to the the�
ory of pseudodifferential operators as a tool for the
study of partial differential equations in applications to
spectral geometry, spectral asymptotics of differential
operators, the calculus on manifolds, differential
geometry, and other mathematical methods used in
quantum theory.1

The standard Schwinger–DeWitt techniques were
later generalized [32, 33] to the case of arbitrary differ�
ential operators satisfying the causality condition. The
proper�time method directly yields Green’s functions
in the vicinity of the light cone. Thus, it is an ideal tool
to analyze ultraviolet divergences (i.e., calculate coun�
terterms, β�functions, and anomalies). The primary
advantage of the proper�time method consists in the
fact that it is manifestly covariant and allows one to
introduce different covariant regularizations of diver�
gent integrals (e.g., dimensional regularization, regu�
larization via the generalized ζ�function, etc. (see
[34])). Although the authors of the majority of papers
in this field limit themselves to the one�loop approxi�
mation, the proper�time method can also be applied
to higher loops. It was used in [35, 36] to analyze two�
loop divergences in diverse models of the quantum
field theory (including quantum gravity). 

Another important area where the Schwinger–
DeWitt proper�time method can be successfuly used is
the study of the effect of polarization of vacuum of
massive quantum fields by background fields. When
the Compton wavelength is much smaller than the
characteristic scale on which background fields “live'',
the proper�time method yields directly the power�
series expansion of the effective action over a small
parameter  The coefficients of this expansion
are proportional to the so�called DeWitt coefficients
and are constructed as local invariants of the back�
ground fields and their covariant derivatives. The gen�
eral structure of the Schwinger–DeWitt expansion of
effective action for massless fields was discussed in
[19, 32, 33]. It was noted that such models require to
go beyond the framework of local expansion by sum�
ming up the space�time derivatives of the background
field. Having introduced certain additional assump�
tions regarding the convergence of the corresponding
series and integrals, the authors of [19] summed the
leading derivatives of background fields and obtained
nonlocal expressions for one�loop effective action in
the case of a massless field. 

No exact procedure for the calculation of effective
action exists in the general case, since such a calcula�
tion would require the knowledge of propagators in
arbitrary external fields, while it is impossible to con�
struct such propagators in the exact closed form. All

1 See, for example, [24–31].

2( ) .Lλ



294

PHYSICS OF PARTICLES AND NUCLEI  Vol. 47  No. 3  2016

BUCHBINDER et al.

the calculations known to date were performed either
in the local approximation in the framework of deriv�
ative expansion of the effective action or assuming a
certain specific configuration of the background fields
(constant fields, homogeneous spaces, etc.), where an
exact solution of the corresponding quantum�
mechanical problem may be obtained. Since exact cal�
culations can be carried out only in certain specific
cases, the development of the perturbative methods of
covariant calculation of effective action is a research
area of the actual interest. It is especially important to
develop such universal methods for quantum theory of
gauge fields and gravity [33], as well as for supersym�
metric extensions of these theories. 

The background field method, being successfully
used for studies of the structure of effective action in
Yang–Mills theory and gravity, may be generalized to
supersymmetric gauge theories formulated in super�
space. Such generalizations were constructed for

 supersymmetric Yang–Mills theory and super�
gravity [37–40], as well as for  supersymmetric
Yang– Mills theory [41–45] (see also [46] for an early
attempt at developing the background field method for
certain  supersymmetric Yang–Mills models
including  supersymmetric Yang–Mills theory). 

The analysis of phenomenological and formal
aspects of supersymmetric field theory models is an
essential part of the modern theoretical high�energy
physics. An interest in supersymmetry in the field the�
ory as a symmetry between bosons and fermions

  is caused by a num�
ber of reasons. Let us distinguish some of them.

(1) Supersymmetry [47–50] provides a natural
mechanism of unifying bosons and fermions and, con�
sequently, should be regarded as an integral part of any
theory pretending to be the unified theory of funda�
mental interactions (formulations of supersymmetric
theories are given, for example, in [37, 39, 50–52]).

(2) Supersymmetry imposes strong restrictions on
the structure and coupling constants of the interaction
between bosons and fermions, thus weakening the
possible divergences. Certain problems of the grand
unification theory (such as the hierarchy problem, the
problem of exact convergence of three running gauge
coupling constants, the proton lifetime problem, etc.)
are also solved.

(3) Supersymmetry reveals an intimate relationship
between physically motivated supersymmetric field
theory nonlinear sigma models and such mathemati�
cal concepts as the geometry of Kählerian, hyper�
Kählerian, and quaternion manifolds.

(4) It is currently believed that superstring theory is
a candidate unified theory of all fundamental interac�
tions (including the gravitational one) [53, 54]. Super�
symmetry, which guarantees absence of tachyons in
the string spectrum, is a key concept of this theory. 

1=�
2=�

2=�
4=�

α

α
δφ ψ ,∼ � ,m

m
α

α αα
δψ σ ∂ φ +…

�
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The characteristic energy scale of superstring the�
ory is set by the Planck mass. At energies much lower
than the Planck mass, all quantum�field phenomena
should be characterized by an effective (low�energy,
from the standpoint of superstring theory) supersym�
metric field theory. This is the reason why the study of
various (super)field limits of superstring theories
attracts so much interest (see, for example, [53–55]).
These studies allow one to probe string effects using
the methods of the field theory (and, vice versa, field�
theoretical effects using the methods of superstring
theory). They also offer the opportunity to construct
new (super)field models with intriguing features,
including intrinsic mechanisms of supersymmetry
breaking. Supersymmetry is “hidden” at the currently
accessible energies; this implies that it is broken at a
certain scale. The determination of this energy scale
remains an intriguing problem. Theoretical analysis of
the low�energy quantum aspects of supersymmetric
models is a key to the study of probable phenomeno�
logical manifestations of supersymmetry at energy
scales achievable in current experiments. 

To date, it has been established that a special low�
energy effective action may be determined exactly in

 and  extended supersymmetric Yang–
Mills theories. However, it is to the point here to men�
tion that certain problems arise, while constructing
quantum theories with extended supersymmetry. They
are related to the fact that, in the general case, the
algebra of extended supersymmetry closes only on the
equations of motion. In superfield approaches,
the requirement of the irreducibility of a superfield
representation of superalgebra results in differential
constraints on superfields. The necessity of resolving
these constraints via unconstrained superfields (pre�
potentials) entails certain difficulties in the analysis of
quantum properties of the most interesting field�theo�
retic models with  extended super�
symmetries and in the construction of the correspond�
ing perturbation theory. In addition, still in seventies,
several “no�go” theorems on the impossibility to
describe certain important supermultiplets off the
mass shell in terms of unconstrained superfields were
formulated. As always, hidden constraints rooted in
the conditions of “no�go” theorems had to be revealed
in order to overcome such obstacles. 

Since supersymmetry transformations bring
bosons and fermions into each other, the fields of dif�
ferent spins are regarded as components of a certain
supermultiplet. The simplest  supermultiplets
contain physical fields, such that their spins or helici�
ties differ by 1/2, and auxiliary nonpropagating fields.
The representation of  supersymmetry on free
equations of motion unifies massless physical fields
with the helicities 1, 1/2, and 0 into a maximally
extended vector supermultiplet. However, the set of
auxiliary fields needed for ensuring the off�shell real�
ization of complete  supersymmetry still

2=� 4=�

2, 8= …, =� �

1=�

4=�
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remains unknown, and it is not improbable that such
representations, if exist, are infinite�dimensional.
Further extensions  necessarily incorporate
a graviton with the helicity 2, left� and right�handed
gravitinos with the helicities  and other fields. It
is frequently sufficient to know the contents of the cor�
responding supermultiplets on the mass shell in order
to write down supersymmetric Lagrangians in terms of
the component fields. However, a detailed analysis of
quantum properties of these field theory models
requires to know the field contents of supermultiplets,
as well as all symmetries of classical action, off the
mass shell. 

Extended supermultiplets are described most natu�
rally in terms of superfields given on a superspace

parametrized by the coordinates  = 

where   are anticommuting  Weyl
 spinors and  Physical and aux�

iliary fields emerge as the components of expansion of
a superfield in powers of Grassmann spinor coordi�
nates. However, this expansion contains, in addition to
the component fields of certain irreducible supermul�
tiplet of interest, also a large number of superfluous
components. Therefore, the corresponding superfields
should necessarily satisfy the constraints that elimi�
nate superfluous components. For complex 
superfields, such constraints are the conditions of
Grassmann analyticity:

Their solutions are chiral  or antichiral 
superfields depending on a half of Grassmann coordi�
nates, such that supersymmetry transformations leave

invariant conjugate chiral subspaces  and

. 

The method of  harmonic superspace [51,
56–60] is an extension of the chirality concept to

 supersymmetry. In this case, it was found nec�
essary to supplement the coordinates of  super�

space by harmonics    that param�
etrize the coset space of  automorphism
group of  Poincaré superalgebra. It turned out
that the constraints for matter hypermultiplets and

 gauge theory could be resolved after augment�
ing the standard  superspace with harmonic
sphere  and singling out, in this extended
(“harmonic”) superspace, an analytic subspace,
which is closed under the  supersymmetry trans�
formations and is parametrized by a smaller number of
Grassmann variables as compared to the standard

 superspace. The hypermultiplets and 
gauge multiplet are described by superfields which
“live” on the analytic subspace and are not subject to
any additional constraints. The prohibition (imposed

5, ,8= …�
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by “nogo” theorems) against superfield description of
representations of extended superalgebra off the mass
shell is circumvented owing to the fact that analytic
superfields contain an infinite number of auxiliary fields
(in the case of a hypermultiplet) or an infinite number
of purely gauge degrees of freedom (in the case of

 gauge multiplet). These components are elimi�
nated either by the equations of motion or by choosing
an appropriate gauge. The transformations of 

supersymmetry leave analytic subspace  ≡

 invariant, and physical and auxiliary

fields of  supermultiplets emerge in the expansion
of unconstrained superfields defined on analytical

superspace  The field content of supermultiplets
becomes infinite�dimensional, since the coefficients of
the expansion of superfields over harmonics are higher�
isospin irreducible representations of group SU(2).
Therefore, for constructing the superfield actions one
should lay down such rules that yield physical
Lagrangians for a finite number of component fields
after the elimination of auxiliary fields by their equa�
tions of motion. This is achieved by using a Berezin
integral [62] over Grassmannian coordinates and an
integral over harmonics on group SU(2) defined by the
following rules [51]:

 supersymmetric Yang–Mills theory in interac�
tion with matter is formulated in terms of two 
multiplets. The vector multiplet is described by a real

analytic superfield (prepotential  = ) that
takes values in Lie algebra of the gauge group. It con�
tains the vector gauge potential and its superpartners.
Matter fields are accommodated by hypermultiplet

 and its conjugate  that are transformed by a
certain representation of the gauge group. The classical
action of  supersymmetric Yang–Mills theory in
harmonic superspace can be written in a simple form:

(1.1)

Here  is the gauge�invariant �inde�

pendent chiral field strength superfield, and  is the
nonanalytic superfield coupled to the prepotential by

zero curvature condition2  –  +

 Unfortunately, no such a construc�

2 Here  =   =  –  are covari�

ant derivatives.
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tion for the most interesting � = 4 supersymmetric
Yang– Mills theory with all 16 supersymmetries real�
ized off the mass shell exists.3 One is forced to describe
this theory using classical action (1.1) with a hyper�
multiplet in the adjoint representation and an addi�
tional hidden  supersymmetry realized by the
transformations

(1.2)

Thus, the harmonic superspace formalism gives a
natural description of  supersymmetric theories
off the mass shell and provides an opportunity to study
the quantum aspects of such theories, with retaining
manifest  supersymmetry at all steps of calcula�
tion. The latter feature is of principal significance,
since it allows one to verify the correctness of calcula�
tions and obtain results directly in terms of 
superinvariants. This is the reason why the develop�
ment of general methods of covariant construction of
effective action in  supersymetric quantum the�
ories of gauge fields and matter in harmonic super�
space is an intensively developing research area. 

Another circle of questions is related to the choice
of field�theoretic description in terms of one or
another tensor (super)fields describing massless and
massive irreducible representations of the Poincaré
(super)group. The dynamic equivalence of descrip�
tions of a massless particle with zero spin in terms of
scalar and tensor fields is the simplest example of this
ambiguity [63]. The superfield realization of an irre�
ducible representation of superspin 1/2 in terms of
either an unconstrained real scalar  superfield
(prepotential) or a chiral spinor  superfield sup�
plies another example of equivalence that is valid on
classical equations of motion. Being dynamically
equivalent at the level of free Lagrangians, these differ�
ent realizations of the same representation lead to dif�
ferent models of interaction with gravitational and
gauge (super)fields. The  vector�tensor multip�
let with gauged central charge presents an important
example of this sort of non�equivalence. One of the
physical scalars of this multiplet is described by an
antisymmetric tensor field; the interaction of the latter
via the Chern–Simons term with  vector mul�
tiplet and  supergravity ensures the realization of
the mechanism of Green–Schwarz anomalies cancel�
lation in effective theory [64]. As a representation of

 supersymmetry, this multiplet is akin to a mass�
less 8 + 8 Fayet–Sohnius hypermultiplet [65]; how�
ever, it does not possess an unconstrained formulation,

3 A total of 12 out of 16 supersymmetries may be realized off the

mass shell within  harmonic superspace [51], but we do
not consider such formulations in this review.
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which somewhat complicates the analysis of quantum
properties of such systems. 

Lately, there was a rebirth of interest in various
aspects of field�theoretic description of 4D  and

 massive tensor multiplets and their couplings to
scalar and vector multiplets. This interest is driven
basically by the fact that a massive 2�form emerges
naturally in  supergravity appearing as a result of
compactification of type II string theory on Calabi–
Yau manifolds in the presence of electric and magnetic
fluxes (see, for example, [66]). This fact lays grounds
for a more detailed investigation of massive  and

 tensor multiplets [67]. A massive tensor multip�
let was introduced (as a dual version of a massive vec�
tor multiplet) in  supersymmetry 30 years ago,
and this construction was mentioned in monographs
[37, 39]. In contrast to standard tensor multiplets, the
models of (massless)  and  improved ten�
sor multiplets are superconformal in the case of global
supersymmetry in Minkowski space and are invariant
with respect to super�Weyl transformations in curved
superspace. In addition, being constrained by the
properly chosen harmonic constraints, the superfields
of the  tensor matter multiplets possess a finite
set of auxiliary fields, and all models of self�interaction
of these superfields are dual to special classes of q+�
hypermultiplet models [51]. There exist at least two
reasons why the improved tensor multiplet bears a spe�
cial interest: (i) it emerges as a superconformal com�
pensator in the new minimal formulations of 
supergravity (see [37, 39]); (ii) it may play the role of a
Goldstone multiplet for the partial breaking of 
superconformal symmetry associated with coset

 ×  involving  as a bosonic
subspace [68–71]. The improved tensor multiplet is
remarkable in that its super�Weyl invariance is
retained in the massive case. 

One of the basic properties of the low�energy effec�
tive action in supersymmetric field theory is holomor�
phy [72]. This property implies that finite perturbative
or nonperturbative quantum corrections to the classi�
cal action, in supersymmetric theories with complex
superfields defined on a certain subspace of a full
superspace, may emerge as holomorphic functions of
these superfields integrated over the corresponding
subspace. The nonperturbative holomorphic chiral
potential with its property of non�renormalizability
may serve as an example of holomorphy in 
supersymmetry [73, 74]. 

The remarkable demonstration of the possibilities
provided by requirement of holomorphy is the exacr
Seiberg–Witten solution for low�energy effective
action in  supersymmetric Yang�Milss theory
[75], [76]. Proceeding from the assumption of holo�
morphic dependence of the effective action on 
chiral superfield strength � in the case of a theory
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with gauge group SU(2) spontaneously broken to U(1)
and using the concept of S�duality, Seiberg and Witten
had determined this action exactly, with nonperturba�
tive contributions of instantons taken into account. In
the limit of unbroken  supersymmetry, the the�
ory has a moduli space [77, 78] on which gauge group
SU(2) is spontaneously broken to U(1). The scale Λ of
this breaking proves a dynamic parameter of 
supersymmetric Yang–Mills theory. All physical states
may be classified according to the unbroken group
U(1). Such states as a photon and all its neutral super�
partners remain massless, while the other (electrically
charged) states, such as gauge bosons W± which
belong to the coset SU(2)/U(1), acquire mass  All
charged states are massive and can be integrated out.
Thus, Seiberg and Witten had presented an example of
existence (in a judiciously chosen non�Abelian gauge
theory) of the dual Meissner effect that leads to the
linear confinement. This result sparked interest in the
investigation of effective action of  supersym�
metric models with other gauge groups and matter
multiplets. 

Analytic effective potential  constructed as an
integral over the analytic subspace of  harmonic
superspace is another striking example of holomorphy
in  supersymmetric models [79]. It should be
noted that both holomorphic and analytic contribu�
tions to the effective action emerge only in the pres�
ence of central BPS charges. 

Even more remarkable properties are featured by
the maximally supersymmetric  Yang–Mills
theory. It is UV finite and conformally invariant, and
there are strong grounds to believe that it is also self�
dual with respect to nonperturbative SL(2, Z) trans�
formations [80, 81]. The effective action in this theory
is a superfunctional of both  superfield strength
and  hypermultiplet related to each other by
additional “hidden”  supersymmetry. It was
demonstrated in [82–85] that the low�energy effective
action depending on  vector multiplet, takes the
following form in the Coulomb branch of  gauge
theory: 

(1.3)

It should be emphasized that the requirements of
 supersymmetry and superconformal invariance

are so stringent that this nonholomorphic potential is
defined unambiguously up to a numerical coefficient.
Numerical coefficient c was determined from the
direct one�loop quantum calculations and equals

 [86–89]. There are strong reasons to
believe that this one�loop effect is not renormalized by
higher loops or nonperturbative corrections; there�
fore, (1.3) is an exact low�energy effective action. 
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The effective action in theories with global and
local symmetries that are not broken by anomalies
should also respect these symmetries. Thus there arise
the problem of finding such methods of constructing
the effective action that retain the symmetries of clas�
sical action at all steps of calculations. It is common
knowledge that an adequate formulation of four�
dimensional  supersymmetric field theories is
obtained in terms of unconstrained superfields given
on  superspace. The corresponding quantum
computational techniques that guarantee a manifest

 supersymmetry have been developed long ago
and they are widely used [37, 39]. The structure of
effective action in theories with  supersymmetry
(such as the Wess–Zumino model and  super�
symmetric Yang–Mills theory) has been studied fairly
well [90–106]. Specifically, the superfield effective
potential and the effective potential of auxiliary fields
in the Wess–Zumino model [98] and the general
Kähler sigma model [101] have been found, and the
twoloop chiral effective superpotential has also been
determined [99]. The Schwinger–DeWitt background
field method in  Yang–Mills theory was devel�
oped in [91]. This method is used to study renormal�
ization properties and construct the effective action.
The techniques for analysis of the structure of effective
action in  models have been improved greatly in
recent years [107–111]; they allow one to sum up an
infinite set of Feynman diagrams with an arbitrary
number of free legs. 

For the last years, the idea of unifying the Standard
Model and gravity is considered within an approach
that presupposes the existence of a unified nonpertur�
bative superstring theory (the so�called M�theory).
Perturbations in the vicinity of various vacua of
M�theory are regarded as fundamental strings of one
of the perturbative superstring theories inter�related
by duality transformations. Duality transformations
between different phases of M�theory generally relate,
as a rule, the theories one of which is in the strong cou�
pling regime. Depending on the values of parameters
(or domains of the moduli space of M�theory), the
same observed objects may be described as fundamen�
tal degrees of freedom of one of the perturbative theo�
ries and/or as collective excitations akin to soliton�like
D�branes. The possibility to interpret closed strings as
bound states of a theory of open strings is one of the
implications of this phenomenon. In the field�theo�
retic limit, these two types of strings reproduce gravity
and gauge theories of matter fields, respectively. Mat�
ter described in terms of open strings is associated with
D�branes and “lives” on a certain surface, while grav�
ity, which corresponds to massless excitations of
closed strings, propagates within the bulk bounded by
this surface. Gravity within the bulk is associated with
the field�strength tensor of the boundary gauge theory.
These statements constitute the essence of holo�
graphic duality. 
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It follows from the hypothesis of holographic dual�
ity that correlation functions for the strength tensor in
the field theory may be associated with the amplitude
of the graviton propagation between fixed points at the
boundary. In the simplest examples of this correspon�
dence, the geometry of multidimensional space has

the form of direct product  A five�dimen�
sional anti�de Sitter space has a four�dimensional
boundary, on which  supersymmetric scale�
invariant and finite Yang–Mills theory lives. This
AdS/CFT correspondence had many physically rele�
vant manifestations.4 For example, the spectrum of
anomalous dimensions of local operators of a confor�
mal gauge theory should match with the spectrum of
energies of a particle or, more precisely, a string mode
propagating in AdS space. If the AdS/CFT correspon�
dence is correct, it is desirable to derive AdS type
geometries from first principles, proceeding from per�
turbative Feynman diagrams. A step in this direction
was made in [117]. The author of this paper claimes
that the one�loop one� and two�point functions in
scalar theory can be described naturally in terms of
propagators from the bulk to the boundary in AdS5,
integrated over the positions of the point in the bulk. It
turned out that the Schwinger parameter in the first�
quantized formulation can be identified with a radial
coordinate in AdS5 and, hence, the integration over
this variable corresponds to integration over the intrin�
sic fifth dimension. However, the things get more
complicated, starting from a four�point function, and
a fully satisfactory formulation is still lacking. It was
discussed in [118] how the background geometry can
be revealed by studying the one�loop effective action
in nonsupersymmetric theories in external Abelian
fields. It was demonstrated that proper identification
of Schwinger parameters in the Abelian Euler–
Heisenberg effective action implies integration over

  and  geometries, depending on the type
of the external field.. 

From a more general point of view, the Fradkin–
Tseytlin generating functional in string theory
[119, 120] for massless external background fields,
which defines certain generalizations of the Born–
Infeld action, should match the generating functional
for the effective action (which incorporates all quan
tum corrections) of  supersymmetric Yang–
Mills theory [121]. Certain α'�string corrections can
be summed to all orders in the open string theory in an
external constant Abelian vector field [119]. The
known Dirac–Born–Infeld (DBI) action and its
supersymmetric extensions emerge here as the effec�
tive action based on the representation of the generat�
ing functional for string amplitudes as a Polyakov inte�

4 The AdS/CFT correspondence was proposed by Maldacena in
the end of 1997 [116]. This correspondence was recently gener�
alized to other (non�AdS) spaces and non�supersymmetric and
nonconformal field theories dual to them. 

5
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gral with the Lagrangian of a covariant 2D sigma
model in the exponent of the path integral [121].
BI action

(1.4)

was proposed in the 1930s as a solution to the problem
of singularity of a point�like charge and infinity of its
energy in the Maxwell theory by analogy with the

square root  of the action of a relativistic
particle [122, 123]. The DBI theory has many intrigu�
ing properties; for example, it is causal and provides a
nontrivial example of systems with electromagnetic
duality. Supersymmetry is known to be compatible
with the causality principle, positive energy density,
and duality; therefore, supersymmetric (correctly
generalized) DBI actions should have the same fea�
tures [124–127]. This is indeed true for  DBI
action [129, 130] and should also hold true for 
DBI action [131–133]. It is common knowledge that

 DBI action is the Goldstone–Maxwell action
for  vector supermultiplet of Goldstone fields
associated with partial spontaneous supersymmetry
breaking  →  [69–134]. Partial breaking

 →  in  superspace is harder to
implement, since a natural formulation of 
gauge theories with all supersymmetries off the mass
shell is currently lacking. 

The present interest in the DBI action and its
numerous supersymmetric and non�Abelian modifica�
tions in the context of superstring theory is associated
with the action of a probe D3�brane propagating in the
curved background of an anti�de Sitter space and the
background of the electric part of RR 4 form potential
that are induced by a large number N of coincident
branes [54]. This action takes the following form:

(1.5)

Here    and

  The full action incorporates

also the Chern–Simons term characterizing the
“magnetic” interaction part  =

 The key idea of the

hypothesis of AdS/CFT correspondence is the
assumption of exact dual relationship between the IIB
supergravity description of the interaction of parallel
D�branes and the low�energy effective action of 
supersymmetric Yang–Mills theory in the Coulomb
phase of spontaneous breaking of gauge symmetry (see
[139, 140]). Specifically, it was found that the interac�
tion potential of D3�branes (extended objects that are
the solutions of classical equations of IIB supergrav�
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ity), which is described  by the DBI action, coincides
with the leading term in the low�energy effective
action of  supersymmetric Yang–Mills theory with
gauge group SU(N) (at large N) that is spontaneously
broken to the maximal Abelian subgroup [141–143].
Thus, the calculation of subsequent contributions to
the low�energy effective action of  supergauge
models turned out to be crucial for the investigation of
interrelation between supersymmetric quantum field
theory and string theory. The hypothesis of the pres�
ence of this strong interrelation motivates the
researchers to analyze quantum corrections and their
renormalization properties in supersymmetric Yang–
Mills theories [107, 144, 145].5 

Let us discuss these issues in more detail. We con�

sider the case with , i.e., all derivatives of
scalar fields are neglected; it is also assumed that

 which allows us to omit unity in harmonic

function H. Action S then becomes the same as the
action of a probe D3�brane, which is oriented along

the boundary of space  Expanding in powers
of F, we obtain the general structure of expansion

(1.6)

with the first terms

From the viewpoint of string theory in the weak cou�
pling regime, the leading terms of the interaction
between individual D�branes are described by dia�
grams of the “disk with holes” type. The small separa�
tion limit should be represented by loop corrections in
supersymmetric Yang–Mills theory, while the large
separation limit is described via interaction in classical
supergravity. If the coefficient at a certain term in the
string interaction potential turns out to be indepen�
dent of distance (i.e., of the dimensionless ratio of sep�

aration and ), this coefficient should remain the
same in quantum supersymmetric Yang–Mills theory
and in the interaction Lagrangian of classical super�
gravity. In terms of supersymmetric Yang–Mills the�
ory, the calculation of the potential of interaction
between a bunch of D3�branes and a parallel probe
D3�brane, which carries constant background field

 corresponds to the calculation of effective quan�

tum action G on the constant scalar background 
which breaks symmetry  to  × 

5 A more comprehensive list of references is found in [107–111, 145].
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and with a constant  gauge field  In the case of
interaction between D3�branes (i.e., in the case of a
finite   supersymmetric Yang–Mills the�
ory), the expansion of Γ in powers of dimensionless

ratio  takes the following general form:

(1.7)

Functions  should depend only on λ in the flat limit

(large  and fixed ). 

