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We consider 6D, A = (1,1) supersymmetric Yang-Mills theory formulated in A" = (1,0) harmonic
superspace and analyze the structure of the two-loop divergences in the hypermultiplet sector. Using
the N = (1,0) superfield background field method we study the two-point supergraphs with the
hypermultiplet legs and prove that their total contribution to the divergent part of effective action
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1. Introduction

This paper is a continuation and further development of our
previous works on the structure of divergences in 6D, N = (1, 0)
and N = (1, 1) gauge theories [1-3].

The study of supersymmetric gauge models in higher dimen-
sions attracts much attention due to both their tight links with the
superstring/brane stuff and some remarkable properties of them
in the quantum domain. On the one hand, these models are non-
renormalizable because of the dimensionful coupling constant, like,
e.g., (super)gravity theories. On the other hand, supersymmetry
may ensure canceling some divergences, so that one can expect
a better ultraviolet behavior of supersymmetric gauge theories as
compared to the non-supersymmetric case [4-13] (see also the re-
view [14]).

It is known that in 4D, N =4 SYM theory all divergences van-
ish off-shell and the theory proves to be finite just due to a large
amount of supersymmetries [15-18]. At the classical level, this
theory is very similar to 6D, N' = (1,1) SYM theory (see, e.g.,
[19] for a formulation of 6D supersymmetry). Indeed, 4D, N =4
SYM theory can be obtained from 6D A = (1, 1) theory by means

* Corresponding author.
E-mail addresses: joseph@tspu.edu.ru (L.L. Buchbinder), eivanov@theor.jinr.ru
(E.A. Ivanov), merzlikin@tspu.edu.ru (B.S. Merzlikin), stepan@m9com.ru
(K.V. Stepanyantz).

https://doi.org/10.1016/j.physletb.2018.01.040

of dimensional reduction. Moreover, formulations of both theories
in the harmonic superspace [20-24,12] reveal a great similarity.
This resemblance suggests that 6D, N' = (1,1) SYM theory could
have a better ultraviolet behavior compared to other 6D theories.
This was confirmed by the one-loop calculation, which demon-
strated that one-loop divergences in this theory cancel even off-
shell [2,3]. Obviously, it would be very interesting to investigate
whether this remarkable quantum property persists at the two-
loop level. It is known that 6D, A/ = (1, 1) SYM theory is on-shell
finite at the two-loop level [4-9,11]. In this letter we will inves-
tigate the off-shell divergences. To calculate them, we make use
of the technique of the harmonic supergraphs, which allows one
to perform all calculations in a manifestly A" = (1,0) supersym-
metric way. Besides, we use the A" = (1,0) background superfield
method which ensures preserving the classical gauge symmetry of
the effective action [2,3]. The theory under consideration possesses
the hidden N = (0, 1) supersymmetry [12]. As a consequence, it
suffices to analyze the supergraphs with the hypermultiplet exter-
nal lines only. All other supergraphs can be obtained from these
ones via the hidden supersymmetry transformations. Therefore, if
the effective action is finite in the pure hypermultiplet sector, it
is finite as a total. In this letter we limit our study to the struc-
ture of the two-loop divergences of the supergraphs with the two
external hypermultiplet legs only and demonstrate that all such
divergences cancel off shell. The divergences of the supergraphs
with four hypermultiplet legs will be a subject of the next publi-
cation.
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2. N =(1,1) SYM theory in A/ = (1, 0) harmonic superspace

The 6D, N = (1,1) SYM theory can be considered as a par-
ticular case of 6D, N/ = (1,0) SYM theories. It is convenient to
describe them using the formalism of the harmonic superspace,
because A = (1,0) supersymmetry is then a manifest symme-
try of the theory at all steps of calculating quantum corrections.
Besides, this theory possesses the hidden N = (0, 1) supersymme-
try [12].

Following ref. [12] we briefly consider the harmonic super-
space formulation of the theory. We introduce the harmonic vari-
ables u*!, where i =1,2 and u; = (uT*, such that u*"ui_ =1.
The harmonic superspace is obtamed by adding these coordinates
to the set z= (xM, 1), where xM with M =0,...,5, are usual
6D Minkowski coordinates and 6f with a =1,...,4 are anti-
commuting left-handed spinors. The analytic coordinates are de-
fined as ¢ = (x}, 619), where

i .
2 EXM+§97)/M0+; oE" =ufe™, (1)

with ¥™ being the six-dimensional y-matrices. In our notation,
the integration measures are written as

/d”z:/dsxdse; /d;<—4>5/dsxd4e+. (2)

In the harmonic superspace approach, 6D, N = (1,0) SYM the-
ory with the gauge group G and the hypermultiplets in the repre-
sentation R is described by the action

Vtt(z,up)... VTt (z,u
/dmzdm...dun G Uions V" 450
On 5 uiuy)...(uguy)

/d;< Daugrvttqt. (3)

Then A = (1,1) SYM theory is reproduced in the particular case,
when the hypermultiplets belong to the adjoint representation,
R = Adj. In general, the theories described by the action (3) are
anomalous [25-27], but the anomalies are canceled for A" = (1, 1)
theory.