A naive comparison of this effective action with

supergravity expansion (1.6) (with 
) leads to a hypothesis that the l�th term

receives contributions only from the l�th order in the
loop expansion of effective action of  
supersymmetric Yang–Mills theory. This is indeed

true for the leading  term that appears only in
the first loop and is lacking in higher orders owing to
the nonrenormalization theorem. In addition, the

one�loop coefficient of term  in  supersym�
metric effective action agrees exactly with the super�
gravity expression. A similar correspondence for term

 was analyzed in [145] through the explicit calcula�
tion of its two�loop coefficient in  supersymmet�
ric Yang–Mills theory. The Lorentz structure of this
term in the effective action is the same as in the DBI

supergravity action (the form of Abelian term  is, in
fact, unambiguously fixed by  supersymmetry).
The flat  part of the coefficient in front of this
term turns out to be the same as the coefficient before
the corresponding term in (1.6). Taken together with

the known fact that Abelian term  does not appear
in the one�loop effective action, this observation may
imply that the indicated two�loop coefficient should

be exact (i.e., Abelian term  does not obtain contri�
butions from all higher loop  orders). 

This hypothesis was tested in [141] in the general
non�Abelian case. It was demonstrated that a universal

 expression, which reproduces the low�

energy terms next to the leading ones in the supergrav�
ity potential between different configurations of cou�
pled states of D�branes, exists in  supersymmet�
ric Yang–Mills theory. Since systems of branes with
different fractions of supersymmetry are described by
very different background configurations, the assump�
tion that all the corresponding interaction potentials
can be derived from a single universal expression in
supersymmetric Yang–Mills theory imposes some
rather non�trivial constraints on the possible structure
of this expression.
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To summarize, one can expect the existence of a
new nonrenormalization theorem for Abelian term F6

in the low�energy effective action (similar to the
known theorem for F4). However, an analysis based on
scale invariance and  supersymmetry is not suf�
ficient to prove the nonrenormalizability of the term
F6. Most likely, what should be used here to the full
extent is the fact that  Yang–Mills theory
respects 16 supersymmetries realized in a “deformed”
way [142]. Then it can be expected that  super�
symmetry demands the coefficient of the term F6 to be
strictly fixed through the coefficient of the F4 term (be
proprtional to its square). The fact that the F4 term
appears only at the one�loop level should imply that
the term F6 will be present only at the two�loop order. 

The story of F8 terms is even more complicated,
since a large number of different invariants of order 8
can be constructed out of the strength . In contrast
to terms of the F4 and F6 type, supersymmetry alone
does not constrain unambiguously the form of invari�
ants of the F8 type: the F8 terms in the DBI action and
in the one�loop effective action of  supersym�
metric Yang–Mills theory are different and even have
different Lorentz structures. The following hypothesis
concerning the effective action of supersymmetric
Yang–Mills theory was proposed in [145]: (i) the coef�
ficient in front of F8 in expansion (1.6) of the DBI
action receives contribution only from three loops,
and this contribution precisely agrees with the super�
gravity action; (ii) the coefficient in front of the one�
loop F8 contribution to the effective action of 
theory receives corrections from all loops, and the flat

part of the resulting nonvanishing function 

in (1.7) tends to zero in the  limit (as pre�
dicted by the AdS/CFT correspondence). 

It was conjectured in [86] that “unprotected” non�
Abelian tensor structures appear in the  

case already in order  this would imply that the
proof of the nonrenormalization theorem is applicable
only to the  case. As was found by calculation of
the two�loop low�energy effective action (in the har�
monic superspace approach), the coefficient before
this action, in the limit of large N, exactly coincides
with the coefficient in front of that term in the expan�
sion of DBI action which corresponds to interaction
of a bunch of N D3�branes with a parallel probe D3�
brane. This result allows one to make a strong asser�
tion that the correspondence between the low�energy
effective action of  supersymmetric Yang–Mills
theory and the potential of interaction of D3�branes
can be promoted to higher orders. Higher order terms

 in the effective action should arise as the
bosonic part of a combination of several 
(or ) superinvariants [144]. One of them (for
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each l) should have a “protected” coefficient that
receives contributions only from the l�th loop. Just this
term (its flat part) should survive in the strong coupling
limit and should match with similar structures in the
DBI action expansion, in accordance with the predic�
tions of the AdS/CFT hypothesis. 

There are reasons to believe that  supersym�
metric Yang–Mills theory is self�dual [80]. This prop�
erty was initially formulated as the duality between
ordinary and soliton sectors of the theory. Quite
recently, there was put forward an assumption
[124, 125], based in part on the ideas of the Seiberg–
Witten theory and the AdS/CFT correspondence
[116], that self�duality can be realized in terms of the
low�energy effective action of the theory on the Cou�
lomb branch. On this branch, gauge group SU(N) is
spontaneously broken down to  ×  and
the dynamics is described by a single  vector
multiplet corresponding to the U(1) factor of the
unbroken subgroup. Two different scenarios of realiza�
tion of the self�duality requirement for  super�
symmetric effective action in  superspace were
proposed: (i) self�duality with respect to the Legendre
transformation [126, 127]; (ii) self�duality with
respect to U(1) rotations [125]. So far, neither of these
scenarios have been deduced from first principles, and
these propositions remain hypothetical. However, cer�
tain forms of self�duality of  supersymmetric
effective action look quite natural in the context of the
AdS/CFT correspondence, and this issue has been
actively discussed in literature [124–127]. These
hypotheses have been verified to a certain extent at the
one�loop level [125, 128]. It turned out that they can
be further confirmed at the two�loop level as well; this
was the main result of a series of papers [107–114]. If
the effective action is indeed self�dual in the large
N limit in the sense of scenarios (i) and (ii), an infinite
number of nonrenormalization theorems should exist.
This corollary of the possible self�duality is of great
interest from the point of view of its verification in
supersymmetric quantum field theory. 

All the above�mentioned results regarding the
structure of nonholomorphic potential were obtained
only for a certain part of effective action, the one that
depends on the fields of  gauge multiplet. The
problem of constructing the leading contribution to
the full effective action, that depends on both 
gauge multiplet and the hypermultiplet fields was
solved by Buchbinder and Ivanov [146]. The calcula�
tion in [146] was based on purely algebraic analysis
proceeding from the requirement of additional hidden

 supersymmetries on the mass shell in 
supersymmetric Yang–Mills theory formulated in

 superspace. Manifest  supersymmetry off
the mass shell and hidden supersymmetries on the
equations of motion constitute a full set of supersym�
metries of  supersymmetric Yang–Mills theory.
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It was demonstrated that potential (1.3) and its gener�
alizations for SU(N) models could be completed to

 supersymmetric form by adding proper terms
depending on the hypermultiplet superfields. The
structure of these terms is unambiguously defined by
hidden supersymmetry. The resulting effective action
derived in [146] takes the following form:

(1.8)

where c is the same numerical coefficient as in nonho�
lomorphic potential (1.3), and  is the Euler
dilogarithm. In addition, any non�logarithmic terms
in the low�energy effective action do not allow such a
completion and so are excluded by the constraints
imposed by  supersymmetry. The construction
of effective action (1.8) by direct calculation of super�
diagrams within the framework of the quantum field
theory remained an open problem for some time. This
problem was solved in [147] and [215, 216]. 

The unification of gravity, supersymmetry, and
gauge theories leads to supergravity theories, with the
number of supersymmetries � varying from  to

 When  the minimal supergravity multip�
let starts to include scalars; the nonlinearity of gravity
action necessarily entails nonlinearity of the kinetic
term of scalar fields. Thus, nonlinear sigma models
(see [148]) are a part of the Lagrangian of extended
supergravity. There is another strong reason for study�
ing the classical and quantum aspects of non�linear
sigma models. The principle of spontaneous symmetry
breaking is the basic one for phenomenological appli�
cations of the quantum field theory. Spontaneously
broken global symmetries are not realized as symmetry
transformations of physical states, since they do not
leave invariant the vacuum state. Then, according to
the Goldstone theorem, the spectrum of physical
states always includes massless particles for each bro�
ken symmetry generator (with a highly nonlinear
effective action) [149]. In the general case, scalar fields
of a sigma model take values in the Riemannian man�
ifold with a positive�definite metric; this is necessary
for the absence of states with a negative norm (the
requirement of a positive�definite metric is met by
compact (usually symmetric) spaces). 

Sigma models with an extended number of super�
symmetries are closely related to complex geometries.
The following three results became canonical. (i) A
Kähler manifold is the target space for supersymmet�
ric sigma models with four supercharges  [150].
In four dimensons  such sigma models possess

 supersymmetry. (ii) Supersymmetric sigma
models with eight supercharges  “live” on
hyper Kähler manifolds [151, 152]. In four dimen�
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sions (D = 4), such sigma models possess  super�
symmetry. (iii) Quaternion�Kähler manifolds are the
superfield target spaces for locally supersymmetric
sigma models with eight supercharges  [153].
The superspace approach provides unique opportuni�
ties for the construction of general supersymmetric
sigma models (see, for example, [154] for a review and
a comprehensive list of references on this subject). In
contrast to 2D models, 4D nonlinear supersymmetric
sigma models (as well as their 4D non�supersymmetric
counterparts) are nonrenormalizable by the divergence
index counting. This is the basic reason why the quan�
tum aspects of such models remain poorly studied. 

The fact that supersymmetry has still not been con�
firmed experimentally suggests that it does not mani�
fest itself at the currently probed energy scales. So the
problem of seeking the theoretical mechanisms
responsible for its breaking arises. The so�called soft
supersymmetry breaking is one of the possible options.
It is used in supersymmetric gauge theories and con�
sists in adding to the action certain mass terms which
preserve gauge invariance but break supersymmetry. If
supersymmetry is broken spontaneously, auxiliary
fields acquire nonzero vacuum values, and spinor
massless Goldstone fields (goldstinos) emerge. How�
ever, standard methods of supersymmetry breaking
can lead to the loss of remarkable quantum properties
of supersymmetric theories, or at least narrow the
scope of their applicability [155]. Thus, the search for
alternative mechanisms of supersymmetry breaking
and their analysis remain an important task. 

It is clear from the said above, at present there are
quite a few string�theory related hypotheses on the
structure of low�energy effective action of supersym�
metric Yang–Mills theory and nonlinear supersym�
metric Kähler and hyper�Kähler sigma models. The
verification of these hypotheses requires the explicit
multiple�loop calculations. The hypothetical dualities
discussed above allow one to make use of the powerful
methods of supersymmetric quantum field theory to
study string theory and, conversely, of the methods of
string theory to study the effective action in the field
theory. 

The basic incentive of this review is to present the
manifestly covariant methods of expansion of the
superfield heat kernel in derivatives and the techniques
(based on these methods) for calculation of one�loop
contributions to the effective action in the framework
of the background field method for various models of
quantum field theory with extended supersymmetry. It
should be emphasized that superfield formulations in
terms of prepotentials reveal some specific features,
such as their non�polynomiality, as well as certain
complications associated, for example, with harmonic
singularities, and the need of canceling them. In view
of these circumstances, the naive construction of per�
turbation theory encounters incurable difficulties
coming from the need to sum up an infinite number of
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supergraphs. Therefore, many new nontrivial
approaches to the study of the structure of effective
action had to be invented in order to efficiently handle

 and harmonic  supergraphs. These tools
are considered in the review. 

The review is organized as follows. 
The structure of the low�energy effective action in

extended supersymmetric field models formulated in
 superspace is analyzed in the second section.

The expansion in derivatives of one�loop effective
action of  supersymmetric Yang–Mills theory
containing both the fields of  vector multiplet
and the hypermultiplet fields is derived. The formula�
tion of  supersymmetric Yang–Mills theory in
terms of  superfields is discussed, and the one�
loop effective action in the approximation of constant
Abelian field strengths  and constant hypermultip�
let fields is constructed. The action obtained is pre�
sented in the form of an expansion over supercovariant
derivatives and is rewritten in terms of  super�
conformal invariants. Notably, full  supersym�
metric low�energy effective action found in [146] is
reproduced in this manner, and the contributions next
to the leading ones in this action are found. 

It is noted that  supersymmetric functionals
with higher derivatives constructed from harmonic
superfields of  vector multiplet and hypermul�
tiplet are not automatically invariant with respect to
the initial transformations of hidden on�shell 
supersymmetry. The invariance of such functionals is
attained by deforming the transformations of hidden
supersymmetry by terms containing derivatives of
hypermultiplets. Using the formulation of 
Yang–Mills theory in  harmonic superspace and
analyzing the possible deformations of transforma�
tions of hidden  supersymmetry, we construct an

 extension of the F6�type term in the effective
action. This extension incorporates both the harmonic
superfields with higher derivatives corresponding to

 gauge multiplet and the harmonic hypermul�
tiplet superfields with higher derivatives. The proper
deformation of transformations of hidden 
supersymmetry is found. A superfield functional that is
invariant with respect to both the transformations of
manifest  supersymmetry and the deformed
transformations of hidden  supersymmetry and
contains the F6 term in the component expansion is
constructed as a result. 

The systematic  harmonic superspace
approach to the construction of one�loop effective
action (incorporating the superfields of  vector
multiplet together with the background hypermultip�
let fields) of  supersymmetric Yang–Mills the�
ory is developed in the third section. The one�loop
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effective action is constructed using the technique of
covariant  harmonic supergraphs within the for�
mulation of  supersymmetric theory through

 harmonic superfields. Calculations are per�
formed for a constant Abelian gauge field strength 
and the corresponding constant hypermultiplet fields.
The effective action dependent on hypermultiplet
fields is constructed and is written as an integral over
the analytic subspace of harmonic superspace. It is
demonstrated that each term of the low�energy effec�
tive action in the Schwinger–DeWitt expansion can be
rewritten as an integral over full  superspace. 

The problems discussed in the second and the third
sections partly overlap. The difference is that the sec�
ond section is focused on developing an approach to
the effective action in the case when the discussed
models are formulated in terms of  superfields,
and the effective action has manifest  supersym�
metry. In the third section, models formulated in

 harmonic superspace are analyzed. The corre�
sponding effective action has manifest  super�
symmetry. This provides an opportunity to evaluate
the capacities and advantages of each of these two
approaches. 

The one�loop low�energy effective action in the
hypermultiplet sector for  superconformal mod�
els is studied in the fourth section. Any such model
incorporates an  vector multiplet and a certain
number of hypermultiplets. It is assumed that gauge
group G is broken to  where K is an Abelian sub�
group, and the background vector multiplet belongs to
a Cartan subalgebra corresponding to K. A general
expression for the low�energy effective action in the
form of a proper time integral is found. The leading
(dependent on the space�time derivatives of super�
fields) contributions to the effective action are con�
structed, and their component structure in the bosonic
sector is analyzed. The component action incorpo�
rates terms with three and four space�time derivatives
of fields and is similar in form to the Chern–Simons
action.

The fifth section is focused on the analysis of 
supersymmetric massive Yang–Mills field theory for�
mulated in  harmonic superspace. Various
gauge�invariant forms of the mass term in action
(including the ones with the Stueckelberg superfield)
that lead to dual formulations of the theory involving a
tensor multiplet are given. A gauge�invariant and
manifestly supersymmetric scheme for loop expansion
of superfield effective action off the mass shell is devel�
oped. Gauge�invariant and manifestly  super�
symmetric one�loop counterterms (including the
counterterms depending on the Stueckelberg super�
field) are calculated using this scheme. The compo�
nent structure of such counterterms is analyzed. 
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The present paper is, in part, pedagogical in nature
and aims to introduce the reader to a rapidly develop�
ing branch of modern theoretical physics. For the sake
of convenience, each of the four sections of the review
has its own introduction and discussion or summary
that applies to the given section alone. Therefore, the
sections are not interdependent and may be read sep�
arately. Naturally, all of them share common basic
motivations, goals, and methods of research.

2. ONE�LOOP EFFECTIVE ACTION IN  
SUPERSYMMETRIC YANG–MILLS THEORY 
IN THE FORMALISM OF  SUPERSPACE

2.1. Introduction

Various quantum aspects of low�energy string
dynamics and the AdS/CFT correspondence are now
being studied actively [116]. These studies resulted in
a hypothesis (see [139, 145] for details) that the super�
conformal version of the Dirac–Born–Infeld action
coincides with the sum of terms of expansion of the
quantum effective action of  supersymmetric
Yang–Mills theory in the Coulomb branch, and the
structure of certain terms of this expansion is defined
by nonrenormalization theorems. 

The aim of this section is to derive the expansion in
derivatives of one�loop effective action (incorporating
both the fields of  vector multiplet and the
hypermultiplet fields) of  supersymmetric
Yang–Mills theory. The formulation of  super�
symmetric Yang–Mills theory in terms of 
superfields is discussed. The one�loop effective action
expressed through  superfields is obtained in the
approximation of constant Abelian strengths  and
constant hypermultiplet fields. The obtained action is
presented as an expansion in supercovariant deriva�
tives and may be rewritten equivalently in terms of

 superfields. Notably, full  supersymmet�
ric low�energy effective DBI action [146] can be
reproduced in this manner, and the contributions to
this action, next to the leading ones, can be found.

2.2.  Supersymmetric Yang–Mills Theory

Our goal is to calculate the one�loop effective
action of  supersymmetric Yang–Mills theory,
such that it takes into account all fields of  vector
multiplet. The  harmonic superspace approach
is now considered to be the most convenient tool to
describe the dynamics of  vector multiplet. In
this approach,  supersymmetric Yang–Mills
theory is presented as  supersymmetric Yang–
Mills theory supplemented by the minimal interaction
with a hypermultiplet in the adjoint representation of
the gauge group. 
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It is known that the exact quantum dynamics of
 supersymmetric Yang–Mills theory in the low�

energy limit in the sector of  vector multiplet is
described by nonholomorphic effective potential

6 that depends on  strengths 
(see [52, 86]). The exact form of the nonholomorphic
potential for gauge group  spontaneously bro�
ken to its maximal torus is as follows:

(2.1)

Here Λ is the scale parameter,  and

 Expression (2.1) defines the exact low�
energy potential in the leading order of expansion in
external momenta in the  gauge superfield sec�
tor. It should be noted that expression (2.1) is a fairly
general one and can be derived (up to a numerical fac�
tor) from symmetry considerations: the requirements
of scale invariance and R�symmetry. In addition,
potential (2.1) is renormalized neither by higher�loop
perturbative corrections nor by instanton contribu�
tions. All these properties are essential to understand�
ing the low�energy quantum dynamics of 
supersymmetric Yang–Mills theory in the Coulomb
phase. Notably, effective potential (2.1) is the term fol�
lowing the leading one in the interaction of parallel
D3�branes in superstring theory. It is assumed that full

 supersymmetric effective Yang–Mills theory
action obtained by summing up all quantum correc�
tions should reproduce (with certain reservations) the
Dirac–Born–Infeld action [141], as it is predicted by
the  version of correspondence between super�
symmetric Yang–Mills theory and supergravity. This
correspondence was discussed and verified up to two
loops in [145] (see also [107] for an analysis of a similar
problem for non�Abelian background), and the gen�
eral approach to the calculation of higher�loop cor�
rections was presented in [40]. 

In order to reveal the structure of constraints on the
effective action imposed by  supersymmetry and
analyze the “  supersymmetric Yang–Mills the�
ory/supergravity” correspondence in more detail, one
should study the effective action not only in the 
vector multiplet sector, but take all the  vector
multiplet fields into account. This problem has long
remained unsolved. In a relatively recent paper [146],
the full exact low�energy effective action depending
both on  gauge superfield and the hypermultip�
let was determined. It was demonstrated that the alge�
braic constraints on the structure of low�energy effec�
tive action in the framework of  harmonic super�

6 The low�energy effective action for an arbitrary � = 2 supersym�
metric Yang–Mills theory incorporates also the holomorphic
effective potential [74] that is lacking in � = 4 gauge theory.
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space, which follow from the requirements of hidden
 supersymmetry, are so stringent that they allow

one to reconstruct the dependence of effective action
on the hypermultiplet fields based on the known non�
holomorphic effective potential (2.1). As a result, the
additional (depending on hypermultiplet fields) con�

tributions, which incorporate  and hypermul�

tiplet  fields on the mass shell, are represented by
effective action

(2.2)

where Li2(X) is the Euler dilogarithm, and c is the
same constant as in (2.1) (see [146] for notation and
details). Effective Lagrangian (2.2) together with non�
holomorphic effective potential (2.1) define the exact
supersymmetric low�energy effective action of the

 Yang–Mills theory. 

The leading low�energy effective Lagrangian (2.2)
was derived in [146] through purely algebraic analysis.
The determination of such a Lagrangian and further
corrections to it in the expansion in external momenta
by direct calculations in the framework of the quan�
tum field theory was an interesting problem. This task
is a fairly challenging one, since expression (2.2) con�
tains powers of X and has a singularity at 
Therefore, it is not possible to obtain the desired result
by analyzing Feynman diagrams with a fixed number
of external lines of hypermultiplet and gauge fields; all
such diagrams need to be summed. The covariant har�
monic supergraphs technique [41] was used to solve
the problem of calculation of effective Lagrangian
(2.2) in [147]. A more general problem is to calculate,
based on the quantum�field theory or algebraic
approaches, the next�to�leading terms in the effective
action, such that they would depend on all fields of

 supermultiplet, and represent these terms in a
fully  supersymmetric form. 

This section is focused on solving the latter prob�
lem for one�loop effective action. The expansion in
derivatives of one�loop effective Lagrangian 
which depends on both  background gauge
superfields (and their spinor derivatives up to a certain
order) and background hypermultiplet superfields, is
studied. The formulation of  supersymmetric
Yang–Mills theory in terms of  superfields
[37, 39] and the technique of expanding in derivatives
in  superspace [211, 213, 214] are used for this
purpose. This approach allows one to obtain the exact
coefficients at different powers of spinor covariant
derivatives of the constant in space�time  super�
field Abelian strength  Note that this background
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strength belongs to a Cartan subalgebra of gauge group

 spontaneously broken to  Likewise,

hypermultiplet fields  are also chosen as constants
in space�time. We thus obtain

(2.3)

where   This back�
ground is the simplest one and allows one to perform
exact calculations of one�loop effective action. It will
be shown below that  superfield effective action
for this background can be determined unambiguously
by a simple substitution of variables in the effective
action (without taking into account hypermultiplet
fields). Using the procedure detailed in [144], one can
rewrite this result in  supersymmetric form that
restores full dependence on hypermultiplet fields.
Crucially, background (2.3) is a special supersymmet�
ric solution of classical equations of motion for 
supersymmetric Yang–Mills theory written in terms of

 superfields. Hence, the obtained effective
action does not depend on the choice of gauge for

 gauge superfields. In addition, it can be shown
that background (2.3) has an equivalent representa�
tion in terms of  superfields; therefore, the final
result can also be written in a manifestly  super�
symmetric form. However, this background is not
invariant with respect to the transformations of hidden

 supersymmetry that completes manifest 
supersymmetry to  The transformations of

 supersymmetry on the mass shell mix physical
fields from  vector multiplet and hypermultiplet.
However, background (2.3) does not involve physical
spinor fields that belong to the hypermultiplet and
should be transformed via physical scalar fields from

 vector multiplet under the transformations of
hidden  supersymmetry. Since manifest 
supersymmetry is present, while the initial hidden

 supersymmetry is broken, there is no reason to
expect that the effective action put on this background
should feature � = 4 invariance. 

In what follows, we will study that leading low�
energy contribution to the effective action which
includes no spinor derivatives of strength  and
hypermultiplet fields, i.e coincides with the effective
potential (2.2). It will be shown how the transforma�
tions of the initial hidden  supersymmetry
should be deformed in order to secure the full � = 4
supersymmetry of this effective potential.
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2.3. Superfield Formulations 
of � = 4 Supersymmetric Yang–Mills Theory

No formulations of � = 4 supersymmetric Yang–
Mills theory with manifest � = 4 supersymmetry off
the mass shell are known. Therefore, the studies of
specific quantum aspects of this theory are often based
on its other formulations in terms of physical compo�
nent fields (all four supersymmetries are realized as
hidden), � = 1 superfields (one manifest supersym�
metry and three hidden ones; see, for example, [37]),
or � = 2 harmonic superfields [51, 56] (two manifest
supersymmetries and two hidden ones). In all formu�
lations, some supersymmetries close only on the mass
shell. In the context of quantum calculations, it is
desirable to have as many manifest supersymmetries as
possible in � = 4 supersymmetric Yang–Mills theory.
The use of � = 2 harmonic superspace then seems to
be the best choice. However, the formulation in terms
of � = 1 superfields has its own advantages attribut�
able to the relatively simple structure of � = 1 super�
space and the fact that vast experience in working with
� = 1 supergraphs has already been accumulated. 

The � = 4 vector multiplet can be described on the

mass shell in terms of � = 4 superfields 
 satisfying the reality condition

and the mass shell conditions

Superfield  incorporates all physical fields of
� = 4 vector multiplet. Unfortunately, no manifestly
� = 4 supersymmetric action off the mass shell for
� = 4 supersymmetric Yang–Mills theory has been
found yet.

2.4. Formulation of � = 4 Supersymmetric 
Yang–Mills Theory in � = 1 Superspace

The physical field content of superfield  coin�
cides with that of a set of three � = 1 chiral superfields
and one � = 1 vector multiplet [37]. Six real scalars

that are the lower components of  superfield are
identified with three complex scalar components of

chiral � = 1 superfields . Three out of four Weyl fer�

mions present in  are included into , and the
remaining fermion is identified as a gaugino and,
together with the real gauge vector field, is put into
� = 1 vector multiplet V. In the framework of this
description, subgroup  of group  of

�symmetry remains manifest, and  representa�
tions are decomposed into the representations of this
subgroup in accordance with the following rule:

ABW ,
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  Thus, chiral superfields  are

transformed as 3 of  groups, antichiral  super�
fields are transformed as  and the vector multiplet is
an  singlet. 

The action of  supersymmetric Yang–Mills the�
ory is written in  superspace in the following way:

(2.4)

The notation and conventions adopted in [37] are used
here. All superfields are valued in the adjoint represen�
tation of the gauge group. In addition to manifest

 supersymmetry and  symmetry, which acts
on indices  of superfields Φ and  the action
has hidden global supersymmetry defined by the fol�
lowing transformations:

(2.5)

In addition, action (2.4) is invariant with respect to
transformations

(2.6)

Covariant spinor derivatives    and  used

here were defined in [37], and  is an  superfield

parameter that forms, like the  superfield itself, an
 isospinor. This superfield parameter incorpo�

rates the parameters of transformations of the central
charge, supersymmetry, and internal symmetry

 as its components. Transformations (2.6)
are defined for background covariant superfields

 and  [37]. Only these cova�
riantly chiral superfields will be used below, and sub�
script c will be omitted. It is convenient to introduce

new notation    and rewrite two
last terms in (2.4) as follows:

This is an � = 1 superfield form of interaction between
a hypermultiplet and the lower components of chiral

 vector field strength in  theory. 
In the case of an Abelian gauge group, the consid�

ered model is free. If the gauge group is non�Abelian,
the model has a vacua space parameterized by the vac�
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uum values of six real scalars. The vacua manifold is
specified by the scalar potential vanishing conditions
(“F�flatness” and “D�flatness”) [74]. The solutions of
these equations define the structure of the theory
vacua and are classified according to the gauge theory
phase to which these vacua belong. In a purely Cou�
lomb branch, each scalar field may have a certain non�
zero vacuum value. As a result, vacua form manifold

 where �r is the Weyl group of permuta�

tions of  elements. Torus  is the unbroken part of
the gauge group. If several scalar fields develop the
same vacuum value, a certain non�Abelian gauge sub�
group  remains unbroken, and additional
massless gauge fields emerge in the theory.

2.5. Formulation of  Supersymmetric 
Yang–Mills Theory in  Harmonic Superspace

With respect to � = 2 supersymmetry, the � = 4
vector multiplet is decomposed into a vector � = 2
multiplet and a hypermultiplet. Thus, � = 4 super�
symmetric Yang–Mills theory can be regarded as a
particular case of � = 2 supersymmetric gauge theory
with the full action being the sum of actions of � = 2
supersymmetric Yang–Mills theory and hypermultip�

let  in the adjoint representation interacting mini�
mally with the � = 2 vector multiplet. This theory is
formulated in � = 2 harmonic superspace [51, 56],
and the dynamic variables in this case are a real ana�

lytic gauge superfield  and the complex analytic

hypermultiplet  superfield. They are not subject to
any additional constraints. The action of � = 4 super�
symmetric Yang–Mills field theory is as follows:

(2.7)

The corresponding equations of motion are

(2.8)

Here  are the indices of global  symmetry;

  =   is the strength

of � = 2 analytic gauge superfield connection  in

the λ�basis; g is the interaction constant; and  =

  =  and  are the
measures of integration over the entire harmonic

space, its analytic subspace, and  harmonics 

respectively. Derivatives  do not contain connec�
tions in the λ�basis, where manifest G�analyticity takes
place. Equations (2.8) are the equations of motion for
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� = 4 supersymmetric Yang–Mills field theory that
are written in terms of  superfields. Action (2.7)
allows manifestly  supersymmetric generaliza�
tions. In addition, this action is invariant with respect
to hidden  supersymmetry transformations [51]

that mix superfields  and  with  but close only
on the mass shell. In the Abelian case, the transforma�
tions of this hidden  supersymmetry take the fol�
lowing form:

(2.9)

Thus, the considered model has  supersymmetry
on the mass shell. 

The vacuum structure of model (2.7) in the Abelian
case is defined by the solutions of equations

(2.10)

which are basically the Abelian variant of general
equations (2.8). For physical component fields of

 vector multiplet defined by expansions

(2.11)

superfield equations (2.10) lead to the following sys�
tem of ordinary equations:

(2.12)

A set of constant background fields is the simplest
solution to these equations of motion:

(2.13)

These fields are transformed linearly through each other
with respect to hidden � = 2 supersymmetry (2.9):

(2.14)

Solutions (2.13) are the simplest vacuum configura�
tion realizing the representation of  supersym�
metry and allowing one to calculate  supersym�
metric low�energy effective action for  super
Yang–Mills theory. 
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It is instructive to compare  supersymmetric
background (2.13) with background (2.3). The latter
contains components Φ and F present in  vector
multiplet, while components  and  of the hyper�
multiplet are not included in it. As a result, back�
ground (2.3) is not invariant with respect to hidden

 supersymmetry transformations (2.14) and thus
does not realize the representation of  super�
symmetry. However, background (2.3) is a representa�
tion of  supersymmetry. Therefore, the effective
action calculated using background (2.3) in the frame�
work of the  supersymmetric background field
method should feature manifest  supersymme�
try and gauge invariance, but should not exhibit full

 supersymmetry. The results of calculations (see
below) confirm this assumption. 

A method proposed in [146] should be used to con�
struct a fully  invariant effective action. The idea
is as follows: the effective action in the  vector
multiplet sector is analyzed, and the action depending
on both  vector multiplet and a hypermultiplet is
then constructed in such a way that the resulting
action is invariant with respect to the transformations
of hidden  supersymmetry (2.9).

2.6. Background Field Method in � = 1 Superspace

When calculating the effective action, we can use
the background field method in � = 1 superspace and
the proper time technique adapted to the � = 1 super�
field formalism. This provides an opportunity to pre�
serve classical gauge invariance in the calculation of
effective action and sum up an infinite set of contribu�
tions of Feynman diagrams to a single functional
depending on background fields. It was already noted
that the considered theory may be formulated in terms
of component fields, through � = 1 superfields, or
through  harmonic superfields. The use of the
component formulation makes the problem an
exceedingly complex one, since a large number of
interacting fields are present, while manifest super�
symmetry is lacking. To study the effective action of
the model, the formulation in � = 2 harmonic super�
space can be also used. The background field method
for theories in  harmonic superspace was pro�
posed in [41]. The proper time technique in superfield
theories was discussed in several recent papers (see, for
example, [107] and references therein). One can run
into certain technical difficulties if trying to directly
apply general methods for finding out the effective
action; therefore, when performing the concrete cal�
culations, the general methods should be supple�
mented with some specfic tricks. 

The calculation of effective action in the consid�
ered theory with the proper time technique requires
analyzing matrix differential operators in a superspace
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which mix the sectors of  vector multiplet and
hypermultiplet. The harmonic supergraphs technique
can be used to study the effective action; however,
while doing so, certain technical problems can arise.7

To be able to overcome them, some special methods
should be developed for determining those contribu�
tions to the effective action which are next to the lead�
ing one and so take the theory beyond the low�energy
approximation. These problems can be evaded by
working in terms of � = 1 superfields and making use
of the experience accumulated in the study of theories
in � = 1 superspace [37, 39, 107, 211]. 

It is common knowledge that the background field
method implies decomposing fields into their back�
ground and quantum components and imposing
gauge�fixing restrictions on quantum fields. It is obvi�
ous that full gauge invariance of classical (background)
fields is preserved by this procedure, although gauge
fixing can break some classical symmetries (see [112]
for a detailed discussion of this problem). 

We determine one�loop effective action Γ, which
depends on background superfields (2.3), as a func�
tional integral over the space of quantum fields

(2.15)

Here  is the classical action part that is quadratic in
quantum fields and includes the gauge fixing condi�
tions, and  is the corresponding ghost action. For�
mal calculation of path integral (2.15) leads to a repre�
sentation of the effective action through the functional
determinant (see (2.24)). 

The choice of a multiparameter covariant gauge
fixing condition is one of the key points of � = 1
superfield calculations: 

(2.16)

where  are the Nielsen–Kallosh ghosts fields. The
gauge fixing conditions imposed on quantum super�
fields  and ϕ are as follows:

(2.17)

where  are arbitrary numerical parameters, and
  are standard symbols for Laplace�like opera�

tors in  superspace. It is obvious that gauge con�
ditions (2.17) are covariant with respect to background
gauge transformations. Gauge conditions (2.17) may
be regarded as a superfield generalization of type
gauges (see [185, 211]) that are often used in sponta�
neously broken gauge theories. Since the Abelian
background is the solution of classical equations of

7 These methods are discussed in Section 3.
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motion, no matter how gauge parameters are chosen.
A gauge of the Fermi–DeWitt type,  well
suits our purpose. If the parameters are chosen this
way, the problem of calculation of mixed contributions
with vector and chiral superfields in propagators may
be evaded. Otherwise, for calculation of such contri�
butions one would be forced to operate with involved
expressions of the following type:

(2.18)

It should be emphasized once more that not all glo�
bal symmetries of classical action are necessarily
retained in an explicit form in gauge theories at he
quantum level (even in the absence of anomalies). The
reason for this is related to the necessity of gauge fix�
ing. It will be shown later that this fixing breaks certain
symmetries (the breaking of classical conformal sym�
metry was discussed in [112]). This phenomenon is a
fairly general one. In the case under consideration,
gauge fixing (2.16) breaks global classical  sym�
metry (2.5), (2.6), since this gauge is covariant only
with respect to the transformations of  super�
symmetry. Therefore, one should expect that the cal�
culated effective action is invariant only with respect
to the appropriate quantum deformation of hidden

transformations (2.5). The proper deformation can be
found in each given order of the loop expansion. 

After splitting fields into quantum and background

parts (i.e.,  =   

   ), we
can write down the quadratic part of classical action
(2.4) and the term that fixes gauge (2.16):

(2.19)

Here  

(2.20)

  are the strengths of
background fields lying in a Cartan subalgebra, and

 The Weyl basis in the space of Hermi�
tian traceless matrices of algebra  was used in the
derivation of (2.19). In the case under study, we limit
ourselves to gauge group  broken to its maximal

torus  The  constraint emerges due to the
fact that the quantum superfield components valued in
a Cartan subalgebra do not interact with background
fields and are thus fully disentangled. 

Operator  depends on covariant derivatives and
background fields. The exact form of its matrix is as
follows:

(2.21)

where

and  denote operators  and  respectively.
Operators  act in the space of chiral and antichiral

superfields in the following way:
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ever, the chosen gauge conditions (2.17) lead to partial
diagonalization. The matrix assumes a block form

 as a result, and the kinetic operator of vec�
tor fields is separated, thus simplifying the problem of
calculation of functional traces. The chosen gauge
parameters ensure that no vertex of interaction
between quantum matter fields and quantum vector
fields is present, but produce vertices of interaction
between quantum chiral fields and ghosts. 

Let us consider the structure of contributions of
Faddeev–Popov ghosts to one�loop effective action.
Ghost action  for the term that fixes gauge (2.17) is

(2.22)

which gives the following contribution of ghosts to
effective action:

(2.23)

where matrix MIJ is defined in (2.20). 
The result of integration in functional integral (2.15)

over all quantum superfields is given by the formal rep�
resentation through functional determinants

(2.24)

Since superfields Φ and  belong to a Cartan subal�
gebra, only a half of roots should be taken into account
when integrating over quantum fields, and the effec�
tive action acquires the form

Our next goal is to calculate functional determi�
nant (2.24).

2.7. Calculation of Functional Traces 
and One�Loop Effective Action

This section presents the basic stages of calculation
of functional traces of differential operators in a super�
space that define the background�dependent contribu�
tion to effective action (2.24). It can be seen from (2.21)
that if background superfields  take zero values,
matrix operator H includes only the background�
dependent inverse propagators  and  and the verti�
ces of background fields Φ that interact with the hyper�
multiplet quantum fields. It should be noted that the
form of H containing full inverse propagators is fixed
completely by the choice of the type gauge (2.17). 

At the first stage, we decompose matrix H into a sum
of two matrices,  where matrix  con�

tains all blocks with   and matrix  con�

tains only the blocks with  and  The logarithm of
matrix  can be presented in the following way:

Using the known Frobenius formula for the inversion
of block�type matrices
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where It can be seen that matrix M defined in (2.20) emerges

naturally upon inversion. Surprisingly, the 
product acquires a fairly simple form

(2.25)

At the next stage, we turn to calculating matrix

traces. Let us expand  into a series in

powers of  Nonzero contributions to the trace
are produced only by even expansion powers that are
grouped into the following expression:

(2.26)

where matrix M is the same as in (2.20), and  stands for
a functional trace. Let us then consider the trace of
matrix  Using the technique described above, we
decompose matrix  into a sum of a diagonal matrix
and all the rest (i.e., present it as ). Hence,

(2.27)
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rithm of matrix  can be written as
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Direct calculations of matrix traces for the first terms
of the Taylor series show that one can write
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Taken together with (2.26), the latter expression yields
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The contribution of Faddeev–Popov ghosts is
defined by (2.23). Having isolated and discarded

expression  we obtain the following

form of the contribution of ghosts to the effective
action:
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Mills theory was first noted in [52] in calculations in
harmonic superspace. However, this result holds true
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Owing to the cancellation of (2.31) and (2.30), we
can finally determine the full one�loop contribution to
effective action (2.24) in a simple form which is deter�
mined exclusively by contributions from vector fields

(2.32)

while the whole background dependence is accommo�
dated by matrix M. The expansion of the functional
trace in powers of the strength of gauge fields for the

 operator in the above formula has already
been calculated several times by different authors, but
only in the case of a single chiral superfield (see
[96, 144, 211, 213] and references therein). The theory
with hypermultiplets differs only in the structure of

matrix  +  +  which is defined in
(2.20) and is invariant under the transformations of �
symmetry group of  supersymmetry. Therefore, we
can use the results obtained earlier and generalize them
to the considered model just by replacing matrix M. 

Functional trace (2.32) can be expressed as an
expansion in powers of dimensionless superfield com�
binations  and  defined as
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sum up these expressions and obtain the following cor�
rection to the full one�loop action (see [144] for
details):
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to the one�loop effective action admits natural expan�

sion of the Schwinger type in powers of  This

expansion does not contain an type term, which is
attributable to the features of  supersymmetric
Yang–Mills theory. Function ω, which is introduced
in (2.34) (see [144]), is expanded as

(2.35)

Tr ln( ) ,V IJ

I J

i O M
<

Γ = −∑

( )V IJO M−

(M = ΦΦ QQ )QQ ,
� �

R
4=�

Ψ Ψ

2 2 2 2 2 2

2 2
1 1W W

M M
Ψ = ∇ , Ψ ∇ .

d d e
2 2

8

2 2

0

2 2

2 2 2

2 2

1 ( )
8

cosh( ) 1
( )

cosh( ) 1 ( )
cosh( ) cosh( )

t W Wz tt t t
M

t
t t

t

t t
t tt

∞

−

Γ = ω Ψ, Ψ ,

π

Ψ −
ω Ψ, Ψ =

Ψ

Ψ − Ψ − Ψ
× .

Ψ − ΨΨ

∫ ∫

2 2 .F M

�6F
4=�

2 2
4 2 2 4

2 6 6 2 4 4

1 5( ) ( )
2 4 5 12 7

1 1( ) .
34500 86400

x y
x y x y x y

x y x y x y

ω , = + − +
⋅ ! ⋅ !

+ + + +…

Expression (2.35) allows one to expand effective

action (2.34) into a series in powers of  and 

(2.36)

where term  contains  with  In
the bosonic sector, this expansion corresponds to the
expansion in powers of strength F, namely,  ~

  +  where  and 
are physical bosonic fields of  vector multiplet
and hypermultiplet.

2.8. Transformation of  Supersymmetric Effective 
Action into a Manifestly  Supersymmetric Form

Effective action (2.34) and its expansion (2.36) are
written in terms of  superfields. In the present
section, Eq. (2.36) is rewritten in a manifestly � = 2
supersymmetric form. To this end, we single out the

� = 1 superfield argument  (defined in

(2.2) in terms of  superfields) in matrix M
defined in (2.20), represent M as  and

expand denominators  appearing in (2.34) in a
power series in X. This expansion yields the following
expression for the general term of series (2.36):

(2.37)
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this background is insufficient for the restoration of
 supersymmetric form, since the derivatives of
 hypermultiplet fields need to be taken into

account. The procedure of restoration of  super�
symmetric expressions based on their corresponding

 reductions involves, first and foremost, the res�

toration of  integration measure  =

 Thus, in order to restore an integral

over  superspace from that over  super�

space, one should extract derivatives  from
the original superfield expression under the 
integral. For gaining such total derivatives in the
expression under the integral in (2.37), one should

manually add all missing terms containing 
derivatives with correct numerical coefficients to the
initial  superfield expression, since such terms
cannot emerge in the course of calculation. If the
effective action would be calculated on the proper
background (2.13) instead of a special (2.3) one, these
terms would emerge automatically. In this case, one

could at once single out derivatives  in the expres�
sion under the � = 1 integral and transform the latter
into an integral over � = 2 superspace. 

Some rather evident assumptions regarding the
properties of effective action are used below. The
effective action should be manifestly  supersym�
metric; consequently, each term of its expansion
should be written as an integral over  superspace
of a function that depends on  superfield
strengths, hypermultiplet superfields, and their spinor
derivatives. Therefore, integrating by parts in integrals
over  superspace and step�by�step properly
transforming the terms of expansion in derivatives, we
transfer all derivatives acting on hypermultiplet super�
fields from these superfields on  superfield
strengths, and then perform the reduction to 
superfields. The obtained result demonstrates that all
terms of the expansion in derivatives can be written in
a form similar to the series general term  that is
defined in (2.36) (i.e., without the derivatives of
hypermultiplet superfields). Thus, one can start with
contributions to the effective action that are written in
an  supersymmetric form and then transform the
obtained expressions into the corresponding 
supersymmetric form. It should also be kept in mind
that the terms of expansion in derivatives in the limit of
zero hypermultiplet fields are expressed through

 superconformal scalars [144]
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where superfield  is defined in (2.2). The

second term in (2.42) can be transformed into form
(2.2) with the use of the Euler dilogarithm expansion

into a power series and the relation  =  – 

+  It becomes clear after these transformations

that expression (2.42) is nothing but the effective
Lagrangian (2.2) derived in [146]. 

The  representation of the next term  of
series (2.36) is derived using (2.40) and the expansion

of  in X. Direct analysis (similar to the one per�
formed for the first term) yields the following expres�
sion for  in (2.36):

(2.43)

The X�independent part of this term was obtained in
[144]. The series in (2.43) is summed to the exact
expression in the following way:
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of the fourth term  in (2.36) comprises two
parts. The first one is expressed as

(2.47)

and the second one is given by

(2.48)

Thus, we arrive at the conclusion that the outlined tech�
nique for the restoration of  superfield form of
effective action (2.34) for  supersymmetric Yang–
Mills theory written initially in terms of  super�
fields can be applied to any term of expansion (2.36).
In order to do that, one should add, to the terms in
(2.36), new terms with hypermultiplet superfields.
This technique does not guarantee that the restored

 form bears  invariance. This should be
verified separately. In this analysis, the  super�
field representation of hidden  supersymmetry
transformations (2.5), (2.6) or the  superfield
form (2.9) of these transformations in harmonic
superspace can be used. 

The low�energy effective action of  super�
symmetric Yang–Mills theory should be self�dual
[124] and invariant with respect to superconformal
transformations (possibly deformed, see [112]). How�
ever, these requirements are insufficient to fix uniquely
the form of the  effective action. So far, we have
used the constant field approximation (2.3) that
implies the absence of derivatives of hypermultiplet
fields. This approximation is sufficient for restoring
manifest  supersymmetry of the effective action
from its  form (2.34) which was obtained by
using the background (2.3) involving  gauge
multiplet scalars [144]. However, the calculation of

 supersymmetric effective action requires using
the background with . The terms with deriva�
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supersymmetric form of effective action, can also be
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performed in [146].
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2.9. Analysis of the Deformation 
of  Supersymmetry for the Effective Action 

in  Superspace

Global and local (in supergravity)  super�
symmetries off the mass shell are realized linearly on
physical fields and on an infinite set of auxiliary fields.
Supersymmetry transformations do not depend on the
specific form of action in the theory in this case. How�
ever, symmetry transformations are realized nonlin�
early on the mass shell. When obtaining such higher�
derivative contributions to the effective action that sat�
isfy the requirement of preservation of extended
supersymmetry, one should deform classical transfor�
mations systematically and self�consistently and, at
the same time, construct supersymmetrically invariant
terms with higher�order corrections to the action: 

Here  are classical supersymmetry transformations,
 is the classical action, and  are quantum defor�

mations and higher�order corrections to the action,
respectively. It is hardly possible to determine the full
derivative dependence of the effective action in a
closed form. The only thing one can do in this situa�
tion is to write down, relying on the known particular
results, all the supersymmetric invariants and
deformed transformations with a given number of
derivatives. The problem of calculating the full 
supersymmetric invariant for the leading potential

 in the sector of  superfield strength was
solved in [147] (see [52, 107, 145] for a review of recent
progress in this field). 

Many different approaches to the construction of
supersymmetric corrections with higher derivatives to
string effective action are known. An  extension
of the Abelian  Born–Infeld action off the mass
shell was found in [124] proceeding from the action of
supersymmetric Maxwell theory in  harmonic
superspace [51]. The  superfield strength con�
tains a specific combination of tensor auxiliary fields
and the gauge field strength. The nonlinearity in the
ordinary gauge field strength emerges in the compo�
nent Lagrangian as a result of elimination of these aux�
iliary fields by nonlinear equations of motion. This
mechanism of derivation of the bosonic Born–Infeld
Lagrangian from supersymmetric action differs from
the case of   supersymmetric Born–Infeld
theory in which each term of the expansion of bosonic
action in powers of the gauge potential strength is
supersymmetrized independently. 

In this section, we present one possible self�consis�
tent way of finding hypermultiplet�dependent com�
plements and appropriately deformed hidden super�
symmetry transformations which are needed for
ensuring manifest  supersymmetry of the next�
to�leading terms of the  supersymmetric Yang–
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Mills theory effective action. The method proposed
may prove useful in solving the problem of construc�
tion of invariants with higher derivatives, since the
direct search for these invariants deals with a great
number of alternative options. 

In what follows, we focus on the problem of invari�

ance of the  term in the effective action of 
supersymmetric Yang–Mills theory under the trans�
formations of hidden  supersymmetry. 
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derivative expansion of the effective action, such that
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symmetry transformations defined up to surface terms
and free equations of motions:
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subscript  denotes the degree in X (i.e., ).
Let us define the first complement to (2.50):

(2.52)

Its variation  with respect to  cancels the first
term in (2.51) under the choice  however, the
second term in (2.51) is not cancelled out. Since the
structure of functionals (2.50) is nonsymmetric with

respect to the  substitution, while the

variation is symmetric, a remainder (the differ�
ence between variations (2.50) and (2.51)) will be pro�
duced at each step of the variational procedure. One�

loop term  with the known complement to it
[146] can be used to cancel this remainder:
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(2.57); however, complete cancellation requires incor�
porating additional structures into both the action and
the hidden symmetry transformations. In what follows
we will show which terms should be added to the action
and the hidden supersymmetry transformations in
order to secure invariance up to the terms of order F8. 

The above example demonstrates that the comple�

ment to  (2.50) is basically defined by clas�
sical transformations (2.49) induced by parameter 
and the discrepancy associated with ε is removed by a
proper modification of hidden symmetry transforma�

tions  in each order. Thus, the problem is
split into two separate tasks. This is the basic idea
behind the proposed method for constructing expres�
sions which contain derivatives of the vector multiplet
strengths and are invariant with respect to the transfor�
mations of hidden  supersymmetry. 

Let us now try to determine the leading type
term in the full effective action using the method
described above. To this end, one should choose a gen�
eral term in the series of complements to (2.50) of
the form

(2.63)

Classical variation  induced by parameter  for

terms  is given by

(2.64)

The requirement of cancellation of variations 
and  is satisfied if 

(2.65)

Summing all complements  =  one
obtains

(2.66)

This result is not complete in the sense that contribu�
tions involving the derivatives of hypermultiplet fields
should be added to it. However, the general term with

derivatives  can be determined. Let us intro�
duce the following new type of complement:

(2.67)

The required cancellation of its variation  and the
corresponding term in variation (2.63) leads to an
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inhomogeneous recurrence relation for pn with the fol�
lowing solution:

(2.68)

where  =  are harmonic numbers  For

the coefficients of a series with the general term of a

different type,  = 
another type of recurrence relation between the coef�
ficients  arises.

Thus, for solving the problem of � = 4 supersym�
metrization of the next�to�leading terms of effective
action, one has to consider transformations that mix
the terms of different powers in the expansion of
effective action in derivatives. Let us consider the
variation of classical action in order to make sure that
transformations (2.54) and (2.55) are meaningful.
The variation of the hypermultiplet action is propor�

tional to equations of motion  while the
variation of � = 2 gauge superfield strength accord�
ing to the rule (2.54), generates the following varia�
tion of action:

(2.69)

The structure of this variation is the same as that of the

variation of expression  with respect

to (2.49); therefore, this expression should be added to
the classical action in order to establish invariance
with respect to deformed transformations (2.54). 