The gauge superfield VT (z, u) lies in the adjoint representa-
tion of the gauge group. It is real with respect to the specially
defined conjugation denoted by tilde, V++ = v*++, and satisfies
the analyticity condition,

Dfv*tt =o. (4)

In the pure gauge field part of the action (3), V*(z, u) = V4t4,
where t# are the generators of the fundamental representation of
the gauge group G, normalized by the condition

1
tr(tt?) = 55’“3. (5)

In our notation the structure constants fABC are defined by the
commutation relation

ifABCtC. (6)
1

[t %=
The bare coupling constant fp in 6D has the dimension m™

Hypermultiplets are described by the analytic superfields (g*);,
and the covariant harmonic derivative is written as

V'H'=D+++iV++=D+++iV++ATA, (7)

where (T#4);/ denotes generators in the representation R to which
the hypermultiplet belongs.

The gauge transformations in harmonic superspace,

VH s ety ttemih _jpitptteTit. gt — e”‘q+, (8)
are parameterized by the Lie-algebra valued analytic superfield pa-
rameter A.

For quantization we use the background field method [2,3].
Its basic convenience is the possibility to make the effective ac-
tion manifestly invariant under the background gauge transforma-
tions by a proper choice of the gauge condition. The background-

quantum splitting is linear,

Vit =vtt vt (9)

Here V*+ is the background gauge superfield, and v** is the
quantum gauge superfield. We will use the gauge-fixing term of
the form

1 uyu,
Syt =5t [ dMzdunduy L2
2f5 (ujuy)
x D} (e—ib(z,u1)v++(27 u1)eib(z’”‘))

% D;—-‘r (efib(z,uz)v++ (z, u2)eib(z.u2)) , (10)

where b(z,u) is the background bridge superfield related to the
background superfield V™ by the relation

vt = _l'el'bD++efib. (11)
The gauge-fixing term (10) is invariant under the background
gauge transformations

V' o pitytte—it _jeihptte—it. |+t

— el)»v++e—l}\;

gt — etgt; e, — elteileiT, (12)

where the gauge parameter T = t(z) does not depend on the har-
monic variables.

The Faddeev-Popov ghost action corresponding to the gauge
fixing-term (10) reads

Spp:trfdg(_4> dubV++(V++c+i[v++,c]), (13)

where b and ¢ are anticommuting analytic superfields in the ad-
joint representation of the gauge group, and V*ttc = D*tc +
if[V*tT, c] is the background-covariant derivative. The generat-
ing functional also involves determinants corresponding to the
Nielsen-Kallosh ghosts,

z=/ vt DGt Dgt Db Dc Do

x Det!/2 a exp [i(s + ng+ Sep + Snk + Ssources)], (14)

where
1
Snc= = tr / dg ™ du (VT e)?, (15)

and ¢ is a commuting analytic superfield in the adjoint represen-
tation. In our notation

~ 1

D=-(0H%V™)? and (D! =— e™ DI Dy DI Dy

(16)
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Fig. 1. One- and two-loop diagrams contributing to the two-point Green function of

the hypermultiplet.
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Fig. 2. One-loop subdiagrams entering the two-loop diagram (5) in Fig. 1.

The operator O acts on a superfield o in the adjoint representa-
tion, for which

V>7o=D""0o+i[V ",0], (17)

where V~~ = —iel? D~—e~P_ The expression Ssources includes the
relevant source terms.

The structure of divergences in the hypermultiplet sector is de-
termined by the expression for the superficial degree of divergence
in harmonic superfield formulation [2,3],

1
w=2L—Ng~>Np, (18)

where L is a number of loops, Ngq is a number of external hyper-
multiplet legs, and Np is a number of spinor derivatives acting
on external legs. From this equation we see that in the two-loop
approximation (L = 2) the diagrams with two external hypermulti-
plet legs (Ng = 2) are quadratically divergent. Also we see that the
diagrams with four external hypermultiplet legs (Nq = 4) are loga-
rithmically divergent. In this paper we will calculate the two-point
function of the hypermultiplet which corresponds to the first case
only.