Let us consider the first deformed variation of a

term of the  type (2.50). We obtain

(2.70)

The first term in brackets is similar to the classical vari�

ation of a one�loop term of the  type:  =

=  however, it has a

different coefficient . This implies that one�loop

coefficient  in front of the type term [145]

should be renormalized by two�loop corrections. The
second term in (2.70) is of a new type. Its cancellation
requires a term of a new structure
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with a typical  two�loop coefficient 

Therefore, one might assume that an �type term
should emerge in two�loop calculations of the effective
action. On the one hand, exactly this term is needed to
cancel the second term in (2.70); on the other hand, it
should have a coefficient typical for two�loop correc�
tions.8 

Thus, the self�consistent approach allows one to
obtain proper complements, which incorporate
hypermultiplet superfields, and deformed supersym�
metry transformations that, in their turn, provide an
opportunity to retrieve information concerning the
renormalization of higher contributions to the effec�
tive action.

2.10. Summary

The derivative expansion of one�loop effective
action (incorporating both the � = 1 vector multiplet
superfields and the superfields of matter hypermultip�
lets) of � = 4 supersymmetric Yang–Mills theory was
constructed. The obtained action was rewritten in
terms of the expansion in powers of � = 2 supercon�
formal invariants the leading term of which coincides
with the � = 4 supersymmetric effective potential
constructed earlier in [146]. Next�to�leading contri�
butions to this action were found. It was emphasized
that all the obtained manifestly � = 2 supersymmetric
contributions (except for the leading one) are not nec�
essarily invariant with respect to classical hidden
� = 2 supersymmetries, which is attributable to the
choice of background and the gauge�fixing procedure.
The possible self�consistent deformations of hidden
� = 2 supersymmetries and the subleading terms of
the effective action of � = 4 supersymmetric Yang–
Mills theory off the mass shell were analyzed in the
formulation using � = 2 harmonic superspace. There
was cnstructed a complement (depending on the
superfields of hypermultiplets) for two�loop term

 in the Schwinger–DeWitt expansion of the
effective action.

3. ONE�LOOP EFFECTIVE ACTION 
OF  SUPERSYMMETRIC YANG–MILLS 

THEORY IN HARMONIC SUPERSPACE

3.1. Introduction

The  supersymmetric Yang–Mills theory
attracts particular attention owing to its several unique
quantum properties such as finiteness and exact super�
conformal invariance and due to its intimate relation�
ship with string and brane theory (see, for example,
[54, 139]). The discovery of AdS/CFT correspondence

8 The possibility that an F8�type term emerges in calculations of
two�loop corrections to the effective action is discussed in [145].

4
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∝

π
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4=�

stimulated another surge in  interest in the study of
various aspects of  supergauge theory. It was
already noted that the AdS/CFT correspondence [116]
is a hypothesis of duality between IIB superstring the�

ory compactified on  and four�dimensional
 supergauge theories in the t’Hooft limit. It is

assumed that the low�energy properties of string the�
ory in a 5�dimensional bulk are connected to 
supersymmetric gauge quantum field theory on a
4�dimensional boundary. More specifically, the theory
in a bulk is reduced in the considered limit to
5�dimensional classical supergravity that contains
complete information regarding the correlation func�
tions of gauge�invariant composite operators in quan�
tum   theory. It also follows from this
hypothetical correspondence between  gauge
theory and string theory that the interactions of
D3�branes in the static limit should be described com�
pletely in terms of the low�energy effective action of

  supersymmetric Yang–Mills theory in
the Coulomb branch [141, 144, 145]. Thus, 
supersymmetric gauge theory should be regarded as an
integral part of superstring theory. 

It was already noted that the formulation of 
gauge theory with manifest  supersymmetry off
the mass shell still remains unknown. A superfield
description of this theory on the mass shell is attained
in terms of scalar superfield  
that forms a six�dimensional real representation of the
internal symmetry (“R�symmetry”) group :

 =  [186]. Superfield  is subject to

constraints

These constraints lead to the equations of motion for
component fields. The set of the latter corresponds to
a vector  multiplet containing six real scalar
fields, four Majorana spinor fields, and one vector
gauge field.9 

In the framework of � = 2 supersymmetric field
theory, an � = 4 vector multiplet is a direct sum of an
� = 2 vector multiplet and a hypermultiplet [51].
Therefore, the � = 4 gauge theory may be regarded as
a certain extension of � = 2 supersymmetric gauge
theory, such that its ordinary action is supplemented
by the action of � = 2 hypermultiplet in the adjoint
representation, interacting with the � = 2 vector mul�

9 The same multiplet may be described off the mass shell in � = 3
harmonic superspace [51, 56]. Quantum aspects of � = 3 gauge
theory in the harmonic fornulation were discussed in [61]. The
effective action structure of this theory was analyzed in [41].
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tiplet via minimal coupling. This model has an addi�
tional hidden � = 2 supersymmetry which, together
with manifest � = 2 supersymmetry, close on � = 4
supersymmetry. Both � = 2 theories constituting the
� = 4 theory are naturally formulated in � = 2 har�
monic superspace [51, 56]. Owing to the presence of
manifest � = 2 supersymmetry in the harmonic
approach, this formulation simplifies quantum analysis.

Direct calculations of multi�loop contributions to
the effective action in a closed form is highly compli�
cated technical problem even in the harmonic formal�
ism. The analysis of effective action is simplified and
clarified greatly in the framework of the method of
background harmonic superfields [41, 52]. For recent
years, an essential progress was achieved in developing
the technique of the multi�loop calculations in har�
monic superspace for background vector multiplet
[107]. It appears instructive and important to study the
general structure of possible higher�order corrections
to the effective action in the background superfield
method.

In the present section, the  supergauge the�
ory is regarded as a certain special case of general

 gauge models. All such models may be formu�
lated in an explicitly  supersymmetric way in

 harmonic superspace. The  theory is spe�
cific in that it has an additional hidden  super�
symmetry. The formulation in terms of  super�
space allows one to use the known classification of
ground states in  gauge models (see, for exam�
ple, [74]). In accordance with this classification, the
phase of the theory in which both scalars from the

 vector multiplet and scalars from the hypermul�
tiplet have nonzero vacuum values is called the mixed
one. This version of spontaneous gauge symmetry
breaking corresponds exactly to the problem under
consideration. It is evident that vacuum values of fields
of both the  vector multiplet and the hypermul�
tiplet should differ from zero in order to retain hidden

 supersymmetry of the ground state. The explicit
form of transformations of hidden  supersym�
metry on the constant values of ground�state fields and
the application of these transformations are detailed in
[215].10 

It is now well known that the exact low�energy
quantum dynamics of  gauge theory in the

 vector multiplet sector for gauge group 

broken spontaneously to its maximal torus  is

10It is worth mentioning that in the literature there is no com�
monly accepted terminology concerning the ground state of
� = 4 Yang–Mills theory for which the notions of Coulomb,
Higgs, and mixed phases lose their meaning. Since the � = 4
theory is a special case of � = 2 gauge theories, it is a viable
option to use the notation pertinent to these theories. Here we
follow this convention.
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described by nonholomorphic effective potential

 which depends on  superfield

strengths  [86, 41]. The structure of  is
so unique that it can be determined (up to a numerical
coefficient) based just on the requirements of scale
invariance and R�symmetry. In addition, potential

 is not subject to perturbative quantum cor�
rections beyond one loop and to any nonperturbative
instanton corrections (the nonholomorphic potential
in  gauge theory was discussed in [82], and the
next�to�leading two�loop contributions to the effec�
tive action were analyzed in [107, 145]). All these fea�
tures are crucial for understanding the low�energy
quantum dynamics of  gauge theory in the con�
text of its correspondence with superstring theory.
Specifically, it turns out that effective potential

 characterizes, in the framework of this cor�
respondence, leading low�energy terms in momentum
expansion of interaction between parallel D3�branes. 

In order to reveal the constraints imposed by 
supersymmetry on effective action, identify the com�
plete structure of effective action, and gain a thorough
insight into the “  gauge theory/supergravity”
correspondence, one should determine the depen�
dence of effective action on all fields of the  mul�
tiplet (including the hypermultiplet fields). The prob�
lem of constructing the effective action of 
Yang–Mills theory in the mixed phase has remained
unexplored for a long time. A full exact expression for

low�energy effective potential  

with the dependence on both  gauge superfields
and hypermultiplet superfields has been constructed
relatively recently in [146]. It was demonstrated that
the algebraic constraints imposed by hidden 
supersymmetry on the structure of low�energy effec�
tive action in the  harmonic superspace
approach are so stringent that they allow one to recon�
struct the hypermultiplet dependence of low�energy
effective action starting from the known nonholomor�

phic effective potential  As a result, the addi�
tional hypermultiplet�dependent contribution to the
low�energy effective action was found. This contribu�

tion involves both the superfields of strengths  of
 gauge multiplet and the superfields of hyper�

multiplet , all subject to the mass shell conditions. 

The leading low�energy effective Lagrangian
 was constructed in [146] by purely algebraic

methods. It was later demonstrated in [147] how the
effective Lagrangian  can be calculated using
the technique of harmonic superdiagrams and the
background field method in harmonic superspace.
The structure of one�loop effective action in the next�
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to�leading approximation was found in [215] based on
the formulation of  gauge theory in terms of

 superfields and the technique of expansion in
derivatives in  superspace. This formulation pre�
serves a smaller number of manifest supersymmetries
than the harmonic superspace approach does. Never�
theless, the choice of supersymmetric gauge and
special techniques for restoring  supersymmet�
ric form of the action allow one to construct an effec�
tive action containing the dependence on arbitrary
powers of Abelian strengths  and special R�sym�

metric combinations of constant scalar fields 
from the vector multiplet and hypermultiplet. 

This section is focused on the analysis of the hyper�
multiplet dependence of low�energy effective action
of  supersymmetric Yang–Mills theory in

 harmonic superspace. We calculate the low�
energy effective action for the space�time indepen�
dent background  gauge superfield strengths
and the hypermultiplet superfields under the follow�

ing assumptions: (i)  

 (ii) the background hypermul�

tiplet is on the mass shell (i.e.,  where 
does not depend on harmonics and is considered to be
constant). This means that we analyze the effective
action in the hypermultiplet sector as a series in pow�

ers of spinor superfield derivatives of  and study the
simplest approximation corresponding to those con�
tributions to the effective action that do not depend on

any derivatives of . As compared to [147], the effec�
tive action beyond the leading low�energy approxima�
tion in the  vector multiplet sector is considered
(i.e., all powers of Abelian strength  are taken into
account). On the other hand, in contrast to [215], only
the  harmonic superspace is used at all stages of
the analysis. This gives justification for the special heu�
ristic algorithm that was used for the reconstruction of
manifestly  supersymmetric form of effective
action in [215] and was discussed in detail in the pre�
vious section. The key result of the analysis under�
taken is the proper time representation for low�energy
effective action in the form of an integral over the ana�
lytic subspace of harmonic superspace. 

The section is organized as follows. Subsection 3.2
is devoted to the construction of  gauge theory in

 harmonic superspace; the structure of the cor�
responding perturbation theory is also outlined there.
The general procedure for the determination of one�
loop effective action in the hypermultiplet sector is
described in Subsection 3.3. Subsection 3.4 presents a
method of summing up an infinite series of covariant
harmonic superdiagrams with an arbitrary number of
external hypermultiplet lines on the nontrivial back�

4=�
1=�

1=�

�Rξ

2=�

mnF
Φ,

iaf

4=�
2=�

2=�

const0θ= = ,� const0D±

θ=α = ,�
const0D D− +

θ=α β = ;�
± ±

= ,

a ia
iq q u iaq

aq+

aq+

2=�

mnF

2=�

2=�

4=�
2=�

ground of � = 2 vector multiplet. These techniques
yield the effective action in a form which is most suit�
able for its further analysis within the proper time
method. Subsection 3.5 is concerned with the calcula�
tion of one�loop effective action using a generalization
of the operator symbols technique to the case of 
harmonic superspace. The final result for one�loop
effective action in the form of an integral over the ana�
lytic subspace of harmonic superspace is obtained in
Subsection 3.6. It is demonstrated that this result
implies expanding the effective action in spinor cova�
riant derivatives, and the first two terms of such an
expansion are given explicitly. Each term in this
expansion can be rewritten as an integral over the full

 superspace. The basic results are summarized in
Subsection 3.7.

3.2.  Supersymmetric Yang–Mills Theory 
in  Harmonic Superspace

The harmonic superspace is a universal tool for
constructing  supersymmetric theories with pre�
serving manifest  supersymmetry off the mass
shell at all stages of the analysis. This new type of
superspaces was introduced in [56] and was developed
and advanced by many authors. The basics and appli�
cations of the harmonic superspace method are dis�
cussed in detail in [51]. In the present section, we use
the notation and follow the conventions adopted in
this book. 

The harmonic superspace is an extension of ordi�

nary  superspace  by internal

sphere  where  is the automor�
phism group of  Poincaré superalgebra. This
sphere is described in a parameterization�independent

way by harmonics  and conjugate harmonics  sub�

ject to the  condition. This extended super�
space provides an opportunity to single out analytic
superspace with half as many Grassmannian coordi�
nates by switching to a new (analytic) basis

 Variables   form
the analytic subspace of interest the key feature of
which is its closedness with respect to coordinate
transformations of  supersymmetry. The rela�
tionship with the initial (central) basis is given by 

Both general harmonic superfields and superfields
defined on an analytic subspace (“analytic harmonic
superfields”) can carry nonzero external (“har�
monic”)  charge, where  is the subgroup in the
denominator of harmonic coset space

 This is the same charge that is car�

ried by harmonic coordinates  and the correspond�
ing projections of Grassmannian coordinates in the
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analytic basis. Strict conservation of harmonic 
charge at all stages of analysis is one of the key princi�
ples of the harmonic superspace method. 

Spinor covariant derivatives in the central and ana�

lytic bases are related as   and

derivatives   become “short” in the analytic
basis:

(3.1)

Keeping in mind the evident basis�independent anti�
commutativity properties

(3.2)

(these follow from the form of anticommutators of the
initial spinor derivatives after the projection of the lat�

ter onto harmonics ), one can define covariantly the

analytic harmonic superfields , where  is the
harmonic  charge, as a subclass of general har�
monic superfields that is distinguished by constraints

(3.3)

Owing to “shortness” (3.1), constraints (3.3) take the
form of Grassmannian Cauchy–Riemann conditions
in the analytic basis and are readily solved through
unconstrained superfields “living” on an analytic
superspace:

(3.4)

The hypermultiplet and the  vector multiplet
are two essential  multiplets that form the basis
for the  supersymmetric gauge theory we are
interested in. In the harmonic superspace, the hyper�
multiplet is described off the mass shell by an analytic
superfield with a  charge of 

Its free action is given by an integral over the analytic
subspace

(3.5)

where  =  is the corresponding
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where  serve as the raising and lowering operators,

and  is the harmonic  charge operator that takes

a constant value on harmonic superfields,  =

 In addition to the integration over coordinates

 and   measure contains harmonic inte�
gration measure  The rules for integration over har�
monics are given in [51]. 

The hypermultiplet equation of motion, which fol�
lows from action (3.5), also has the form of an analyt�
icity condition (now with respect to harmonic 
coordinates):

This equation “cuts” an infinite “tail” of auxiliary
fields, which are present in the expansion of superfield

 in harmonic coordinates off the mass shell, and
leads to the ordinary mass�shell conditions for physi�
cal fields (a quartet of scalars and two Weyl fermions).
Its solution forms the so�called ultrashort superfield. 

The vector (gauge)  multiplet is described by
a real doubly charged analytic superfield

  This superfield serves
as the gauge connection in covariantized harmonic
derivative

that, in common with flat , commutes with 

  In the Wess–Zumino gauge, super�

field  incorporates as its components all fields of
 vector multiplet off the mass shell (complex

scalar field, gauge vector field,  doublet of Weyl
fermions, and real  triplet of auxiliary fields).

Thus,  is a basic object of  gauge theory (its
unconstrained analytic prepotential). All other objects
of this theory (e.g., the superfield strength ) are

expressed through  [51, 56]. More specifically, the
field�strength superfield is expressed directly through

nonanalytic superfield 

(3.6)

The latter is related to  by the “zero harmonic cur�
vature” condition
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This condition has a solution in the form of a power
series

(3.8)

that is a nonlocal functional of  in the harmonic
variables sector. The covariant u�independence of
strength  

follows from representation (3.6), condition (3.7), and

the analyticity of . Other important properties of

superstrengths  following from definition (3.6)

are their chirality (antichirality),  = 

and the Bianchi identity:  =  The
full algebra of covariant derivatives should also be writ�
ten, since it will be used later: 

(3.9)

(3.10)

As has already been noted a few times, the action of
 gauge theory in  harmonic superspace is a

sum of actions of the vector multiplet and the hyper�
multiplet in the adjoint representation of the gauge
group which interact with V++ via minimal coupling:

(3.11)

Here  is the index of global  Pauli–Gür�

sey symmetry group:  =   =  =

 (it commutes with the generators of 
superalgebra, covariant derivatives, and  auto�

morphisms), and  =  is the measure
of integration over the chiral superspace. 

Action (3.11) allows one to formulate the rules of
manifestly  supersymmetric quantization of the
theory. This action is invariant with respect to the
transformations of hidden  supersymmetry [51]
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realized on superfields of the vector multiplet and the
hypermultiplet in the following way: 

(3.12)

Although these transformations have a proper closure with
themselves and the transformations of manifest 
supersymmetry only on the mass shell, action (3.11) is
invariant with respect to (3.12) off the mass shell.
Thus, the model has a second (hidden)  super�
symmetry that, together with manifest  super�
symmetry, closes on  supersymmetry on the
equations of motion. 

The structure of the model on the mass shell is
defined in terms of solutions of the corresponding
equations of motion 

(3.13)

The simplest solution of these equations in the Abelian
case consists of a set of constant background fields that
are transformed through each other under the trans�
formations of hidden  supersymmetry, mixing

 with  [41]:

(3.14)

The ground (vacuum) state of any  supercon�
formal model, including the  gauge theory (a
special case of such models), can incorporate only a
massless  vector multiplet and massless neutral
hypermultiplets, since charged hypermultiplets
acquire mass via the Higgs mechanism. The vacua
manifold is specified by the conditions of scalar poten�
tial vanishing (“F�flatness” plus “D�flatness”). The
set of vacua incorporating only massless neutral
hypermultiplets forms the ”Higgs branch” of the the�
ory, while the set incorporating only massless  vec�
tor multiplets forms the ”Coulomb branch.” The
“mixed phase” of the theory is formed by vacua with
coexisting multiplets of both kinds. Thus, massless
neutral scalars, spinors, and  vector bosons, which

are included into superfields   on the
mass shell with the following properties

are the propagating low�energy fields in the mixed
phase. In what follows, we consider the low�energy
effective action in  supergauge theory on the
mixed branch in the above sense. On the other hand,
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let form an � = 4 vector multiplet in the case under
consideration, we can assume that all vacuum states
form a unique Coulomb branch of the  model.11 

Manifestly  supersymmetric Feynman rules
in harmonic superspace were developed in [56] (see
also [51]). The calculation of quantum corrections can
feature potentially dangerous harmonic singularities
that emerge in harmonic distributions at coincident
points. The problem of coincident harmonic singular�
ities in the framework of the harmonic Feynman rules
for superdiagrams was first discussed in [51], and a
certain solution to it was proposed. The background
field method for the construction of effective action in
a harmonic superspace was developed in [41] (see also
[46], where the same method was applied in an ordi�
nary  superspace). This method allows one to
calculate the effective action for an arbitrary 
supersymmetric gauge model in the form that pre�
serves manifest  supersymmetry and classical
gauge invariance at the quantum level. 

The background field method implies splitting the

initial superfields into classical superfields  and

quantum superfields  gauge conditions are
imposed only on the quantum fields. The Feynman
rules are derived from quantum action of the

 type, where  is the quadratic form
of quantum fields and ghosts, and  characterizes
interaction. Both of these actions depend on back�
ground fields. This procedure is detailed in [41]. 

Action  defines the propagators that depend on
background fields. Let us now use the background�

covariant gauge condition  The quantum
gauge superfield propagator is in this case given by

(3.15)

Note that this propagator is an analytic superfield with
respect to each of its arguments. The propagator of
Faddeev–Popov ghosts b and c is as follows:

(3.16)

The propagator of the q+�hypermultiplet described by

action (3.11) in external field  is given by

(3.17)

11It bears repeating that the use of different terms for vacuum
states in this theory is a matter of convention.
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All these propagators contain operator

 that transforms each covariant�

analytic superfield into a covariant�analytic one.
Operator  on the space of such superfields is repre�
sented by a second�order differential operator

(3.18)

This expression is derived from the algebra of covariant
derivatives (3.9). It is noteworthy that the differential
part of operator  is defined unambiguously from the
requirements that (i)  is expressed through covariant
derivatives alone; (ii) operator  transforms each
covariant�analytic superfield into a covariant�analytic
one. It seems natural to call operator  an analytic
d’Alembertian. The preservation of analyticity,

 is one of its significant features.

Owing to a nontrivial dependence on harmonics,
 propagators have a complex structure. How�

ever, it was shown recently in [107] that the harmonic
dependence of  propagators is simplified greatly
if the background vector multiplet satisfies classical

equations of motion  The har�
monic dependence of propagators is factorized com�
pletely in this case, thus allowing one to keep the har�
monic dependence of  superdiagrams under
control. 

The proper time technique or the heat kernel tech�
nique is often used to calculate the effective action in
the framework of the background field method. These
techniques provide an opportunity to sum effectively
an infinite set of Feynman diagrams with an ever�
increasing number of background field insertions and
construct an expansion of effective action in back�
ground�field derivatives in a manifestly gauge�covari�
ant way. The background field method and the heat
kernel methods for  gauge theories are well�
developed (see, for example, [37]). The background
field method in harmonic superspace was developed in
[41], and certain examples of its important applica�
tions were analyzed in [107]. However, until relatively
recently, the heat kernel method in  superspace
was not studied in certain respects. In Section 5, we
will use the � = 2 superfield heat kernel method to
construct the one�loop effective action of � = 4 gauge
theory in � = 2 harmonic superspace. The one�loop
results [147] for the leading quantum low�energy cor�
rections to the effective action which depend on both
the � = 2 vector multiplet and the � = 2 hypermultip�
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let will be extended to the next�to�leading contribu�
tions.

3.3. One�Loop Effective Action 
in the Hypermultiplet Sector

Let us consider � = 4 Yang–Mills theory with
gauge group  formulated in terms of  har�
monic superfields. The gauge symmetry of the model

is broken to ; hence, background fields 
belong to a Cartan subalgebra of the gauge group. Just
as in [147], we start with background�quantum splitting

  where  are

background fields and  are quantum ones. In
one�loop calculations, it is sufficient to consider only
a part of quantum action  that is quadratic in
quantum superfields:

(3.19)

The ellipsis denotes the contribution of ghosts. Oper�

ator  contains background  strength 
superfields, acts in the adjoint representation of the
gauge group, and has the form (3.18). The set of back�
ground superfields in (3.19) satisfies the equations

  and 

 It is convenient to redefine 

and present background fields as 

 and  Here  are the

 algebra generators:

In the case of a background that takes values in the

Abelian algebra, the  =  requirement and

a similar one for  are also satisfied (i.e., covariant
spinor derivatives become “flat”  derivatives when

acting upon such constrained  and ). Taking into
account the equations of motion and the fact that all
quantum superfields belong to the adjoint representa�

tion,   we then obtain the fol�
lowing:
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The quadratic action part is then rewritten as

(3.21)

The index 3 associated with background fields is
hereafter omitted, and the ellipsis denotes, as before,
the contribution of ghosts that do not depend on the
background hypermultiplet. It can be seen from (3.21)
that only the components of quantum superfields with
subscripts 1 and 2 have nontrivial background�depen�

dent propagators. The quantum superfields  and

 do not interact with the background and is
detached completely. 

Passing to new complex quantum superfields

action (3.21) takes the following form:
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  The Feynman rules for the

calculation of effective action can now be written
down easily in much the same way as in [41, 51, 56].
Expressions (3.15) and (3.17) are used for the propa�

gators of gauge fields  and  and hypermultiplets

 and , respectively. The vertices are taken directly
from interaction V in the form

The resulting Feynman rules have a standard form.
One significant feature to emphasize is that we can

always take operator  off one of the propagators
in each vertex containing an integral over the analytic

subspace and transform an integral over  into an
integral over the full measure of  superspace

 

Note now that functional substitutions of variables
in (3.22)

where propagator  is defined in (3.15), allow
one to diagonalize operator 

One�loop effective action  defined by func�
tional integral

can then be written down formally as 

(3.24)

The last term  in this expression is a part of the
full one�loop effective action that depends only on the

 gauge superfield. We focus on the first term,
since it contains the complete dependence on the
hypermultiplet. 

Expression (3.24) written in the form of an analyt�
ical nonlocal superfunctional is the starting point for
our calculations of one�loop effective action in the
hypermultiplet sector. Expression (3.24) shows that
the effective action is well defined in the framework of
the perturbation theory in powers of nonlocal interac�

tion  An infinite series in these
powers leads to an effective action in the form of

 =  where 2n�th term
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covariant derivatives. It is necessary to stress that the
superdiagrams emerging during this procedure con�
tain background�dependent superpropagators.
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 form. The full contribution of a
�point superdiagram is given by the following gen�

eral expression:

(3.25)

In order to evade the problem of harmonic singulari�
ties, we use hereafter the propagator of  gauge
field in the form that is manifestly analytic with respect
to both arguments. 

Factor  originates from the following. The con�
tribution of a superdiagram akin to a ring composed of

n repeating segments  emerges with a
symmetry factor  The same factor  emerges
from a supergraph composed of n repeating segments

 Each vertex then introduces factor –i,

and each  and  introduces factors i and
i/2, respectively. Therefore, the full number n of seg�

ments introduces factor  Any vertex also supplies a

coefficient of  All this results in a coefficient of 
Taking all these contributions into account, we obtain
exactly the coefficient  

We start with the direct calculation of the contribu�

tion of superdiagram  In an analytic basis,
it is given by

(3.26)

In accordance with the general rules for handling these
superdiagrams, we should first restore the full Grass�
mannian integration measure in vertices according to

 =  Since we are
interested in the contributions to the effective action

that do not depend on space�time derivatives 

and spinor derivatives  of the background
hypermultiplet, it is sufficient to use the following
superfield constraints:

(3.27)

Integrating by parts and using the delta function, we
shrink the loop to the point of superspace. However,
the following nonlocal expression featuring a har�

monic distribution  with a singularity at coin�
cident points will remain:

(3.28)

If we were dealing with flat covariant derivatives, we

could use the equality  = 
to get rid of this singularity. However, expression (3.28)
incorporates covariant spinor derivatives that compli�
cate further analysis. It is theoretically possible to
employ the idea suggested in [107]; i.e., we could try to

express covariant derivatives  through covariant

derivatives  when calculating the two�point

function of the  type.

This indeed can help in calculating  (3.28), but the
calculation procedure still remains a technically com�
plicated one. 

In our opinion, it is more convenient to start from
representation (3.26) and act in the analytic subspace.
Instead of calculating contribution (3.28) in the full

 superspace, one then should obtain an equiva�
lent expression

with the same  In order to do that, we switch back to
the analytic subspace in (3.28) and use (twice) the

relation for the two�point function  [107], as

well as harmonic equalities   =

  and 
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The result is as follows: 

(3.30)

In order to remove the  factor from the har�
monic delta function and be able to apply harmonic
equalities 

we restore temporarily the full integration measure
and switch back to the analytic measure in the end.
Constraints (3.27) should be taken into account in the
process. 

The integration over one set of harmonics yields

the final result for  

(3.31)

At the next step, the contribution with four external

lines of hypermultiplet  is to be calculated. We
start from general expression (3.25) for  and
repeat the same operations that were performed in the
previous case. This yields

(3.32)

Using equalities  =

 and  =

 we obtain

( 4)
2 1 2 1 2 1 2

4
2 ( 2 2) 12

1 2 1
2

( )( ( ) ( ))

( )
( ) ( ) ( )

a
ai d du du u u q u q u

D
D u u z

− + + + +

+

−− − ,

Γ = ζ

× δ δ .

∫
�

�

2( )D −−

2 ( 2 2) 2 (2 2)
1 2 1 2 2 1

1 2 1 2

( ) ( ) ( ) ( )

( ) 0

D u u D u u

D q q u u

−− − , −− ,−

−− + − + +

=

δ = δ ,

= , = ,

2Γ

4
( 4) 12

2
( )

( 4 ) ( )a
ai d du q q z

+

− − +

Γ = ζ − δ .∫ �

�
�

+

Γ4[ ]q
2n =

{ }
{ }

4 4
( 4) ( 4) 1 2

4 1 4 1 4 3
1 2

4 4
12 12 22 3

3
1 2 3

4 4
( 2 2) 123 4

2 3 3
33 4

4 4
12 2 ( 2 2)4 1

1 4 1
4 1

( ) ( )

( )

( ) ( )1 (1 2) (2 3)( )

( ) ( ) 1( ) (3 4)
( )

( ) ( )
(4 1)( ) ( )

i d d du du
u u

u u
u u

u u

q

+ +

− −

+ +

+ +

−−

+ +

− ,

+ +

+ +

−− − ,

Γ = ζ … ζ …

⎡
× δ δ⎢

⎣

⎤
× δ , δ⎥⎦

⎡ ⎤
× δ δ ,⎢ ⎥
⎣ ⎦

×

∫

� � �

�

� �

� �

� � �

� �

� � �

� � �

�

� �

1 1 2 2 3 3 4 4

4 4 4 4
1 2 3 41 4

3 3 2 2
1 2 3 4 1 2 3 4

12 2 ( 2 2)
3 2 3

2 ( 2 2)
1 4 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) (1) (2) (3) (4)

a b
a b

a b
a b

z u q z u q z u q z u

dzdu du

u u u u

z u u

u u q q q q

+ + + +

+ + + +

+ + + +

−− − ,

−− − , + + + +

, , , ,

...
=

× δ δ ,

× δ , .

∫ � � � �

� � � �

�

�

� � � �

2 ( 2 2)
3 2 3( ) ( )u u−− − ,

δ ,�
2 (2 2)

2 2 3( ) ( )u u−− ,−

δ ,� 4 2
2 2( ) ( )+ −−� � 4 (2 2)

3 2 3( ) ( )u u+ ,−

δ ,�
4

2 22 ( ) ,+

−

�

��

Writing down the relation  =

 and integrating over  we obtain the
final result for 

Here, it was crucial to make use of the constraints (3.27). 

General term  is analyzed in a similar way. First,
we transform all integrals over the analytic subspace
into integrals over the full superspace at each point

using factors  from the hypermultiplet
propagators. Next, the integration over sets of Grass�
mannian coordinates and space�time coordinates is
performed with the corresponding delta functions
under the integral. The following expression is
obtained as a result:

(3.33)

Integrating over  with the use of the har�
monic delta function, we then obtain
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(3.35)

In order to simplify it, we represent  as  =

 (since  is on its mass shell). Note that a

structure akin to  is obtained when  acts
on  We then integrate by parts, throw the harmonic
derivative on harmonic distributions

(3.36)

use equality [51, 52]

(3.37)

and remove operator factor  from the harmonic
delta function. It is easily seen that this operator can

yield a nonzero result only when it acts on 
We obtain 

(3.38)

The second term becomes identical to the first one
after the  substitution. Integrating over  we

obtain  At the second stage, the above

operations are repeated for  (i.e., the latter is pre�

sented as  =  and we integrate by parts with

respect to ). Following the procedure that was

detailed above, we obtain factor  

After  similar steps (i.e., writing down  =

 integrating by parts, etc.), the harmonic
integral is reduced to expression (3.35) with three sets
of harmonics:
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At the final step, we write down  and pull

 over to the harmonic factor. Repeating the same
operations, we perform un – 1�integration and obtain
the following resulting expression:

(3.40)

Let us now switch back to the analytic subspace by
applying equalities (3.29):

We then use equality  =  – 

 which yields factor  The final result is
as follows: 

(3.41)

Constraints (3.27) are again taken into account here. 

Let us now sum up all contributions  (3.41). The
result can be expressed through the functional deter�
minant of a special differential operator:

(3.42)

Note that expression (3.42) represents only the hyper�
multiplet�dependent part of full effective action (3.24).
The full effective action contains also a hypermultip�

let�independent part .

It should be emphasized that, although  is tech�
nically present in (3.42), the expression under the
integral in (3.42) is an analytic superfield within the
low�energy approximation (see constraints (3.27) in

the hypermultiplet sector). Indeed, combination 
on the mass shell is harmonically independent [146]

and proportional to , where  is a (constrained)
superfield given on the general  superspace. This
quantity should be treated as independent of space�
time coordinates if we consider only the leading low�
energy approximation for the hypermultiplet depen�
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general scenario of calculation of the effective action
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background fields in the effective action in order to
isolate the terms without derivatives. Therefore,
Eq. (3.42) which was formulated in this section from
the very beginning is completely correct in the consid�
ered approximation.12 

Thus, proceeding from the formulation of 
supersymmetric Yang–Mills theory in  har�
monic superspace and using the harmonic super�
graph technique, we have obtained a superfield
expression for one�loop effective action in the hyper�
multiplet sector (3.42). This expression is free from
harmonic singularities and, as we will see, allows for
direct calculations using the  superfield gener�
alization of the heat kernel method. It will be demon�
strated in the next section that general expression
(3.42) allows one to obtain an exact proper time rep�
resentation for the effective action and its expansion
in powers of covariant spinor derivatives of the space�
time constant Abelian  superfield strength

 subject to the conditions

(3.43)

as well as for the background hypermultiplet on the

mass shell  where  is independent of har�
monics and is regarded as a superfield that is constant
in space�time. 

One of the basic statements regarding the hyper�
multiplet dependence of one�loop effective action fol�
lows directly from expression (3.42). Namely, the
hypermultiplet superfield appears in the effective

action in combination  +  that is invariant
with respect to full R�symmetry of  superalgebra
under the condition that superfield strength  and
the hypermultiplet superfield are placed on the mass
shell and are assumed to be independent of space�time
coordinates [146]. In order to verify the correctness of
this statement, we use representation (3.23) for opera�

tor  in the  expression and obtain the fol�

lowing:  =  –  +

 +  +  This expression fea�
tures the combination of superfields mentioned above
(two last terms without derivatives), and exactly this
combination is the argument of hypermultiplet�

12It should be emphasized once more that we consider only the
leading (independent of derivatives) contribution of the hyper�
multiplet to the low�energy effective action. Naturally, this
approximation breaks invariance with respect to hidden � = 2
supersymmetry. It would be exceptionally interesting and
instructive to develop a mathematical procedure for the deriva�
tion of an expansion in derivatives of effective action in the
hypermultiplet sector, but this problem is outside the scope of
the present review.
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dependent effective action in the low�energy approxi�
mation.13

3.5. Proper Time Representation for the Effective Action

Relation (3.42) implies several remarkable corol�
laries. First, we have started with the model of two

interacting superfields  and , and then summed
the supergraphs in such a way that the effective action
was expressed in terms of a differential operator that
acts only in the vector multiplet sector. This operator
contained the complete dependence on hypermultip�

lets. Second, relation (3.42) has the  form with

operator  that acts on analytic super�
fields. It should be emphasized that the obtained sim�
ple form of one�loop effective action is not immedi�
ately obvious; it was the result of summing an infinite
series of one�loop harmonic supergraphs with an arbi�
trary number of external hypermultiplet lines. 

Effective action (3.42) is the basis for application of
the proper time representation: 

(3.44)

Here  is the superfield heat kernel, and operation
 means taking a functional trace in the analytic sub�

space of the harmonic superspace,  =

 where  denotes a trace over dis�

crete indices. The problem of finding the one�loop
effective action is then reduced to calculating the ker�

nel  By definition, operator  has

the form14

(3.45)

In order to calculate effective action (3.44), we use
the technique of symbols of operators in the analytic
subspace of the full  harmonic superspace.15 Let

13It is worth noting that this approximation breaks R�symmetries
of the initial classical model. The problem of construction of a
general expansion of effective action in derivatives that incor�
porates spinor derivatives of the hypermultiplet and retains all

�symmetries remains unresolved.

14Note that substitution   transforms

expression (3.45) into form (3.23).
15The technique of symbols of operators was used for the calcula�

tion of effective action in � = 1 superspace in [211, 213].
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us start with the Fourier transform of the delta func�
tion in  superspace

(3.46)

Here  is the cotangent supervector

at superspace point z, and  As a

result, the heat kernel at coincident points takes the
following form:

(3.47)

At the next step, we should act by operators in the
exponential on unity standing on the right. After
accomplishing this, all differential operators will act

only on  Thus, the final result will be expressed

in terms of strengths  and their spinor deriva�
tives. This procedure is performed in the following
way. First, we single out in (3.47) the exponential of

main symbol  of operator (3.45) and expand

the remaining exponential in a power series in covari�
ant derivatives. We then pull out all derivatives to the
right, commuting or anticommuting them with the
coefficients of operator (3.45) in the course. At the last
stage, the derivatives act on unity and thus yield zero.
The final step of the considered procedure involves
Gaussian integration over momenta p and trivial inte�
gration over odd variables ψ. A series in covariant
derivatives of strengths is then obtained. However,
time�consuming and tedious calculations are needed
in order to obtain the final result in a manifestly cova�
riant form in the way described above. 

The method yielding a manifestly supersymmetric
asymptotic expansion of the heat kernel was developed
within the  superspace in [96, 211, 213]. We will
generalize this heat kernel method to the  har�
monic superspace. Let us introduce, at each point of
the superspace, a tangent space formed by a system of
normal coordinates, with a fibre obtained via a parallel
translation from the reference space point. Pseudodif�
ferential operators can be rewritten in this local vector
bundle representation. We will analyze the heat kernel
using these operators and construct an algorithm for
its asymptotic expansion. 
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The algebra of covariant derivatives (3.10) acquires the
following form in this notation:
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Thus, the set of covariant derivatives together with the

on�shell background superfields  corresponding
to the space�time constant configurations (3.43) and
their lower�order derivatives form a finite�dimen�
sional superalgebra (3.48)–(3.50). 

At the next step, we lift the action of shifted opera�
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Here, the set of derivatives
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The action of operator U on shifted operators XM is
given by

(3.51)

The mapping of superspace functions at point z onto
the tangent superspace is set by transformations

(3.52)

Note that in this representation the operators X,
together with superfields and their derivatives, satisfy
the same algebra (3.49), (3.50). Actually, in the case of
arbitrary background fields, all the quantities defined
above are represented by infinite series in  and finite
series in powers of Grassmannian derivatives  with

coefficients given at fixed point  However, repre�
sentation (3.51), (3.52) is exact for the considered
background. 

The actual calculation of effective action (3.44)
with kernel (3.47) is based on the following observa�

tion. The operator exponential  where operator
 is expressed in terms of shifted variables  (3.51),

can be regarded as an operator of evolution in a quan�

tum Bose–Fermi system with Hamiltonian 
Equations (3.45) and (3.51) demonstrate that Hamil�

tonian  is a quadratic form of operators 
with constant coefficients (owing to the constraints
imposed on the considered background fields). There�

fore, the calculation of  =  with

kernel  which is defined by (3.47), is an
exactly solvable problem. 

Let us return to Eq. (3.47) in which all operators
and fields (together with their derivatives) are written
in representation (3.51). This is equivalent to a state�
ment that the heat kernel is extended to the tangent
bundle at superspace point z, where supercoordinate z
is regarded as a constant parameter. According to
(3.47), the evolution operator should finally act on
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Ĥ pp ψ, ∂ ,ψ,∂

Tr ( )K s 4 ( )d K s−

ζ ζ,ζ∫
( ),K sζ,ζ

unity. It is evident that, in order to determine the result
of such action, one should pull over all derivatives with
respect to  and  to the right and discard them at the
last step (when they act on unity). This procedure can
be performed, based on the Baker–Campbell–Haus�
dorff formula corresponding to algebra (3.49), (3.50).
As a result, we obtain the so�called evolution operator
symbol. This symbol should be integrated over bosonic
variables p and fermionic variables ψ, which would
lead to the trace of heat kernel (3.47). It is also worth
noting that the exponential factor of the evolution

operator contains only the operators  All

 are concentrated in the  pre�exponen�
tial factor and saturate the integral with respect to

 Therefore, we should omit all terms  in

operator  so as to obtain a less complicated expres�
sion for (3.51), (3.52). In addition, in order to perform

Berezin integration in the sector of variables , we

should take out “projector”  from the considered
exponential. 

This algorithm can be implemented efficiently if we

present exponential  as a product of several
operator exponentials. This construction helps cir�
cumvent certain difficulties that arose in previous
attempts to calculate the effective action of 
gauge theory directly in  superspace. Let us write

operator  in the form

(3.53)

with certain unknown coefficients in the right�hand
side. These coefficients can be determined directly
(i.e., based on the Baker–Campbell–Hausdorff theo�
rem; see the representation of the Baker–Campbell–
Hausdorff formula below) or as a solution of a system
of differential equations for coefficients. These meth�
ods yield the same results. 

In order to construct the system of equations just

mentioned, one should replace K in  by the

first and the second lines of (3.53). The following

equations for functions  are thus produced:
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Likewise, the equation for function Ω is

(3.55)

It is easy to demonstrate that the solution of Eq. (3.54)
can be written as 

(3.56)

where functions   are given below.
The solution of Eq. (3.55) is as follows:

(3.57)

Note that this solution is a polynomial of a finite order

in powers of Grassmannian elements  and 

(3.48). Coefficients     and

 are given by (3.78)–(3.84). 

It is instructive to present the last exponential
in (3.53) in the form
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exactly. Note that  ~  The expression
under the integral for kernel (3.47) can be presented as
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well as the expansion of   in powers of

Grassmannian quantities  This leads to the fol�
lowing representation:
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expression for K(s). The following expression is thus
obtained:

(3.60)

The last step involves calculating the Schwinger
kernel for operator   ≡

 where operators  are defined

in (3.51). Such calculations have now become com�

mon (see, for example, [96, 107, 144]).17 Therefore,
we quote only the final result

(3.61)

Here  This quantity can be expressed

through two invariants of the Abelian vector field,

 and  as 

In the context of  supergauge theory, kernel
(3.61) was found in [144] with the use of various indi�
rect approaches. Here we have obtained a complete
expression for kernel (3.61) in terms of � = 2 har�
monic superfields.

3.6. Effective Action and Its Expansion 
in Covariant Spinor Derivatives

The proper time method in harmonic superspace
was developed in the previous subsection. Let us apply
this technique for the construction of effective action. 
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The following resulting form of effective action is thus
obtained:

(3.62)

One can show that the integrand in (3.62) may be

expanded in a power series in   After

changing the proper time parameter s by 

we obtain an expansion in powers of  and

their conjugates. In addition, since the expression
under the integral sign in (3.62) is already proportional

to  we can replace the  quantities in each

term of expansion with superconformal invariants 

and  [144] that are given by

(3.63)

and its conjugate. Having performed all these opera�
tions, one can show that each term of expansion is
written as an integral over a general  superspace. 

Expression (3.62) without hypermultiplets was
obtained in [144, 146] by other methods. The hyper�
multiplet dependence of effective action was obtained
in [215] in terms of  superfields; its transforma�
tion into an  harmonic form was performed in
[215] based on a heuristic reasoning for the restoration
of a manifestly  supersymmetric form of effec�
tive action that is written initially in terms of 
superfields. The complete hypermultiplet dependence
of effective action (3.62) was obtained above com�
pletely in terms of harmonic superfields, and this
dependence coincides with the one given in [215].
Thus, we have confirmed the correctness of the con�
sideration used in [215]. 

Let us present the first few terms of expansion of

effective action (3.62) in a power series of  and
compare them to the results of  superfield calcu�
lations based on the above�mentioned special consid�
eration for the restoration of a manifestly  super�
symmetric form of effective action in the formalism of

 superfields. Our aim is to show that the expan�
sion in spinor derivatives in (3.62) actually reproduces
the expansion in [215]. Each term of the expansion of
effective action contains a certain power of Abelian
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strength Fmn. This expansion allows one to isolate an

explicit dependence on . Since  include the
spinor covariant derivatives of superfield strengths
(see (3.48)), the expansion in these quantities is
exactly the expansion in spinor covariant derivatives of

strengths  

Using expansions  and  we arrive at
the following expression:

The leading low�energy correction corresponds to

term . Integrating over s, we obtain

(3.64)

which yields
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This expression coincides with the results of
[147, 215]:18 
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where  and  is the Euler dilogarithm. 

Next�to�leading correction to �term19 has the form:

(3.66)

Using extended expressions

and

we obtain a sequence of identities

Similar operations are also performed for the complex
conjugate term. Using these identities and restoring

the full measure  one obtains the fol�
lowing factor:

This allows one to present  in the form:

(3.67)

19The F6�correction does not emerge in the one�loop effective
action for � = 4 Yang–Mills theory [90, 144].
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This result coincides with the one obtained in � = 1
approach using the consideration from [215]. 

Analogous analysis allows us to obtain, in princi�
ple, any term  of the expansion of effective action
(3.62) in derivatives. We pay attention to the fact that
in each term of expansion the integrals over the ana�
lytic subspace can be transformed into integrals over
the full � = 2 superspace.

3.7. Useful Representation 
of the Baker–Campbell–Hausdorff Formula

The heat kernel associated with operator 
 is
defined as a matrix element of operator e
. In many
cases the operator 
 is a linear combination of basis
operators that form a certain (super)algebra. Then the
heat kernel calculation is simplified greatly due to pos�
sibility to use the Baker–Campbell–Hausdorff (BCH)
formula. According to this formula, the exponent,
which is a product of two exponents with noncommut�
ing operators A and B, can be presented as a series in
powers of commutators  

 etc. We will derive another convenient
representation for the BCH formula:

(3.68)

where the operators  are expressed through commu�
tators of operators  and . We will show that opera�
tors  can be defined in such a way that each  con�
tains the th power of operator  and all powers of
operator . This representation of the BCH formula
turns out to be useful in the cases when operators 
and  are associated with a certain (super)algebra that
allows one to sum operator series  to
explicit expressions. 

Let us introduce variable t in (3.68): 

(3.69)

We then define function

(3.70)

and determine the appropriate operators  in (3.69).
It is evident that at t = 0 (3.69) will be the identity and
at t = 1 we obtain the initial relation (3.68). Let us cal�
culate the logarithmic derivative of function (3.69)
with respect to t. On the one hand,

(3.71)
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On the other hand,

(3.72)

If we set  one obtains

(3.73)

In order to determine , we should calculate the first�
order derivative of the logarithmic derivative with
respect to t:

(3.74)

At t = 0, we obtain the expression for C2:

(3.75)

Following the same procedure, one can find all

operators  For example, operator  is constructed

by calculating the second�order derivative of the loga�
rithmic derivative determined above. This results in
the following relation:

(3.76)

where  and  have been determined earlier. Opera�

tor  is derived from the relation

(3.77)

and all the other terms of the BCH series in formula
(3.68) can be found in a similar way. 

The problem in the present case consists in rewrit�
ing exponential (3.53) of a sum of operators that satisfy
algebraic relations (3.48), (3.50) in the form of a prod�
uct of exponentials of separate operators. This prob�
lem is solved in two steps. 

First, we take as A in (3.68) the operator

 and present  as a linear combination

of operators   with

certain coefficients20 plus certain functions of

 as central elements. This means
that all other operators  should be propor�
tional to operator  with certain functions as a

coefficient. Therefore, series  is
reduced to summing these coefficient functions (this
summing can be performed explicitly). The final result

is  plus  plus a

certain central element. 
Second, we apply Eq. (3.68) once more to expres�

sion  and use operator

 as A. All operators  are again propor�

tional to one operator  and the set of coefficient
functions can be summed to explicit expressions. As a
result, we obtain the right part of expression (3.53). All
coefficient functions are given in Subsection 3.8 (see
relations (3.78)–(3.84)). These functions can also be
derived from differential equations (3.54), (3.55). The
results obtained based on the BCH formula and the
solutions of the above�mentioned differential equa�
tions agree with each other.

3.8. Coefficient Functions in the Heat Kernel Expansion

The solutions of linear differential equations (3.54)
and (3.55) for  and  can be found exactly
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and are of the form (3.56), (3.57). The coefficients of
the expansion  over the basis of Grassmannian

elements  are as follows:

(3.78)

(3.79)

The coefficients of power expansion of  in the

same basis  are given by 
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operator  which are deter�
mined in (3.58), are as follows: 
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3.9. Summary

The problem of construction of one�loop low�
energy effective action in   gauge theory
was studied. The theory is formulated in  har�
monic superspace and features manifest  super�
symmetry and additional hidden  supersymmetry
that close on  supersymmetry on the mass shell. A
new approach to the construction of effective action
that depends on all fields of the  vector multiplet
was presented. The main advantage of this approach
consists in the fact that manifest  supersymmetry
is preserved at all stages of calculations. 

In the context of  supersymmetry, the effec�
tive action under consideration is a functional of
superfields of the  vector multiplet and the
hypermultiplet. The theory is quantized within the

 background field method, thus allowing one to
obtain a manifestly gauge�invariant form of effective
action. The effective action is calculated in the low�
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energy approximation under the assumption that on�

shell  superfield strengths  and the on�

shell superfields of hypermultiplets  are space�time
constants. The effective action is given by an analytic
harmonic superspace integral of a function, which

depends on superstrengths  their spinor cova�
riant derivatives, and the hypermultiplet superfields.
This dependence was exactly found in the low�energy
approximation. The results of [215] given in the previ�
ous section were also confirmed and justified. Such a
one�loop effective action in the hypermultiplet sector
was calculated in [215] in terms of  superfields
based on special gauge fixing and several heuristic
algorithms for restoring a manifestly  supersym�
metric form of effective action. This form is repro�
duced automatically by the method considered in the
present section. 

The general method for finding the one�loop low�
energy effective action for the theory under consider�
ation in terms of  harmonic superfields was
developed. An infinite series of covariant harmonic
supergraphs with an arbitrary number of the hyper�
multiplet external lines is the basis of our analysis.
Each of these supergraphs is written as an integral over
the analytic subspace, and all contributions are summed
up. The result is given by (3.42). This expression is ana�
lyzed using the proper time and the operator symbols
methods. As a result we obtain the expression (3.62) for
effective action. 

At least two questions concerning the hypermultip�
let dependence of effective action in  gauge the�
ory still remain open. The first problem consists in
constructing the effective action with nonvanishing
spinor covariant derivatives of the hypermultiplet
superfields. The low�energy effective action in this
case can be written as an expansion in spinor deriva�
tives of superstrengths and hypermultiplet superfields.
Knowing this expansion, one could determine
whether the effective action is invariant under the hid�
den quantum  supersymmetries analogous to the
hidden  supersymmetry of classical action. The
second problem consists in obtaining the hypermul�
tiplet dependence of higher�loop contributions to the
effective action. We hope that the methods described
above will be of use for studying these problems.