3. Two-loop two-point Green function of the hypermultiplet

In the one-loop approximation the two-point function of the
hypermultiplet is given by the first diagram in Fig. 1. All other di-
agrams correspond to two loops. The last diagram (5) in Fig. 1
contains the insertion of the one-loop polarization operator, which
is denoted by the gray disk. The diagrams contributing to this
one-loop polarization operator are depicted in Fig. 2. Although our
purpose is to calculate these diagrams for A" = (1, 1) theory, we
will consider a more general case of N'= (1, 0) theory with hyper-
multiplets in the representation R. The direct calculation leads to
the following contributions to the effective action coming from the
diagrams drawn in Fig. 1':

(1) =0; (19)

! The calculations are similar to those in [3] and here we omit the technical de-
tails.

dbp

2)=2C2fg %o
(2) =20, f; / o
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Note that all these expressions are written in the Minkowski space

before the Wick rotation. The group theory coefficients entering
them are defined by the relations

G (p, 6, u) (TATN)ilqT (—p, 6, u2);

(23)

FACD ¢BCD _ ) 5AB, T(R)8AB = tr(TATB);
CR) = (TATH) . (24)

From these relations, after some algebra, we derive
. 1 :
(TATBTATB)) = (C(R)2 - 5czc(R)).f. (25)
1

Thus, the result for the sum of all considered diagrams can be
written in the form

dU1 duz

dbp &
wiul)

455 (@m)®

x [ﬁﬂp,e,u])i(—cmﬁ+CZC(R)),,fq+(—p,9,uz>j
d%  dSl 1

* | 2m)® em)B KRBk D2k +1+ p)2k + p)?

+(C2 = TR+ (p. 0, un)C (R

dk  dbI 1 (26)
(2m)® 2m)8 kA (k + p)22(k+1)2 |

x qT(—p,0,u);

We see that it is quadratically divergent, in the precise agreement
with the general expression for the degree of divergence calcu-
lated in [2]. The expression (26) is written formally, because the
regularization was not still introduced. It is known that quadratic
divergences cannot be catched within the dimensional regulariza-
tion, and it is necessary to use different regularization schemes, as,
e.g., in [28]. Note, however, that for the considered theory R = Adj,
i.e. the hypermultiplets belong to the adjoint representation of the
gauge group,

T(Ad))=Cy:  C(Adj)i! = Ca8]. (27)
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This implies that for A" = (1,1) theory the expression (26) van-
ishes identically. In particular, the leading quadratic divergences
cancel each other, so that in the case of using the dimensional reg-
ularization technique we do not miss any divergent contributions.
Moreover, within the dimensional reduction scheme the result ob-
tained from Eq. (26) by the replacement 6 — D also identically
vanishes. Thereby, the logarithmically divergent contributions are
also absent and the considered Green function vanishes in the two-
loop approximation for A" = (1, 1) SYM theory.

It is worth to point out that the finiteness of the two-point
supergraphs in the hypermultiplet sector, implied by the condi-
tions (27), is achieved in the same way as in the one-loop case
[2.3].

4. Summary

In this paper we have investigated the two-loop divergences in
6D, N/ = (1,1) SYM theory. This theory is a 6-dimensional analog
of 4D, N' =4 SYM theory, for which reason one could expect a
better ultraviolet behavior of this theory in comparison with other
6D theories. First, we calculated the two-loop divergences of the
hypermultiplet two-point function in 6D, V" = (1, 0) vector multi-
plet theory coupled to the hypermultiplet in an arbitrary represen-
tation of gauge group. Then we turn to 6D, A/ = (1, 1) SYM theory,
which corresponds to the hypermultiplet in adjoint representation.
We proved that the corresponding divergences identically vanish?
without using the equations of motion. Moreover, the conditions
of vanishing of divergences are the same as in the one-loop case.
Taking into account that the Green function considered is related
to other two-point Green functions of A" = (1,1) theory by hid-
den A = (0, 1) supersymmetry, we come to the conclusion that all
two-point Green functions of the theory are finite in the two-loop
approximation. However, logarithmic divergences can still appear
in the four-point Green functions. To see, whether they are finite
or not, it will be sufficient to calculate the four-point function of
the hypermultiplet. We are going to address this problem in the
forthcoming paper.
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