4. HYPERMULTIPLET DEPENDENCE 
OF ONE�LOOP EFFECTIVE ACTION 

IN  SUPERCONFORMAL THEORIES

4.1. Introduction

 supersymmetric gauge theories of general
position in four dimensions are basically the theories
of the  vector gauge multiplet that interacts with
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iaq
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2=�
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massless hypermultiplets belonging to certain repre�
sentations R of gauge group G. The  supersym�
metric gauge theory discussed above is a special case
corresponding to the hypermultiplet in the adjoint
representation. All these gauge models possess only
one�loop divergences [41, 188] and can be finite and,
consequently, superconformal (under certain restric�
tions imposed on the field contents of hypermultiplet
matter). The finiteness (and superconformality) con�
dition in a model with  hypermultiplets in represen�
tation  of gauge group G can be written in a simple
universal form [188]

(4.1)

where  is the quadratic Casimir operator for the
adjoint representation, and  is the quadratic

Casimir operator for representation . The simplest
solution of Eq. (4.1) corresponds to  gauge the�
ory with  and all fields in the adjoint represen�
tation. It is evident that other solutions can also be
found; for example, in the case of group  with
hypermultiplets in the fundamental representation, we
obtain   and  A

large class of  superconformal models was con�
structed exploiting the AdS/CFT correspondence
hypothesis (see, for example, [189] and references
therein; the examples of such models and the structure
of vacuum states were discussed in detail in [115]). In
the present section, the structure of low�energy one�
loop effective action for general  superconfor�
mal theories is analyzed. 

The effective action of  gauge theory and
 superconformal models in the  vector

multiplet sector was studied by various methods
[41, 82, 86, 107, 115, 144]. However, the problem of
hypermultiplet dependence of effective action for
these theories remained open for the long time. 

It was noted already that the low�energy effective
action in  theory containing both the  vec�
tor multiplet background fields and the hypermultiplet
background fields was first constructed in [146] and
was later studied in detail in [216]. In the present sec�
tion, the hypermultiplet dependence of effective
action for  superconformal models is consid�
ered. Such models are finite like  SYM theory,
therefore it is reasonable to expect that the hypermul�
tiplet dependence of the corresponding effective
actions is similar to the dependence found in 
theory. However, it is not immediately obvious.
Indeed, the  gauge theory is a special case of

 superconformal models that is distinguished by
the presence of an additional hidden  supersym�
metry. It was noted in [146] that this additional 
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supersymmetry is key to finding the explicit depen�
dence of effective action of  gauge theory on
hypermultiplet fields. In the general case, such hidden

 supersymmetries are lacking; therefore, the
derivation of effective action for general  super�
conformal models in the hypermultiplet sector is an
intriguing problem on its own. 

In this section we will find the full  supersym�
metric one�loop effective action depending on both the
background vector multiplet fields and the hypermul�
tiplet background fields in the mixed phase, where the
scalar fields of both the vector multiplet and the hyper�
multiplet have nonzero vacuum expectation values.21 

Similar to the  gauge theory considered in the
previous section,  supersymmetric models dis�
ussed here are formulated in harmonic superspace [51,
56]. We develop a systematic approach to finding the
terms with a fixed number of field derivatives in the
one�loop effective action with the use of the heat ker�
nel for certain differential operators defined on a har�
monic superspace. The heat kernel trace containg the
dependence on the  vector multiplet and back�
ground hypermultiplet superfields is calculated. The
component structure of the leading quantum correc�
tions is studied both for on�shell and for off�shell
background superfields. It is found that these quantum
corrections contain, among other terms, interactions
of the Chern–Simons type. The fact that such explic�
itly scale invariant (but P�odd) terms containing both
scalar and vector fields need to be present in the effec�
tive action of  gauge theory was noted in [193].
The hypothesis that terms with higher derivatives are
present in the effective action of  models in a
harmonic superspace was put forward in [195]. We will
show that the terms in effective action proposed in
above paper can be reproduced as a result of direct cal�
culations in supersymmetric quantum field theory. 

The section is organized as follows. Subsection 4.2
contains a formulation of  supersymmetric
models in harmonic superspace and a description of
the corresponding vacua structure. The basic elements
of the  supersymmetric background field
method is also given there. The structure of a super�
space differential operator associated with the hypermul�
tiplet dependence of one�loop effective action con�
structed on this vacuum is discussed in Subsection 4.3.
Subsection 4.4 is focused on direct calculations of
one�loop low�energy effective action for the back�
ground field subject to the mass shell conditions (see
Eq. (4.6)). Besides, the bosonic component effective
action containing the terms with four space�time
derivatives of scalar component fields of the hyper�
multiplet is derived there. Similar Chern–Simons like
terms were discussed in [195]. The possible contribu�

21Examples of effective action in the Higgs branch for the � = 2
gauge theory were given in [79].
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4=�
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4=�
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tions to the effective action from the background off�
shell hypermultiplet (4.6) are analyzed in Subsection 4.5.
It is demonstrated that the corresponding contribution
in the bosonic sector contains terms of the Chern–
Simons type (similar to the ones proposed in [195])
with three space�time derivatives. The results are sum�
marized in Subsection 4.6.

4.2. Model and Background–Quantum Splitting

As it was already noted in the previous section the
harmonic superspace approach provides a manifestly
covariant description of  supersymmetric theo�
ries on classical and quantum levels. Its key advantage
is that the  vector multiplet and the hypermul�
tiplet are described within this approach by uncon�
strained superfields that “live” on an analytic subspace

with coordinates  =  

The  vector multiplet is described by a real

analytic superfield (gauge potential) 
taking the values in the Lie algebra of the gauge group.

Prepotential  satisfies the reality condition 
with respect to generalized conjugation (the product
of complex conjugation and antipodal mapping on

harmonic sphere ). The gauge group acts on V++ as

 where λ is an arbitrary real analytic
superfunction. In the Wess–Zumino gauge, the super�

field  has a finite number of component fields

 which correspond to the field

content of  vector multiplet. 
The hypermultiplet transforming in representation

R of the gauge group is described by analytic superfield

 and its conjugate  (see the definition of con�
jugation in [51]) that takes the values in representation

. Scalar component fields  of the hypermultip�

let together with complex�conjugate fields 

form an  doublet. Together with spinor physical
fields, they emerge as the lower components of the

 expansion of superfields  

The classical action of  gauge theory inter�
acting with matter hypermultiplets consists of two
parts: the action of “pure”  gauge theory and the

action of  hypermultiplets  in the
fundamental, the adjoint, or any other representation
of the gauge group. The full action has the following
general form in harmonic superspace [51]:

(4.2)
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Here index  characterizes the “flavor” group repre�

sentation with respect to which the  hypermultiplet
forms an �dimensional vector. We use a symplectic�

covariant formulation  ≡  =  where

 is the invariant tensor of symplectic group
22, for each index . Thus, the superfield 

is a matrix of size . The covariant derivative

acts on hypermultiplet superfields as  =

 +  where  and

 All the other notations are the same

as in the previous section. Action (4.2) is manifestly
 supersymmetric by construction. For the sake

of simplicity, we assume at the intermediate calcula�
tion stages that coupling constant g equals unity. An
explicit dependence on g is easily restored in the
resulting expressions for effective action. 

It is worth reminding that the strength � super�
field is expressed through nonanalytic harmonic

connection 

(4.3)

It follows from this representation that the

strengths  are gauge�covariant, �independent

 and covariant�chiral (antichiral)

  superfields that satisfy

Bianchi equalities  

Action (4.2) possesses the superconformal symme�
try  the explicit realization of which in
harmonic superspace was given in [51]. The low�
energy effective action of  gauge theory con�
structed on general vacuum involves the dependence
only on the massless U(1) vector multiplet and mass�
less neutral hypermultiplets, since charged vector
multiplets and hypermultiplets acquire mass via the
Higgs mechanism and do not produce a contribution
in the low�energy approximation. The vacuum moduli
space for the theories of the considered type is given by
the relations [74]

(4.4)

22A global subgroup of the gauge group should be a subgroup in
USp(2Nc) at constant Nc. The existence of isomorphisms
USp(2) ~ SU(2), USp(4) ~ SO(5) should be noted.
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Here  are scalar mutually conjugate components
of the  vector multiplet, and  are complex sca�
lar hypermultiplet components. 

The vacuum structure is characterized by the solu�
tions of Eqs. (4.4). These solutions can be classified by
phases (or branches) of the considered gauge model
[74]. In the purely Coulomb branch at  and

 Cartan subgroup  is the unbroken
gauge group. In the purely Higgs branch (i.e., at

), gauge symmetries are broken completely;
therefore, massless gauge bosons are absent in this
phase. It is well known that the conditions of F� and
D�flatness characterizing the Higgs branch can be
associated with ADHM constraints that define the
instanton moduli space. In the mixed phase (i.e., at
the direct product of Coulomb and Higgs branches

with certain expectation vacuum values of fields 
and  being nonzero), the gauge group is broken to

 where  is a certain Abelian subgroup, and

 <  

Following [115], we impose the specific constraints
on the background fields of the  vector multiplet
and the hypermultiplet. They are chosen in such a way
that only their projections onto a fixed direction in the
vacua moduli space remain nonzero. In particular,
their scalar fields should be the solutions of Eqs. (4.4):

(4.5)

Here  is the fixed generator of Abelian Cartan subal�
gebra corresponding to subgroup K, and ϒ is the fixed
vector in the R�space of the gauge group representa�
tion by which the hypermultiplet is transformed. This
vector is chosen so that  and  Equa�
tions (4.5) distinguish a single U(1) vector multiplet
and a single hypermultiplet that is neutral with respect
to the U(1)�gauge subgroup with generator . The
choice of H and ϒ can be constrained by the require�
ment of invariance of field configuration (4.5) with
respect to the maximal unbroken gauge subgroup. 

At tree level and energies below the symmetry
breaking scale, theory describes the dynamics of free
fields of the massless  vector multiplet and the
hypermultiplet with their fields being directed along a
certain preferred vector in the vacuum moduli space.
Low�energy propagating fields of massless neutral
hypermultiplets and U(1) multiplets, which form
together the complete set of on�shell superfields, have
the following properties:

(4.6)
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All notations corresponds to the book [51]. Equa�
tions (4.6) eliminate the auxiliary fields and put phys�
ical fields on shell. At the quantum level, the exchange
by virtual particles produces the corrections to the
action of massless fields. 

Manifestly  supersymmetric Feynman rules
in harmonic superspace were constructed in [56] (see
also [41, 52]). We will quantize  supergauge the�
ories using the  supersymmetric background

field method [41, 52] by decomposing fields 

into a sum of background fields  parameterized
in accordance with (4.5) and quantum fields v++, Q+a.
The Lagrangian will be presented as a power series in
quantum fields. This procedure allows one to deter�
mine quantum effective action for an arbitrary 
supersymmetric gauge model in the form that pre�
serves manifest  supersymmetry and classical
gauge invariance. The initial infinitesimal gauge trans�
formations are realized in two ways: first, as back�
ground transformations

(4.7)

and second, as quantum transformations 

(4.8)

In the framework of the background–quantum
splitting, the classical action of the “pure” 
gauge theory is written as

(4.9)

Here  and  denote � and  in the λ� and
τ�bases, respectively. They are related to each other via

“bridge” b,   The

quantum part of action depends on  through the

dependence of  on the bridge that is a complex

function of V++. The hypermultiplet action is split in
accordance with the following representation:

(4.10)

Terms linear in  and  in (4.9) and (4.10) define the
equations of motion. These terms should be omitted
when one considers effective action on the mass shell. 

We follow the Faddeev–Popov procedure in con�
structing the effective action. Within the background
field method, we should fix the gauge only with respect
to quantum transformations (4.8). In accordance with
the analysis in [52], we introduce the gauge fixing
function

with quantum transformations (4.8) acting on it in the
following way:

(4.11)

The Faddeev–Popov determinant is obtained using
Eq. (4.11):

In order to present  as a functional
integral, we introduce two real analytic fermionic
ghosts b and c in the adjoint representation of the
gauge group and determine the corresponding ghost
action

(4.12)

As a result, effective action  is obtained in the
following form: 

(4.13)

where  is an external V++�independent ana�
lytic superfield taking the values in the Lie algebra, and

 is a definite analytic functional delta func�

tion. In order to transform the  integral representation

of  into a more convenient form, we aver�
age the right hand part of Eq. (4.13) with weight
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(4.14)

Here α is an arbitrary gauge parameter. Functional

 is derived from relation

(4.15)

Using standard equality  =

 in expression 

we express  through a special background�

dependent operator A =  ×

 operating on the space of analytic super�
fields with values in the Lie algebra of the gauge
group:

(4.16)

In order to calculate DetA, we express it as the
functional integral over analytic superfields 

(4.17)

and perform a change of functional integration vari�
ables

We obtain23 

(4.18)

where 

(4.19)

Equations (4.16)–(4.18) yield 

(4.20)

Functional  can now be presented as the fol�
lowing functional integral:

(4.21)

Here integration variable ϕ is a bosonic real analytic
superfield that takes the values in the Lie algebra of the
gauge group. Superfield ϕ is basically a Nielsen–Kal�
losh ghost for the theory under consideration. There�
fore, the quantum  gauge theory within the
background field approach is defined by a set of three
ghosts: two fermionic ones (b and c) and bosonic
ghost ϕ. The actions of ghosts  and  are defined
by expressions (4.12) and (4.21) and coincide with the
known action of the ω�hypermultiplet. 

After averaging the effective action with weight
(4.14), we obtain the following representation for the
functional integral: 

(4.22)
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Here  is the contribution of the gauge
fixing term to the quantum action: 

(4.23)

Let us consider the sum of parts of  (4.9) and

 (4.23) that are quadratic in  This sum has the
following form:

where definition (3.18) was used. In order to simplify
calculations further, we choose the Fermi–Feynman
gauge with  Now we can write the final result

for effective action  in the form (4.22) with
quantum action  being expressed as

where

(4.24)
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Actions  and  define completely, in a manifestly
supersymmetric and gauge�invariant form, the struc�
ture of perturbative expansion of effective action
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 in the  gauge theory that interacts
with hypermultiplets. 

Note that not all hidden symmetries of classical
action are preserved in the quantum case in the Fad�
deev–Popov quantization scheme. According to the
results of analysis undertaken in [112], the problem of
preservation of a certain manifest global symmetry at
the quantum level is basically equivalent to finding the
gauge conditions that are covariant under these sym�
metries. Such conditions do not exist in the case of
conformal symmetry, and any special conformal
transformation should be accompanied by field�
dependent nonlocal gauge transformations in order to
restore the gauge orbit [112]. The invariance of func�
tional integral under combined conformal and gauge
transformations leads to a modification of the Ward
conformal identities for effective action. 

Action  defines the propagators depending on
background fields [52]. Three types of covariant prop�
agators for material and gauge fields are needed in

 harmonic superspace within the background

field method. Green’s function  that is

associated with  is subject to the Feynman boundary

condition and satisfies equation  =

, where  is an analytic delta

function.24 So, it is defined by

It sometimes is instructive to rewrite , following
[51], in a form that is explicitly analytic with respect to
both arguments

(4.26)

This representation can be used to calculate those
superdiagrams that contain the products of harmonic
distributions. 

Propagator of  hypermultiplet is defined by
action (4.24) and has the form:
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It is not too difficult to see that this manifestly analytic

expression is a solution of equation  =

 

The equation for the Green’s function of the sec�
ond type hypermultiplet described by neutral real ana�
lytic superfield  is as follows:

The corresponding expression for  is written as

(4.28)

The operator  present in the

Green’s functions transforms each covariant�analytic
superfield into a covariant�analytic one. Using alge�
bra (3.10), one can rewrite it as a second�order differ�
ential operator on the space of such superfields [52]:

(4.29)

Among the important properties of this operator one

notes the preservation of analyticity,  = 0.
The coefficients of this operator depend on back�

ground superfields  
In the case of a background belonging to the Abe�

lian subgroup of the gauge group and satisfying the
mass shell conditions, an additional restriction takes

place:  =  (and a similar condition for 

with ). Thus, spinor derivatives become back�
ground�independent in this case. In addition, we
should omit the two last terms in (4.29), since they
vanish on the mass shell. 

The part of the action that is quadratic in quantum
gauge superfields can be simplified easily by expanding
these matrix superfields over some basis. We choose
quantum superfields in unique correspondence with
roots of the Lie algebra of gauge group G:

 +  Here  is the generator

corresponding to root α and normalized as  =

 and  are the generators of Cartan subalgebra
of rank  that satisfy commutation relations

 =  Using this notation, one can
rewrite action (4.24) in terms of coefficients of expan�
sion over v in this basis. This form of effective action is
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convenient for calculations and is used in Section 4 in
various cases. 

After the gauge background superfield is removed,
Green’s functions (4.26), (4.27), and (4.28) go over to
free propagators constructed in [56, 51].

4.3. Structure of One�Loop Effective Action

Let us consider the loop expansion of effective
action in the framework of the background field
method. The effective action is defined by vacuum
diagrams (i.e., diagrams without external lines) with
background field dependent propagators and vertices.
The formal expression for one�loop action

 is written in the theory under consider�
ation as a functional integral (4.22), and the full qua�
dratic action of quantum fields is defined in (4.24). 

Expressions (4.22) and (4.24) define completely
the manifestly supersymmetric and gauge�invariant
structure of perturbation theory for the calculation of
effective action of  gauge theory with hypermul�
tiplets. We use expressions (4.26) and (4.27) for prop�
agators of the quantum vector multiplet v++ and
hypermultiplets Q+a, respectively. Vertices can be
determined directly from expression (4.25). It is easy
to see that ghosts are not associated with the back�
ground hypermultiplet and, consequently, do not con�
tribute to the hypermultiplet�dependent part of one�
loop effective action. In the vector sector of 
gauge theory, when the matter hypermultiplet is inte�

grated out, one�loop effective action  takes the
following form: 

At present, the holomorphic and nonholomorphic
parts of low�energy effective action of  and

 supersymmetric gauge theories in the Coulomb
branch (including the Euler–Heisenberg action in the
presence of a covariantly constant vector multiplet)
are known exactly (see, for example, [86, 82]). The
general structure of low�energy effective action in such
theories is given by [107, 144]
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where Λ and ϒ are the holomorphic and real analytic
functions of (anti)chiral superconformal invariants. It
is known that the �term at the component level pro�
duces quantum corrections with four derivatives
including the F4�term (see, for example, [82]). The
hypermultiplet�dependent part of effective action in

 gauge theory in the leading order is also known
[146, 215, 216]. 

For further analysis of effective action it is conve�

nient to diagonalize the action of quantum fields 
To do this one shifts the hypermultiplet variables in the
functional integral in the following way:

(4.30)

where  are new independent variables of func�
tional integration. It is evident that the Jacobian of the

change of variables (4.30) equals unity. Here 
is the background�dependent propagator (4.27) for

superfields  The following expression in terms
of the new set of quantum fields is obtained for the
hypermultiplet�dependent part of quadratic action:

Then, the quadratic part of action in the vector mul�
tiplet sector is extended by

(4.31)

Expression (4.31) written as an analytic nonlocal
superfunctional will serve as a starting point for our
calculations of one�loop effective action in the hyper�
multiplet sector. Our aim in this and next subsections
is to find the leading low�energy contributions to the
effective action for slowly varying hypermultiplet
superfields (i.e., when all derivatives of the back�
ground hypermultiplet can be neglected). We will
show that in this case such nonlocal interactions can
be localized at a point. 

Using relation  =  we

can rewrite the expansion for  (4.31) in the follow�
ing form:
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We then use the explicit expression for Green’s func�
tion (4.27) and a relation that allows one to present

 as a polynomial in powers of 
[107]

(4.33)

where

(4.34)

Since  =  the nonlocal
term in (4.32) takes the form

There are three terms within square brackets. It is easy
to see that the first two terms include derivatives that
produce derivatives of hypermultiplet superfields in
the effective action. Since we are interested only in
contributions with no derivatives, these terms can be
omitted. Therefore, only the third term in square
brackets requires consideration. 

Now we apply the relation  =

 which allows to integrate over z3, and

obtain

Next, we pick up the explicit harmonic dependence of

the hypermultiplet on the mass shell 
and go to the limit of coincident harmonic arguments

 using the harmonic part of delta function

 After that we obtain:  =

 As a result, the term under consideration takes
the form
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hereafter as a slowly changing superfield, and all its
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derivatives will be neglected. This is exactly the super�
field argument that was obtained in [216] after sum�
ming up the harmonic superdiagrams. 

Thus, the second term in (4.32) becomes local in
the leading low�energy approximation. As a result, the
operator of quadratic fluctuations for quantum super�

field  (we expand superfield  over the genera�

tor basis as  and consider only the 
superfield components) takes the form:

(4.35)

where

Here  is a covariant d’Alembertian. 

Thus, using the harmonic formulation of 
gauge theory interacting with hypermultiplets and the
technique of nonlocal shifts, we have demonstrated
that the complete dependence on the background
hypermultiplet was concentrated in the quantum vec�
tor multiplet sector after the action was modified.
Therefore, the one�loop effective action is given by

(4.36)

The first term in (4.36) is produced by quantum vector

multiplet 

(4.37)

The second term in (4.36) is stipulated by contribution

of ghosts and quantum hypermultiplet  and does not
depend on the background hypermultiplet. Therefore,
the complete dependence of one�loop effective action
on the background hypermultiplet superfield is con�
tained within operator

(4.38)

acting on  If q+ belongs to the fundamental repre�
sentation, this dependence has the form of a mass
matrix of the vector multiplet

(4.39)
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If q+ transforms in arbitrary matrix representation, the
dependence is of the form of matrix

(4.40)

Thus, the dependence on the hypermultiplet is trans�
ferred completely to the quantum superfields v++ sec�
tor and is concentrated in background�covariant oper�
ator (4.38). Representations (4.36) and (4.37) serve as
the starting point for the calculation of one�loop effec�
tive action. Note that we have imposed no restrictions
on the space�time dependence of the hypermultiplet
superfield (apart from the properties implied by mass
shell conditions (4.6)). 

Note that the structure of the gauge group realized

on superfields  has so far been completely arbi�
trary in our analysis. Now we choose the background
superfields along a given direction in the vacuum
moduli space in such a way that their scalar fields will
be the solutions of Eqs. (4.4). Let the background vec�
tor multiplet and the hypermultiplet be of the
form (4.5), where H is the fixed generator of Cartan
subalgebra. This agrees with the assumption that gauge

group G is broken to subgroup  where K is the
Abelian Cartan subgroup with an algebra to which
generator H belongs. In this case, a unique vacuum

combination  exists for the  background
vector multiplet, and a unique vacuum combination

 is present for the background hypermultiplet.25

The operator acting on quantum superfields of the
vector multiplet, which are defined in (4.38), then
assumes universal form

(4.41)

Here � is a covariant d’Alembertian, combination

 (a = 1, 2) has no matrix indices (since a fixed
direction in the moduli space was chosen), and matrix

 features indices  coming from the expression
 after fixing the background hypermultiplet as

in (4.5). All matrices in (4.41) with  are diago�

nal in indices of generators of the subgroup . 

We are interested only in hypermultiplet�depen�
dent terms in one�loop effective action (4.37). Let us
explain how such terms can emerge in (4.37). The

25If background fields correspond to several Cartan generators Hi,
the effective action is a sum of contributions over index i with
the structure of each contribution corresponding to the above
case. Therefore, without losing generality, we may restrict our�
selves to the case of a single fixed generator H.
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mass matrix has the following structure:  =

 +  Matrix Y has 
eigenvectors corresponding to an eigenvalue of 1. The
matrix in brackets in (4.41) has the same eigenvectors.
As to Z, two options are available: 

(i) Matrix Z has  eigenvectors shared with
matrix Y  ≤  with eigenvalues  The
effective action is then the sum over various  val�
ues. Therefore, without losing generality, we can
assume that a sole eigenvalue  with  eigen�
vectors, which are also the eigenvectors of matrix Y,
exists. Therefore, the hypermultiplet dependence of
the effective action is in this case given by

(4.42)

Here Tr denotes the functional trace of operators act�
ing on analytic superfields with the corresponding 
charge.26 Those eigenvectors of matrix Y that do not
match the eigenvectors of matrix Z produce no contri�
bution to the hypermultiplet dependence of effective
action. 

(ii) Matrices Y and Z have no any common eigen�
vectors. If this is the case, the hypermultiplet�depen�
dent part of effective action vanishes. 

Thus, the hypermultiplet�dependent effective
action is defined by expression (4.42). The actual cal�
culation of effective action is discussed in the next sub�
section.

4.4. Calculation of One�Loop Effective Action

Expression (4.42) is the basis for the analysis of the
hypermultiplet dependence of effective action. This
expression will be rewritten in a form that allows a cal�
culation in the framework of the superfield generaliza�
tion of the Fock–Schwinger proper time method [2]
(  superfield proper time method was developed
in [39, 40, 211, 213]). We will follow the general pro�
cedure outlined in [216] where the proper time
method was used to analyze the hypermultiplet depen�
dence of effective action of  Yang–Mills theory. 

26Specifically, if 
(p, 4 – p) (ζ1,ζ2) is the kernel of an operator act�
ing on the space of covariant�analytic superfields with charge p,

where “tr” denotes the trace over group indices.
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time representation, the effective action (4.42) is writ�
ten as
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where  +  and  is
the superfield heat kernel of the operator. Symbol Tr
denotes the functional trace in the analytic subspace of

harmonic superspace,  = 

where tr is the trace over discrete indices. The repre�
sentation of effective action in the form (4.43) allows
us to calculate it directly as an expansion in powers of
covariant spinor derivatives of Abelian strength super�

fields  The leading low�energy terms in this
expansion correspond to background gauge super�

fields that are constant in space�time,  =

const and  = const, and to the background
hypermultiplet on the mass shell. In addition, we
assume that the hypermultiplet is a slowly varying
function on a superspace and neglect all hypermultip�
let derivatives in the process of calculation of super�
field effective action. This, however, should not result
in the lack of space�time derivatives needed in the
component effective Lagrangian. The Grassmannian
measure in the integral over harmonic superspace
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that removes all harmonic  singularities automatically.
Besides, since the covariant d’Alembertian does not

contain an effectively acting  while working out

the heat kernel we will never obtain derivative ;

only the derivative  can be obtained, and it van�
ishes on the mass shell. When this calculation method
is used, quantum corrections with higher derivatives
should emerge in the form

(4.44)

In the case of covariantly constant hypermultiplet

 and vector multiplet (  =  = 0),
the heat kernel can be calculated exactly. This can be
done more conveniently separating the contributions
of the “diamagnetic” and “paramagnetic” parts of

operator  We follow here the general calculation
scheme [216] and take into account only those aspects
that are essential for the theory under consideration.
First, we apply the Baker–Campbell–Hausdorff for�
mula in order to represent  as a product of several

operator exponentials,27
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where the expressions for functions 

 can be found in [216]. A similar equation
for function Ω is written as

The solution of this equation is as follows:
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Note that this solution is a polynomial of a finite order

in powers of Grassmannian quantities  All
coefficients are given in [216]. The last exponential
in (4.45) should then be transformed into the form
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The coefficients of this expansion were determined
exactly and are given in [216]. 
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(4.49)

One can show that only this last term in the expan�
sion of the exponential survives in the limit of coinci�

dent arguments  to which one should pass in

(4.43) with the relation  = 1
taken into account. All the other terms with less than

four derivatives  vanish in the above limit. Thus,
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power of Grassmannian�odd quantities  is
obtained as a coefficient. All the other dependences on

 in operator exponential (4.45) make no contri�

	 � � s, ,( ),

	 � � s, ,( )

d
ds
����Ω s( ) �

v

2
– A+α Dα

–Ω( )– A
+α·

Dα·
–
Ω( )–=

+ Aα
+f αα

·
Aα·

–
Aα·

+
f α

· αAα
– 1

2
��Aβ

+Aβ·
–

dτeτF

0

s

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

α· α

β· β

–+

× Fρ· ρ
α· αf ρ

· ρ 1
2
��Aβ·

+
Aβ

–
dτe τF–

0

s

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

α· α

β· β

Fρ· ρ
α· αf ρ

· ρ
.–

Ω s( ) s�
v

2
A+αΩα

– s( ) A
+α·

Ωα·
–

s( )+ +=

+ A+( )
2
Ψ 2–( ) s( ) A

+
( )

2
Ψ

2–( )
s( ) A+αAα·

+
Ψα

α· 2–( ) s( ).+ +

A± A
±

.,

s A+�–
A

+
�

–
+( )–{ }exp 1 a+α�α

–
a+α· �α·

–
+ +=

+ f +2 �–( )
2

f +2 �
–

( )
2

f +2α· α�α�α·+ +

+ Ξ
+3α·

�α·
–

�–( )
2

Ξ+3α�α
– �

–
( )

2
Ω+4 �–( )

2
�

–
( )

2
.+ +

Ω+4 1
16
���� A+( )

2
A

+
( )

2
–=

× tr
s�( )cosh 1–

�2
���������������������������⎝ ⎠

⎛ ⎞ tr
s�( )cosh 1–

�
2

���������������������������
⎝ ⎠
⎜ ⎟
⎛ ⎞

.

θ+ θ
+',=

D–( )
4

D+( )
4

δ8 θ θ '–( ) θ θ '=

( )D −

A+ A
+

,

A+ A
+

,



PHYSICS OF PARTICLES AND NUCLEI  Vol. 47  No. 3  2016

SUPERFIELD APPROACH TO THE CONSTRUCTION OF EFFECTIVE ACTION 347

bution, and we obtain the  following expression for
effective action:

(4.50)

where  is the superfield generalization of the
Schwinger kernel [2, 144]. The latter is defined in the
following way: 

The calculation of this heat kernel and its func�
tional trace is performed in a standard way (for a more
detailed description, see [107, 211, 213]). The final
result of this calculation is

Here � is expressed as � =  and, finally, in

terms of two invariants of the Abelian vector field 	 =

 and � =  � =  

Expression (4.50) is the final result for the hyper�
multiplet�dependent low�energy one�loop effective
action of the Euler–Heisenberg type. It is worth
pointing out that the total dependence on the back�

ground hypermultiplet is contained in  The
explicit expression for effective action is as follows: 
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powers of  and their conjugates. Since the

expression under the integral in (4.51) contains

 as a factor, we can substitute super�

conformal invariants  and  in each term of the

expansion of  and  in these invariants [144] with

 =  =  and

its conjugate. It can then be demonstrated that each
term in the expansion is written as an integral over full
� = 2 superspace. 

It is interesting and instructive to calculate the
leading part of effective action (4.51). The analysis of
expression (4.51) (see [213, 215, 216] for details) yields 
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model under consideration and depends on the specific
features of symmetry breaking. The hypermultiplet
dependence of effective action similar to (4.54) was first
found in [146] for  Yang–Mills theory and was
then studied by various methods in [147, 216]. 

Both the  vector multiplet and the hypermul�
tiplet in  Yang–Mills theory belong to the adjoint
representation of the gauge group; therefore, the above
coefficient in X equals unity. As a result, we arrive at the
conclusion that the hypermultiplet�dependent low�
energy effective action has a general form (4.54) in all

 superconformal models; the models differ only
in the coefficient  in X (4.52). The same
holds true for the general expression (4.50). The differ�
ent models also differ in coefficients  at integrals
(4.50) and (4.54). This universality of effective action of

 superconformal gauge theories is a noteworthy
result that demonstrates the actual potential of the har�
monic approach in the quantum region. 

Let us now discuss some selected component terms
in effective action (4.54). The component structure of
(4.54) was studied in [146] in the bosonic sector for con�

stant background fields  However, it was
already noted that superfield effective action (4.54)
allows one to calculate the terms in effective action up
to space�time derivatives of the fourth order on compo�
nent fields. Our aim is to find these terms in the sector
of scalar fields of the hypermultiplet. To this end, we
omit all components of the background superfield

except the scalars  in the  vector multiplet
and scalars  in the hypermultiplet and integrate over

 =  We act by these derivatives on
the series under the integral in (4.53). In order to obtain
the higher space�time derivatives of scalar components
of the hypermultiplet, one should throw exactly two
spinor derivatives on each hypermultiplet superfield.
After some algebra, the following terms with four space�

time derivatives on  in the component expansion of
effective action (4.53) are obtained: 
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The direct calculation28 of each term of this
expression shows that among many terms with four
derivatives, an intriguing term of the following special
form is present: 

(4.55)

The first term of expansion of this expression in powers

of X0 =  is given by 

(4.56)

We have omitted all terms with expressions of the

 type. Expressions (4.55) and (4.56) are similar
to the Chern–Cimons action for a multicomponent
complex scalar field. The possibility that such terms
can arise in the effective action was discussed in [193,
195] in the context of � = 4, 2 supersymmetric gauge
models and for d = 6, � = (2, 0) superconformal mod�
els. In the present case, expression (4.55) emerged as a
result of direct calculations in supersymmetric quan�
tum field theory. 
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and the traces in Eq. (4.36) lead to a coefficient 
that is equal to the number of roots with 
(i.e., the number of unbroken generators): 

It follows from the expression for the mass matrix that
 in this case. 

(ii) This model was proposed in [189]. The group
 =  was taken as the

gauge one. The model contains four hypermultiplets

 in the fundamental representation and one hyper�

multiplet  in the antisymmetric traceless represen�

tation of group  Background fields �, ,

and  are chosen as the solutions of Eq. (4.4) with the
maximal unbroken gauge subgroup

 

Mass matrix  was constructed in [115]. It has

 eigenvectors with eigenvalues
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(iii) The � = 2 superconformal model with the
simplest “quiver” of gauge theories [189]. The gauge
group is the product U(N)L × SU(N)R. The model

contains two hypermultiplets q+ and  in bifunda�

mental representations  and  of the
gauge group. The solutions of Eq. (4.4) with nonvan�
ishing hypermultiplet components that fix flat direc�
tions in massless � = 2 gauge theories were con�
structed in [115]. The vacuum moduli space for these
models incorporates the following configurations: 
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These configurations leave unbroken gauge group
SU(N – 1) × SU(N – 1) and the diagonal U(1) sub�
group in SU(N)L × SU(N)R, which is related to the
choice of . On this background, the mass matrix has

an eigen value of  =  +  cor�

respondingly, 

4.5. Hypermultiplet�Dependent Contribution 
to the Effective Action off the Mass Shell

All the above analysis and study on the hypermul�
tiplet dependence of effective action [146, 216] were

based on the assumption that hypermultiplet  satis�
fies on�shell conditions (4.6) and the restriction

. It was noted in [146] that these conditions
are sufficient to obtain all the leading low�energy con�
tributions to the effective action. In the present sub�
section, we relax these restrictions and study a few
possible leading contributions with the minimum
number of space�time derivatives to the component
effective action.

Let us consider the superdiagram in the Fig. 1 with
two external hypermultiplet legs and with all propaga�
tors depending on the background � = 2 vector mul�
tiplet. The wavy line denotes the � = 2 gauge super�
field propagator, and solid external and internal lines
correspond to the hypermutiplet background super�
fields and the quantum hypermultiplet propagator,
respectively. We assume for simplicity that the back�
ground field is Abelian and omit all group factors. The
corresponding contribution to the effective action has
the form: 

(4.57)
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Fig. 1. One�loop supergraph.
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As usual, we pick up factor  from the vector mul�
tiplet propagator to restore the full  integration
measure. We then shrink the loop to a point by trans�

ferring the operators  and  from the first
δ�function to the other one, and so remove one inte�

gration. Operator  does not act on  in the process,
since we are interested in the contributions that pro�
duce terms with the minimum number of space�time
derivatives in the component form of effective action.
As a result, we obtain 

We then use twice the relation (4.33), which allows one to

present  as a polynomial in powers of

 Multiplying operator  by

distribution  we obtain a polynomial con�

taining powers of  from first to fifth. 

First power corresponds exactly to the contribution
of the type that was analyzed in the previous section,
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derivatives. It was noted in Subsection 2.4 that this
contribution could be obtained through the analysis of
a hypermultiplet satisfying mass shell conditions (4.6). 
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 we obtain
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where  is defined (4.34). 
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We then perform the same procedures for the second underlined contribution  retaining the same order

in s and  as in expression (4.61): 

The integration in momentum in this expression29

yields  = 0. It now becomes appar�

ent that no leading term of the type (4.61) is present in
 It is then easy to see that contribution (4.61)

can be rewritten as (we use  = )

A nonzero result is obtained when all D+�factors act
only on the spinor delta function. Thus, the consid�
ered contribution is written as an integral over measure

 that is  of the full  integra�
tion measure over harmonic superspace

 
Thus, the hypermultiplet�dependent part of effec�

tive action contains the following term:

(4.62)

The presence of this term in the effective action for
 supersymmetric models was suggested in [195].

We have shown here how a term with such a structure
can be obtained within supersymmetric quantum field
theory. 

It is instructive to determine the component form
of nonstandard superfield action (4.62). We consider
here only the bosonic sector in (4.62). After integra�

tion over anticommuting variables, which effectively
amounts to  action of supercovariant derivatives at
θ = 0, we obtain

Since  =  and  = 

we have

(4.63)

where  are spinor components of Abelian
strength  We then convert spinor indices into vec�
tor ones. As a result, we obtain a contribution to the
effective action that is similar to the Chern–Simons
term and contains three space�time derivatives:

(4.64)

This expression is the simplest contribution to the
hypermultiplet�dependent effective action off the
mass shell (4.6) for the background hypermultiplet.
Naturally, other (more complicated) contributions
containing hypermultiplet derivatives also exist. One
can determine them using the same algorithm that led
to (4.62). Here we have only demonstrated the proce�
dure of calculation of contributions to the effective
action in the form of an integral over 3/4 of the full

 harmonic superspace.
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4.6. Summary

The one�loop low�energy effective action in 
superconformal models was studied. These models are
formulated in harmonic superspace, and their field
content satisfies the condition of ultraviolet finiteness
of the theory (4.1). The effective action depends on the
background Abelian  vector multiplet superfield
and the hypermultiplet background superfield that
satisfy special restrictions (4.4) and (4.5) defining the
vacuum structure of models. The effective action is
calculated based on the  background field
method for the background hypermultiplet on the
mass shell (4.6), as well as off the mass shell. 

It was demonstrated that the hypermultiplet�
dependent one�loop effective action in the considered
theory is related to a special superfield operator (4.38)
that acts only in the sector of quantum fields of the
vector multiplet. The coefficients of this operator con�
tain background superfields and depend on the spe�
cific details of gauge symmetry breaking. It was proven
that one could calculate the one�loop effective action
just by considering the simple case when this operator
takes the general form (4.41). 

The hypermultiplet�dependent one�loop low�
energy effective action was presented as an integral
over proper time. It was demonstrated that analyzing
the vector multiplet and hypermultiplet on the mass
shell is sufficient to determine the low�energy contri�
butions to the effective action. The final result for this
case is given by relation (4.50) that is the  super�
field counterpart of the Euler–Heisenberg action. The
leading part of low�energy effective action (4.54) has a

universal form30 and depends on X = 

(4.52). The latter quantity involves the details of the
vacuum structure of the model. Using superfield effec�
tive action (4.54), we construct the leading (in space�
time derivatives) terms in the sector of scalar compo�
nents of the hypermultiplet. These terms contain four
space�time derivatives of the scalar field and are simi�
lar to Chern–Simons action (4.55). 

There were found possible contributions to the
effective action that can be obtained if we go beyond
the mass shell conditions (4.6) for the background
hypermultiplet. The harmonic superdiagram with two
external hypermultiplet lines and the background�
dependent propagator of the vector multiplet was cal�
culated, and its leading low�energy contribution was
found. It was demonstrated that the final result has an
intriguing superfield structure and is written as an inte�
gral over 3/4 of the full  harmonic superspace
(4.62). The possible presence of such terms in the
effective action of  supersymmetric theories was

discussed recently in [195]. We determine the compo�
nent structure of effective action (4.62) in the bosonic
sector retaining scalar components of the background
hypermultiplet and vector components of the back�
ground  gauge multiplet. The obtained expres�
sion (4.64) is similar to Chern–Simons terms and
contains three space�time derivatives of component
fields. 

In conclusion, let us emphasize once again that we
have analyzed the general structure of hypermultiplet�
dependent one�loop low�energy effective action of

 superconformal models. A general expression
for the effective action of the hypermultiplet on the
mass shell was found. A special manifestly 
supersymmetric subleading contribution, which is
written as an integral over 3/4 of the full  har�
monic superspace, was calculated for the hypermul�
tiplet off the mass shell. It is worth pointing out that
such contributions deserve a separate study.

5. ONE�LOOP EFFECTIVE ACTION 
IN  SUPERSYMMETRIC MASSIVE 

YANG–MILLS THEORY

5.1. Introduction

The problem of quantization of the massive non�
Abelian Yang–Mills theory has a long history (see, for
example, [157–162]). Gauge invariance is usually
associated with masslessness of the corresponding
gauge fields. However, it is evident that massive
degrees of freedom of vector bosons should be taken
into account in order to understand the phenomenol�
ogy of particles. 

Several different mechanisms through which vector
fields acquire mass are now known. The common fea�
ture of these mechanisms, which are compatible with
gauge invariance, is an increase in the number of phys�
ical degrees of freedom (relative to that in the massless
theory). Of course, the dominant and generally
accepted model lying at the basis of the Standard
Model is the mechanism of spontaneous symmetry
breaking with additional physical degrees of freedom
implied by the Higgs effect (i.e., taken from the Higgs
multiplet containing scalar Higgs fields). In unitary
gauge, only Higgs bosons are left from this multiplet,
and a fraction of massless gauge fields become massive
due to the eating of the other scalar (Goldstone) com�
ponents, the number of which equals the number of
massive gauge fields. 

Although the existence of Higgs bosons has been
proven experimentally and this aspect of the Standard
Model is fully justified, other mechanisms of boson
and fermion mass generation in gauge theories can
also be of interest (provided that no extra degrees of
freedom emerge in the spectrum of physical particles)
in the context of development of quantum field theory. 

30This form of low�energy effective action (4.54) was first found
in [146] for � = 4 gauge theory.
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The model in which gauge fields acquire mass
through their gauge�invariant coupling to the real
pseudoscalar Stueckelberg field [163] described by the
nonlinear sigma model is the most frequently used
alternative to the Higgs mechanism. In unitary gauge,
this field is absorbed completely by the longitudinal
component of a massive vector. The difference with
the Higgs mechanism consists in the fact that Stueck�
elberg fields are transformed by the nonlinear realiza�
tion of the gauge group, which does not require the
introduction of any additional Higgs fields that com�
plete nonlinear fields to a linear multiplet, right from
the outset.31 A fairly comprehensive review of litera�
ture on this topic is found in [166]; among numerous
recent publications, paper [167] deserves a mention. 

In addition to models with Stueckelberg fields, one
can consider non�Abelian vector�tensor gauge theo�
ries with topological interactions. All such theories are
classically equivalent to non�Abelian theories of mas�
sive vector fields with Stueckelberg fields. The same
degrees of freedom can be described by any of the two
dual representations. In certain contexts, one formu�
lation can turn out to be more convenient than the
other one; therefore, it is useful to know both formu�
lations in detail and understand their interrelation.32 

It should be noted that such models arise in the
low�energy limit of superstring theory and in the con�
text of supergravity in higher dimensions. For exam�
ple, the degrees of freedom of a massive antisymmetric
tensor field, which are responsible for one of the pos�
sible mechanisms of spontaneous symmetry breaking
(see [66]), arise naturally in the recently studied com�
pactifications of a type II superstring on Calabi–Yau
manifolds in the presence of nontrivial fluxes of the
gauge three�form. This fact inspired a renewed interest
in detailed studies of massive  and  tensor
multiplets and their couplings to scalar and vector
multiplets. Note also that the couplings to tensor mul�
tiplets play an important role in the mechanism of
cancellation of anomalies in superstring models. 

The study of quantum properties of dual realiza�
tions of one and the same representation of supersym�
metry is of special interest. 

The theory of  supersymmetric massive ten�
sor multiplet as a dual version of a massive vector mul�
tiplet is well�known (see, for example, [39]). In 
supersymmetry, the antisymmetric tensor strength is
contained within a tensor multiplet that is described by

analytic harmonic  superfield  subject to cer�

31Actually, the primary motivation behind incorporating the
additional degrees of freedom into a linear multiplet is the
renormalizability requirement. This requirement is not satisfied
in the “minimal” case when these degrees of freedom are
described by the nonlinear sigma model.

32The quantum equivalence of various dual formulations is a
more delicate problem and requires separate analysis for each
specific theory (see, for example, [168, 169]).

1=� 2=�

1=�

2=�

2=� G ++

tain constraints [51]. The action for a massless tensor
multiplet contains only G++; however, if the antisym�
metric tensor has a certain mass, gauge invariance
requires including the interaction of the correspond�
ing Stueckelberg fields with the vector multiplet [67]. 

In the present section, we will consider quantum
properties of  massive Yang–Mills theory using
the Stueckelberg superfield. This model is a direct

 supersymmetrization of a nonsupersymmetric
(� = 0) massive Yang–Mills theory in the Kunimasa–
Goto formalism [171]. Certain aspects of this problem
have already been discussed in [173]. It was demon�
strated there that the theory is finite in the second
order in dimensionless Yang–Mills coupling constant

; the mass term is not renormalized, but the theory
is nonrenormalizable in the sector that contains

dimensionful coupling constant  This allowed the

authors of [173] to conclude that the theory is finite in
the vector multiplet sector to all orders of loop expan�
sion. Note, however, that the action of  Yang–
Mills theory within the harmonic superspace formal�
ism [56] is written as an infinite sum over all powers of

the vector multiplet potential  at the classical level.
In addition, the sigma�model Lagrangian of the Stu�
eckelberg superfield has a highly nonlinear form.
Therefore, we cannot reduce the gauge�covariant
analysis of quantum properties of the theory (even at
the one�loop level) to the analysis of only the simplest
diagrams, since this leads to gauge�noninvariant
counterterms. All one�loop diagrams corresponding
to the effective action with all external legs should be
summed. If the conventional noncovariant diagram
technique is used, this task appears extremely compli�
cated (if not impossible). 

In the present section, we use the formulation of
 supersymmetric theory and the corresponding

Stueckelberg formalism in harmonic superspace [173]
and apply the background field method [41] that
allows one to sum all diagrams with an increasing
number of insertions to construct the effective action.
The obtained results are conceptually similar to the
results presented in [174, 175], where the problem of
construction of invariant counterterms for the nonsu�
persymmetric massive Yang–Mills theory off the mass
shell was solved. The use of the invariant perturbation
theory, which was developed for the models of princi�
pal chiral fields in [176–178], is an important mean
that allows one to preserve gauge invaraince at all cal�
culation stages. 

The section is organized as follows. The formula�
tion of  supersymmetric massive Yang–Mills
field theory in harmonic superspace with the Stueck�
elberg superfield taken into account is given in Subsec�
tion 5.2. Eliminating the nonphysical degrees of free�
dom, we obtain an explicitly gauge�invariant nonlocal
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expression for the mass term in  the Lagrangian. It is
reasonable to expect that this form of the mass term
will shed light on the dual coupling to the theory of

 massive tensor multiplet [67]. The procedure of
construction of effective action based on the 
supersymmetric background field method is discussed
in Subsection 5.3. The specific features of application
of the background field method to the considered the�
ory are also noted there. Subsection 5.4 is focused on
the calculation of one�loop divergences of effective
action. Gauge�invariant and manifestly  super�
symmetric counterterms depending on the Stueckel�
berg superfield are also presented there. The deriva�
tion of the component structure of the bosonic sector
of one such counterterm is discussed in Subsection
5.5. The results are summarized in Subsection 5.6.

5.2.  Supersymmetric Massive 
Yang–Mills Theory in Harmonic Superspace

It was already noted that the formulation of 
supersymmetric theories in terms of unconstrained
superfields defined on the analytic subspace of har�
monic superspace [56] turned out to be extremely use�
ful in studying the quantum effects in such theories
(see, for example, [41, 52]). 

Recall that the  vector multiplet with a finite
number of physical and auxiliary fields and with an
infinite set of gauge degrees of freedom is described by

a real analytic superfield V++ =  that takes the
values in the Lie algebra of the gauge group. Hyper�
multiplets ω and q+, which are transformed by a cer�
tain representation  of the gauge group and have infi�
nite sets of auxiliary fields off the mass shell, are
described by analytic superfields: real superfield 

and complex superfield  with its conjugates 
(see [56] for the definition of generalized conjugation
as a combination of complex conjugation and antipo�
dal mapping on a 2�sphere). Scalar component fields

of the ω�hypermultiplet (  and ), which
are transformed as an isoscalar and an isotriplet under
the  group of internal automorphisms of the
supersymmetry, and a doublet of Weyl fermions

 emerge as the leading components of expan�

sion of  in powers of Grassmannian coordinates

 and harmonics  Other  matter multip�
lets with a finite number of auxiliary fields also exist.
They are described by analytic superfields that are sub�
ject to properly chosen harmonic constraints. 

Gauge  potential  satisfies the reality rela�

tion  and is transformed under gauge trans�

formations as  =  where λ is an arbitrary
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– λ,

real analytic superparameter and  = 

=  is the covariant harmonic deriva�

tive in analytic basis.33 Superfield  is the so�
called gauge bridge. The gauge freedom associated
with superparameter λ allows one to eliminate an infi�

nite number of gauge degrees of freedom in  and
impose the Wess–Zumino gauge in which this analytic
superfield has a finite number of physical and auxiliary
fields forming a vector supermultiplet off the mass
shell. This multiplet contains vector field  com�
plex scalar field  +  Majorana spinor

isodoublet   and a triplet of scalar auxil�

iary fields  It was demonstrated in [56] that all
geometrical objects of the theory (such as various con�
nections and strengths) are expressed in terms of a sin�

gle unconstrained potential  

Without elaborating on the construction of the
 gauge theory (see previous sections for details),

we recall that the non�Abelian gauge vector supermul�
tiplet action, which is important for further analysis,
takes the following form in terms of V++:

(5.1)

Harmonic distributions  (in other words,

Green’s functions on sphere  that are

defined by equation  =

) were used here. The rules of differenti�
ation and integration with respect to harmonics were
developed in pioneering paper [56]. 

The harmonics�independent chiral superstrength

W =  is defined in terms of nonanalytic

superfield

satisfying the zero�curvature equation

(5.2)
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In λ�basis, action (5.1) is invariant under gauge trans�
formations 

(5.3)

Here  are generators of the gauge group,

Transformation law (5.3) is the finite form of the infin�
itesimal gauge transformation defined above. 

Let us construct now a gauge�invariant expression
for the term in the superfield action that is responsible
for the gauge field mass. We use a generalization of the
known Kunimasa–Goto formalism [171, 166] that
was developed for the gauge�invariant description of
the mass of gauge fields in the conventional Yang–
Mills theory. In  superfield gauge theory, this
formalism requires the introduction of an additional
Goldstone ω�hypermultiplet in the adjoint represen�
tation of the gauge group. The corresponding massive
term in the action is then written as

(5.4)

where  The mass term in this for�

mulation34 is manifestly invariant under simultaneous
transformations (5.3) and transformations 

(5.5)

where  and g is the same gauge group ele�
ment. Note that mass term (5.4) is also invariant under

the right global transformations gR: 

 Since the action of  supersymmet�
ric massless Yang–Mills theory (5.1) is gauge�invari�

ant, the substitution  does not change the
structure of action (5.1). 

It is instructive to examine another (explicitly
gauge�invariant, but nonlocal) representation of the
mass term through the superfield strength W. Let us
consider action

(5.6)

34It is useful to keep in mind the other form of the same expres�
sion (5.3):

The specific structure of the gauge sigma model is seen clearer
in this formulation.

V++g
eiλ V++ iD++–( )e iλ–

, V++ Va
++Ta,= =

λ λ ζ u,( ) λ ζ u,( ), λ λaTa.= = =

aT

Ta Tb,[ ] ifabcTc, tr TaTb( ) δab.= =

2=�

Sm
m2

2g
2

������tr dζ 4–( )
du Ω 1– V++ iD++–( )Ω[ ]

2
,∫–=

Ω Ω ω( ) e iω–
.= =

tr
2 2( 4) 1
2

( [ , ]) .
2

m
mS d du V i D i V
g

− ++ − ++ ++⎡ ⎤= − ζ − Ω Ω + Ω⎣ ⎦∫

Ωg e
iλΩ,=

Ωg gΩ,=

V++( )
gR

V++
,=

Ω
gR ΩgR.= 2=�

V++ V++Ω
→

S V++ ω,[ ] 1

2g2
������tr d

4θW 2 m2

2g2
������–∫–=

× tr dζ 4–( )
du�++�++

,∫

where

35 (5.7)

and write down the equation of motion that follows from it:

(5.8)

Since W is independent of harmonics, the self�consis�
tency condition for this equation is the equation of
motion for the ω�multiplet: 

(5.9)
It can be seen from definition (5.7) that the compo�

nent content of gauge�covariant  = 

potential  is defined by complex nonpolynomial
combinations formed from the physical components
of the vector multiplet in the Wess–Zumino gauge and
the ω�multiplet components. However, on the mass
shell under condition (5.9), the component expansion
can be parameterized as follows:

(5.10)

The mass term for the vector component of super�

field  then takes the form similar to the mass term
in the Stueckelberg formalism for the nonsupersym�
metric massive Yang–Mills field theory [175]: 

where Cartan form  on the group is defined in terms

of isoscalar  and isotriplet  physical components
of the ω�supermultiplet. It is technically complicated
enough to derive an explicit component expression for

, since this requires integrating over harmonics in
each term of an infinite series in the expansion of Cartan

form Lm =  where  =  + 
However, the similarity with the corresponding nonsu�
persymmetric theory is evident. 

Equation (5.8) can be regarded as a constraint for
the ω�multiplet that can be resolved perturbatively in
the general case of a non�Abelian theory. The solution
in the Abelian case is particularly simple:

(5.11)

35The definition of isotopic matrix Rab(ω) is given below
(see (5.16)).
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where

(5.12)

is the Green’s function of the omega multiplet [56].

Acting by operator  on both sides of (5.11), we
obtain the following relation: 

where  is an analytic distribution with the properties
of a projection operator [56]. Eliminating the gauge
degrees of freedom  from (5.6), after some chain of
transformations of the mass term the latter can be
rewritten as follows:

(5.13)

As a result, the gauge�invariant form of the mass term
is expressed completely through strengths W. It is evi�
dent that the ω�multiplet can also be eliminated per�
turbatively in the non�Abelian case within a polyno�
mial expansion in powers of V++. Of course, this
expansion is a nonlocal expression, but it can be local�
ized by introducing the proper tensor multiplets.36 We

36Let us write the action for the massive tensor multiplet in har�
monic superspace [67] in the form

where  is the real analytic superfield subject to the

 constraint. This constraint may be resolved in
terms of the harmonic�independent unconstrained chiral pre�

potential  and its conjugate as  =  +

 Superfield  remains invariant under gauge

transformations    = 

Let us choose the gauge�fixing function in the form F++ =

 –  Integrating in the generating

functional over prepotentials  we then obtain a nonlocal
mass term for vector multiplet (5.13):

G0
0 0,( ) 1 2( ) 1

�
��� D1

+( )
4

D2
+( )

4
δ12 1 2( )

u1
–

u2
–

u1
+u2

+( )3
���������������–=

D++

D1
++ω ζ1 u1,( ) dζ2

4–( )
du2

1
�
��� D1

+( )
4

D2
+( )

4

∫–=

× δ12 1 2( )V++ 2( ) 1

u1
+u2

+( )
2

��������������� 1
2
�� D2

––( )2δ 2 2–,( ) u2 u1,( )+
⎩ ⎭
⎨ ⎬
⎧ ⎫

=  dζ2
4–( )

du2 ΠT
2 2,( ) 1 2( ) δA

2 2,( ) 1 2( )+{ }V++ 2( ),∫
TΠ

ω

Sm
m2

2g2
������ dζ1

4–( )
du1dζ2

4–( )
du2V++ 1( )∫–=

× ΠT
2 2,( ) 1 2( )V++ 2( ) m2

2g2
������ d

8zcW 1
�
���W.∫=

S 1
2
�� dζ 4–

G
++( )

2 1
2
��m d

8
zWψ c.c.+∫⎝ ⎠

⎛ ⎞ 1
2
�� d

8
zW

2
,∫+ +∫=

G
++

z u,( )

D
++

G
++

0=

ψ z( ) G
++

z u,( ) 1
8
�� D

+( )
2
ψ z( )

1
8
�� D

+
( )

2
ψ z( ). G

++

δψ iΛ,= Dα·
i
Λ 0,= D

αi
Dα

j
Λ Dα·

i
D

jα·
Λ.

1
8
�� D

+( )
2
ψ z( ) 1

8
�� D

+
( )2ψ z( ).

ψ ψ,,

Z DψDψ Det�( )∫=

× e

i
2
�� dζ

4–
G

++
( )

2
F

++
( )

2
+{ }

i
2
��m d

8
z Wψ c.c.+( )∫+∫

e
i d

8
zWm

2

�
�����W∫ .=

thus obtain an interesting sequence of classical duali�
ties for the model containing Stueckelberg superfields

ω. The same occurs when calculating the  con�
densates in the Yang–Mills theory. There the nonlocal

gauge�invariant functional related to  contains
information on the topological vacuum structure of
the theory with a nonvanishing vacuum expectation
value of this operator (see [179] and references therein
for a detailed description of the infrared dynamics of
Yang–Mills theory). 

Our next goal is to determine the effective action
and to analyze the structure of one�loop divergences in
the theory with action (5.6).

5.3. Background Field Method

The gauge�invariant loop expansion of the effective
action in supersymmetric theories is carried out within
the superfield background field method (see, for
example, [37, 39] for � = 1 theories and [41, 52] for
� = 2 theories). In the background field formalism,
we should consecutively perform the background–
quantum splitting of all fields, fix the gauge degrees of
freedom of quantum fields applying the Faddeev–
Popov procedure, and expand the generating func�
tional of vertex functions in powers of quantum fields.
The contribution to the effective action in a given loop
order is then produced only by a finite number of
terms in such an expansion. 

Let us consider the theory of superfields  with

action (5.6). In the � = 2 sector of vector multiplet ,

we perform splitting V++ →  and repeat all
the steps corresponding to the massless theory [52]. In
the ω�supermultiplet sector with a nonlinear chiral
Lagrangian, we must construct the expansion by mak�
ing use of the perturbation theory in terms of parame�
terization�independent invariant quantities [178]. 

The basic principle of background–quantum split�
ting of fields taking the values in the Lie group is the
nonlinear rule for group addition of group elements

 and  [178]:

(5.14)

Under this addition rule, expression  is an
element of the same space as  and has the same
group transformation law. 

We define the splitting of superfield ω into back�
ground superfield ω and quantum superfield χ in
accordance with (5.14). It is easy to demonstrate that
the background ω�fields are transformed as in (5.5),
while quantum fields χ are not transformed at all. With
this splitting of fields into background and quantum
ones, both the full Lagrangian and all terms of its Tay�
lor expansion in quantum fields are invariant with
respect to both local and global transformation groups.
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As a result, the obtained counterterms are automati�
cally invariant under the classical gauge and global
group transformations. 

It is sufficient for one�loop calculations to know
the expansion of the Lagrangian up to the terms of the

second order in quantum fields  

(5.15)

where isotopic matrix  is determined by

 =  Just as in the nonsupersymmetric
case [175], it has the following properties: 

(5.16)

We should also add the term fixing the gauge in the
sector of the quantum vector superfield to (5.15). It is
convenient to choose this term in the background
gauge�invariant form

(5.17)

The action of Faddeev–Popov and Nielsen–Kallosh
ghosts should also be added. We follow here the
approach developed in [52]. According to the Fad�
deev–Popov procedure, in order to fix the gauge in

functional integral Z =  we should intro�

duce unity into it in the form 1 =  – 
where the Faddeev–Popov determinant is defined as

 =  We then
should insert unity in the form

into the functional integral. Here  is the gauge parameter
that is set as  for convenience in further calcula�

tions,  is the Nielsen–Kallosh determinant, and

 =  is the gauge�invariant function taking
the values in the Lie algebra of the gauge group. Note that
the Nielsen–Kallosh determinant depends on the back�
ground superfield, which means the presence of the third
Nielsen–Kallosh ghost. The details of the procedure of
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 are given in [52]. Here

 is the covariant�analytic d’Alembertian that trans�
forms analytic superfields into analytic ones [52]: 

(5.18)

The final result for the Lagrangian that defines
one�loop quantum corrections to the effective action
in the vector multiplet sector is

(5.19)

The ghost action is written as 

(5.20)

Here  are anticommuting superfield Faddeev–

Popov ghosts,  are anticommuting superfield
Nielsen–Kallosh ghosts, and φ are additional com�
muting ghosts taking values in the Lie algebra of the
gauge group. 

It is convenient to write the superfield action for
quantum field χ and its interaction with quantum field
v

++ in the matrix form 

(5.21)

Here  is the ordinary harmonic derivative, and 

(5.22)

is the “long” derivative in the �basis, where

 plays a role of the gauge�invariant con�
nection. Since this superfield is analytic, standard

constraints  = 0 take place. For iniformity,

the notation  =  is used hereafter. Other
commutation relations, such as 

(5.23)
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replicate exactly the commutation relations for covari�

ant derivatives   [56] and determine 
and the chiral superfield of harmonically independent

strengths  =  and  =

 for gauge�invariant potential 

5.4. One�Loop Divergences

Let us proceed to the analysis of one�loop diver�
gences in the considered theory. The effective action is
the sum of contributions from action (5.20) of quan�
tum superfields of ghosts and action (5.21) of quantum
superfields v++, χ:

(5.24)

where  is the ghost contribution to the effective

action and  is the contribution of

superfields v++ and χ. Here  is defined by (5.7).
Note that the complete dependence of effective action
on Stueckelberg superfield ω is contained within

superfield  Actions (5.20) and (5.21) determine
completely the structure of the perturbative expansion
for the calculation of one�loop effective action of the
massive � = 2 Yang–Mills theory in a manifestly
supersymmetric and gauge�invariant form. We are

interested only in the structure of divergences of the
considered theory and will use dimensional regular�
ization (see [39] for details of application of dimen�
sional regularization in superfield theories) and the
minimal subtraction scheme in its analysis. 

The ghost contribution to the one�loop effective

action depends only on potential  and coincides
exactly with the corresponding contribution in the
standard massless � = 2 Yang–Mills theory: 

(5.25)

Therefore, we can directly use the results presented in
[41, 52] (without modifying them in any way) to derive
the divergent part of effective action: 

(5.26)

Here  is the quadratic Casimir operator of the gauge
group and ε is the dimensional regularization parame�
ter. 

New divergences are associated with one�loop cor�
rections to the effective action that are induced by quan�
tum fields v++, χ within the loop and by their mixing. In
order to simplify the calculation of the functional deter�
minant of the matrix operator in action (5.21), one
reduces the matrix to a diagonal form: 

(5.27)

All contributions to the effective  action are then
defined by the diagonal elements of the inner matrix: 

(5.28)

where  is defined through a comparison with

(5.27). It is well known that operator  just

as  does not contribute to the holomorphic part
of effective action. All possible contributions to the
one�loop counterterm are then attributed to the
known ghost contribution (5.26) and contribution 

(5.29)

of quantum superfields χ, coming from the lower
block of matrix (5.28). With the aim of applying the

known  calculation methods, we reduce the
differential operator present in (5.29) to the following
form: 
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(5.31)

It is evident that the exact Green’s function for opera�

tor  coincides with Eq. (5.12) after the replace�

ment  . The Green’s function

for the ω�multiplet in external field  is deter�
mined by the following equation: 
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Let us determine the analytic superfield kernel37 that
takes all external field effects into account:

(5.33)

The effective action is then given by

(5.34)

The first ( �independent) contribution to 
divergences coincides exactly with the one�loop hypermul�

tiplet contribution in external field  i.e., it is defined
by Eq. (5.26) in which the sign is changed and superfield

strength  is replaced with strength  =

 calculated using potential (5.7): 

(5.35)

In terms of diagrams, the expansion of the second
term in (5.34) in a power series in interactions of fields

inside the loop with external insertions  and the

propagator in external field  is written as

(5.36)

where n�th term corresponds to a supergraph with n

external  lines. Thus, (5.34) sums the contribu�

tions with an arbitrary number of external lines  

The first term in the expansion of  (5.29) in

powers of  equals zero, since it contains the har�
monic product that vanishes in the coincidence limit:

 = 0.The effective action in the second
order is given by 

Restoring the full Grassmannian integration measure,
we remove one delta function and use the equality

 = . Following

standard transformations, the divergent contribution
takes the form 

(5.37)

Subsequent terms in the expansion of (5.29) produce
finite contributions to the effective action. 

Expression (5.37) is the main result obtained in the
present section. It is a new superfield counterterm,
which depends on background superfield ω, in the
� = 2 supersymmetric massive Yang–Mills theory in
the Stueckelberg formalism. This functional does not
contain harmonic singularities on the mass shell. This
follows from the fact that a nonzero contribution to
the integral over odd coordinates must contain the
maximum power of Grassmannian coordinates in

each multiplicand; however,  =

 

In addition to many other terms, functional (5.37)
written in its component form contains nonstandard
contact four�vector interactions and the terms needed
for their supersymmetrization. For instance, these
interactions for gauge group  take on the form

 +  where  is the vec�

tor component of the  superfield �++ (5.7). The
corresponding interactions for gauge group  are

given by  +  –  It

is this counterterm that emerges as an obstacle to
renormalizability in the conventional nonsupersym�
metric massive Yang–Mills theory [174, 175]. Such
deviations from the Standard Model have intriguing
phenomenological consequences, for example, for the

processes of  production (see [180] and
references therein). Note that the mass term in the

 supersymmetric massive Yang–Mills field the�
ory, in contrast to the nonsupersymmetric case [175],
is not renormalized. 

Counterterms (5.26), (5.35), and (5.37)38 are man�
ifestly gauge�invariant, and the latter two terms do not
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Mills theory, the massive  Yang–Mills theory
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can be regarded only as a low�energy effective theory.
In other words, action (5.6) is not the most general

 supersymmetric functional compatible with the
local left and global right gauge symmetries of the the�
ory. In order to make the theory renormalizable
(see, for example, [181]), one should include new ver�
tices induced by functionals (5.35) and (5.37) into the
next order of the expansion of effective action in deriv�
atives.

5.5. On the Component Structure 
of  Superfield Functional (5.35)

The study of the specifics of the component expan�
sion of  superfield strength � for gauge�invari�

ant potential  which contains an additional
degree of freedom (associated with Stueckelberg
superfield ω) in the vector multiplet, is a separate
interesting problem. It is evident that this gauge�
invariant superfield differs from the covariant chiral
superfield strength constructed in terms of potential

 only in matrix Ω dressing that makes no contri�
bution under the trace. 

The  superfield formalism is the best suited
for description of the supermultiplets off the mass shell
and their manifestly  supersymmetric interac�
tions. The transition to component fields requires
eliminating an infinite number of auxiliary fields,
which is a rather involved technical problem. While
the determination of the component structure of
counterterm (5.26) presents no problems and its com�
ponent form coincides with the classical action of

 Yang–Mills theory [56], the component form
of expressions (5.35) and (5.37) warrants special inves�
tigation, since potential (5.7) is transformed homoge�

neously,  =  (i.e., in contrast to the law
of transformation of V++, its transformation law does

not contain terms with derivative ). This is the
reason why the Wess–Zumino gauge cannot be chosen

for  and potential  contains nonremovable
longitudinal degrees of freedom in the vector field sec�
tor. Thus, the problem of finding the component form
of superfield functional (5.35) amounts to performing
the component expansion of � with no gauge

imposed on  No general solution to this problem
is found in literature. Certain aspects of the compo�
nent structure of the massive vector multiplet without
gauge fixing were studied in [184] in the Abelian and
non�Abelian (in the first order in the coupling con�
stant expansion) cases. 

In the present section, we describe a procedure for
the determination of the component form of super�
field functional (5.35) in the bosonic sector. The com�

ponent content of superfield  needed to write

2=�
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(5.35) and (5.37) in terms of physical fields actually
coincides with the component structure of superfield

 in the Wess–Zumino gauge, but each component
is endowed with an infinite tower of interactions with
the longitudinal degrees of freedom emerging from the
component fields of the ω�hypermultiplet. 

A convenient way to determine the component
content of the superfield strength for nonstandard the�
ories is based on solving the harmonic zero�curvature

equation [56] for nonanalytic potential  

(5.38)

Since  and superfield  undergoes
the standard gauge transformations, we can impose the

Wess–Zumino gauge on . As a result, gauge�covari�
ant analytic potential (5.7) takes the form (5.10): 

(5.39)

where  and the notation for the
component form of the potential in the Wess–Zumino
gauge is retained. However, one should bear in mind

that each component  should be endowed with an
infinite series in powers of interaction with the compo�
nents of the ω�hypermultiplet  =  +

 + …. Since superfield strength 

(5.40)

is a harmonic�independent  chiral superfield, it
is convenient to seek a solution of Eq. (5.38) in chirally

analytic coordinates  =  where 

Each component of (5.39) is expanded in this basis as 

Following [182], it is convenient to present the expan�

sion of  in these coordinates as

Note that the expression for (5.40) incorporates not all

the chiral superfields of this expansion: just 
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and τ–– are included. However, it  was demonstrated in
[183] that only the chiral superfield

actually specifies the component bosonic structure of
superfield functional (5.35): 

(5.41)

The equations that determine the components of
superfield 
 emerge as coefficients in the expansion of

superfield equation (5.38) in powers of  

(5.42)

where 

The general solution of this set of harmonic equations
can be written in terms of Green’s functions for oper�

ator  For example, the solution of the first equa�
tion in chain (5.42) has the form: 

(5.43)

where ϕ is a particular solution of the homogeneous

equation, and nonanalytic bridge  for field  =

 can be constructed iteratively as a Taylor

series in powers of  (see [56]). 
Thus each component of 
 is determined by an

infinite series in powers of interaction of the standard

components of superfield  with field  

(5.44)
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Here component fields    are defined by

expansion (5.39), and the action of matrix operator 
is given by (5.43). 

Our analysis therefore proves that a formal solution
for the components of superfield strength (5.40) in a
nonpolynomial form exists, and action (5.41) con�
tains, in addition to the standard action in the Wess–
Zumino gauge, the modified interaction with the ω�
multiplet components that contains the fourth powers
of the space�time derivatives of component fields

 Finding the more detailed component form
for expression (5.41) is a very complicated problem,
although the above procedure technically allows one
to find the complete solution. Note also that diver�
gences (5.26) and (5.35) are cancelled out in the vector
multiplet sector (i.e., when the dependence on the �
multiplet components is omitted).

5.6. Summary

Let us summarize the main results presented in this
section. 

The  supersymmetric massive Yang–Mills
theory with its action depending on  gauge

superfield  and hypermultiplet Stueckelberg super�
field ω was considered. Various dual�equivalent for�
mulations of this theory, which differ in the way the
gauge�invariant mass term is introduced into the
superfield action, were proposed. 

The background field method that allows one to
obtain the loop expansion of effective action in a man�
ifestly gauge�invariant and  supersymmetric form
was developed. It was demonstrated that the contribu�
tion of Stueckelberg superfield ω to the effective action
can be given in terms of superfield �++ (5.7), which is a
special gauge�covariant combination of background

superfields  and ω. 

The structure of one�loop divergences in the theory
under consideration was investigated. Manifestly
gauge�invariant and  supersymmetric expres�
sions for one�loop divergences (5.26), (5.35), and
(5.37) were obtained. It is noteworthy that expression
(5.37) is a new gauge�invariant and  supersym�

metric functional constructed from superfields 
and ω. The emergence of this functional in one�loop
divergences allows one to draw a conclusion about the
(multiplicative) nonrenormalizability of the consid�
ered theory. This functional can be regarded as the

 supersymmetrization of the covariant counter�
term in the nonsupersymmetric Yang–Mills field the�
ory [174, 175]. However, in contrast to the nonsuper�
symmetric case, the mass term in the  supersym�
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metric massive Yang–Mills theory is not
renormalized. Thus, a complete analysis of the 
superfield structure of one�loop divergences in the
considered theory was presented. The obtained results
were verified in part by passing to the limiting case of
no interaction of the vector multiplet with the Stueck�
elberg multiplet (in other words, for the zero mass
limit). Only one divergence, which is stipulated by
one�loop ghost contributions (5.26) and defines the
known value [41] for the beta�function in the “pure”

 supersymmetric Yang–Mills theory, is left in
this limit.

The component structure of a counterterm of
form (5.35) in the bosonic sector was discussed. Since
the gauge transformation for �++ (5.7) is homoge�
neous, it is not possible to set the Wess–Zumino
gauge, which is often used to reduce the superfield
description of the vector multiplet to its component
description, for �++. Therefore, the problem of find�
ing the component form of superfield functional
(5.35) arises. A procedure to solve this problem in the
bosonic sector was proposed (see (5.41) and (5.44)). 

Let us discuss briefly the prospects for further
investigation of  supersymmetric massive Yang–
Mills theory. As is well known, the  supersym�
metric massless Yang–Mills theory is finite beyond the
one�loop approximation (see, for example, [52]). The
problem of divergences of the considered massive the�
ory in higher loops remains open. The determination
of finite contributions to the one�loop effective action
and the study of effective action in the presence of
interaction between a massive gauge  superfield
and hypermultiplets are of some interest. In our opin�
ion, the problem of quantum equivalence of the mas�
sive  Yang–Mills theory within the Stueckelberg
formalism and  supersymmetric non�Abelian
vector�tensor models, which were demonstrated to be
dual at the classical level, is the most intriguing one.

6. CONCLUSIONS

In this paper, we have reviewed the methods and
results concerning the structure of low�energy effec�
tive action in the four�dimensional quantum theory of
gauge fields with � = 2 and � = 4 supersymmetries.
Our exposition is based on superfield description of
the models under consideration. The general methods
for constructing the superfield effective actions in var�
ious extended supersymmetric theories are formu�
lated. The relation between the problems of effective
action in the supersymmetric field theory and those of
the low�energy limit in superstring theory is also dis�
cussed.

2=�

2=�

2=�
2=�

2=�

2=�
2=�

Let us briefly outline the basic research directions
considered in the review, and summarize the results
presented.

(1) The derivative expansion of the one�loop effec�
tive action of � = 4 supersymmetric Yang–Mils the�
ory, containing both the � = 2 vector multiplet fields
and the � = 2 hypermultiplet fields, was developed.
The formulation of � = 4 supersymmetric Yang–
Mills theory in terms of � = 1 superfields was ana�
lyzed, and the gauge invariant one�loop effective
action was obtained in the approximation of constant
Abelian gauge field strengths and constant fields of
hypermultiplets. The representation of the effective
action in the form of expansion over supercovariant
derivatives of the � = 2 vector multiplet was found. In
particular, the complete � = 4 supersymmetric low�
energy effective action, which was constructed earlier
in [146], has been obtained in this way, and the next�
to�leading corrections to this action were calculated.
The self�consistent approach to finding the hypermul�
tiplet�dependent correction terms, as well as the prop�
erly deformed hidden supersymmetry transformations
which secure � = 4 supersymmetry in the next�to�
leading parts of effective action of � = 4 supersym�
metric Yang–Mills theory, was developed.

(2) The structure of the hypermultiplet depen�
dence of the low�energy effective action of � = 4
supersymmetric Yang–Mills theory formulated in the
� = 2 harmonic superspace was studied. Quantization
of the model under consideration has been carried out
and the superfield perturbation theory has been devel�
oped. An infinite series of covariant harmonic super�
graphs with an arbitrary number of external hypermul�
tiplet lines on the nontrivial � = 2 vector multiplet
background was summed up, and the general structure
of the hypermultiplet dependence of effective action
was determined. The method of operator symbols in
the � = 2 harmonic superspace was developed and
then was used to calculate the one�loop effective
action in the theory under consideration. The result
was presented as an integral over analytic subspace of
the harmonic superspace. It was demonstrated that
each term of the expansion of effective action in spinor
covariant derivatives can be equivalently represented
as an integral over the full � = 2 superspace. This pro�
vided a justification for the method used in another
section, where the one�loop effective action in the
hypermultiplet sector was formulated in terms of � =
1 superfields with special gauge fixing and where it was
taken for granted that the manifestly � = 2 supersym�
metric form of the effective action exists.

(3) The one�loop low�energy effective action of
� = 2 superconformal and UV_finite models formu�
lated in the harmonic superspace was constructed.
The effective action depending on the background
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Abelian � = 2 vector multiplet superfield and the
hypermultiplet background superfield subjected to the
special constraints defining the vacuum structure of
these models, was studied. The universal expression
for the effective action was found in the framework of
the � = 2 supersymmetric background field method
under the assumption that the hypermultiplet satisfies
the mass shell conditions. The special manifestly
� = 2 supersymmetric leading contribution, which is
written as an integral over 3/4 of the full � = 2 har�
monic superspace, was constructed for the off�shell
hypermultiplet. In the bosonic sector, this contribu�
tion contains terms with three space�time derivatives
that are similar to Chern–Simons terms.

(4) The structure of effective action of � = 2 super�
symmetric massive Yang–Mills theory constructed
with making use of the nonlinear sigma model for the
Stueckelberg superfield, was analyzed. The back�
ground field method which allows one to obtain the
loop expansion of effective action in the manifestly
gauge�invariant and � = 2 supersymmetric form, was
developed. The structure of one�loop divergences in
the theory under consideration was investigated. The
component form of the counterterms contains the
non�standard contact four�vector interactions
together with the accompanying terms required by
supersymmetry.

The methods, approaches, and results presented in
this review were discussed in more detail in Subsec�
tions 2.10, 3.9, 4.6, and 5.6. We announce with deep
sorrow that our friend and co�author Nicolay Pletnev
passed away suddenly at the final stage of work on
proofreading of this paper.
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