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We consider, in the harmonic superspace approach, the six-dimensional N = (1, 0) supersymmetric 
model of abelian gauge multiplet coupled to a hypermultiplet. The superficial degree of divergence is 
evaluated and the structure of possible one-loop divergences is analyzed. Using the superfield proper-
time and background-field technique, we compute the divergent part of the one-loop effective action 
depending on both the gauge multiplet and the hypermultiplet. The corresponding counterterms contain 
the purely gauge multiplet contribution together with the mixed contributions of the gauge multiplet 
and hypermultiplet. We show that the theory is on-shell one-loop finite in the gauge multiplet sector in 
agreement with the results of [1]. The divergences in the mixed sector cannot be eliminated by any field 
redefinition, implying the theory to be UV divergent at one loop.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The higher-dimensional supersymmetric gauge models are of 
interest mainly because they describe low-energy limits of the 
superstring/brane theory and inherit many remarkable properties 
of the latter. In particular, one can expect the existence of vari-
ous non-renormalization theorems governing their ultraviolet (UV) 
behavior. In this letter we study the UV divergence structure of 
the six-dimensional abelian N = (1, 0) gauge theory interacting 
with hypermultiplets. The analysis of this simplest model can be 
conducive for the further study of quantum properties of more 
complicated non-abelian N = (1, 0) and N = (1, 1) gauge theo-
ries.

An analysis of the UV divergences in the higher-dimensional 
supersymmetric gauge theories has been initiated by the paper 
[1] and continued in the subsequent papers [2–9] (and references 
therein). In particular, it was found that in the sector of gauge 
(or vector) multiplet the divergences at different loops reveal a 
universal structure and in many cases some counterterms can be 
completely eliminated by the field redefinitions. The counterterms 
in the hypermultiplet sector have never been calculated.
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As is well known, the most efficient way to describe the quan-
tum aspects of supersymmetric theories is to use the off-shell 
superfield formulations (see e.g. [10] for 4D, N = 1 theories and 
[11] for 4D, N = 2 theories). An arbitrary (n, m) representation 
of the six-dimensional supersymmetry is labeled by the numbers 
of left (n) and right (m) independent supersymmetries (see, e.g., 
[12]). In the case of 6D, N = (1, 0) supersymmetry, the models of 
vector multiplet and hypermultiplet can be formulated off shell in 
terms of superfields defined on 6D, N = (1, 0) harmonic super-
space [13,14] (see also [5,6,8] and references therein). It allows to 
formulate an arbitrary six-dimensional N = (1, 0) supersymmet-
ric Yang–Mills theory in 6D, N = (1, 0) superspace as a theory of 
interacting unconstrained off-shell superfields describing the six-
dimensional N = (1, 0) vector multiplet and hypermultiplet. Us-
ing the appropriate set of N = (1, 0) harmonic superfields, one 
can construct N = (1, 1) supersymmetric Yang–Mills theories (see 
e.g. [8]), as well as the free gauge models with N = (2, 0) su-
persymmetry [6]. It is worth pointing out that, in many aspects, 
6D, N = (1, 0) SYM theory is analogous to 4D, N = 2 SYM the-
ory, and 6D, N = (1, 1) SYM theory to 4D, N = 4 SYM theory. 
These 6D theories and their 4D counterparts have equal num-
bers of supercharges, 8 and 16, respectively. Like 4D, N = 4 SYM 
theory possesses manifest off-shell N = 2 supersymmetry and an 
on-shell hidden N = 2 supersymmetry, 6D, N = (1, 1) SYM the-
ory possesses manifest N = (1, 0) supersymmetry and an on-shell 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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hidden N = (0, 1) supersymmetry (see [8] for details and further 
references).

The general analysis of the possible low-energy contributions 
of different conformal dimensions to the effective action of N =
(1, 0) SYM theories has been carried out in ref. [8]. It was proved 
that the superfield counterterm of dimension 6 in N = (1, 0) har-
monic superspace is a linear combination of three terms, where 
one depends only on the vector multiplet superfield, another de-
pends only on the hypermultiplet and the third mixed term bears 
a dependence on both the vector multiplet and the hypermulti-
plet. The analysis was based on the N = (1, 0) harmonic super-
space formulation of the theory and transformation properties of 
the involved N = (1, 0) harmonic superfields. Taking into account 
the results obtained in [8], it would be extremely interesting to 
demonstrate how these results can in principle be derived in the 
framework of quantum field theory. Namely this problem is solved 
in this letter for an abelian N = (1, 0) supersymmetric gauge the-
ory, which is an abelian N = (1, 0) vector models coupled to 
N = (1, 0) hypermultiplet.

The paper is organized as follows. In section 2 we briefly de-
scribe the formulation of abelian 6D, N = (1, 0) gauge theory in 
N = (1, 0) harmonic superspace and fix the 6D notations and con-
ventions. Section 3 presents the harmonic superspace background 
field method which allows one to obtain the effective action in a 
manifestly gauge invariant and N = (1, 0) supersymmetric form. 
In section 4 we derive the superficial degree of divergence in the 
theory of interacting vector and hyper multiplets and discuss the 
structure of the one-loop divergences. In particular, we prove that 
the one-loop counterterms indeed match with the results of [8], 
except that the purely hypermultiplet divergent contribution to the 
effective action is absent in the one-loop approximation. Section 5
is devoted to the direct calculations of the one-loop divergences. 
In section 6 we summarize the results and discuss the problems 
for further study.

2. Abelian gauge theory in 6D , N = (1, 0) harmonic superspace

Our consideration in this section (including notations, conven-
tions and terminology) will closely follow ref. [8].

The basic objects of the 6D, N = (1, 0) superfield gauge theory 
are gauge covariant derivatives defined by

∇M = DM + iAM, (2.1)

where DM = (D M , Di
a) are the flat derivatives. Here M = 0, .., 5, is 

the 6D vector index and a = 1, ..4, is the spinorial one. The super-
field AM is the gauge super-connection. The covariant derivatives 
transform under the gauge group as

∇′
M = eiτ ∇Me−iτ , τ † = τ , (2.2)

and satisfy the algebra

{∇ i
a,∇ j

b } = −2iεi j∇αβ, [∇ i
c,∇ab] = −1

2
εabcd W i d, (2.3)

[∇M ,∇N ] = i F MN , (2.4)

where W i a is the superfield strength and ∇ab = 1
2 (γ M)ab∇M . Fur-

ther in this paper we consider only the abelian gauge theory cou-
pled to a hypermultiplet.

The constraints (2.3) and (2.4) can be solved in the harmonic 
superspace framework. In the λ-frame [11], the spinor covariant 
derivatives ∇+

a coincide with the flat ones D+
a , while the harmonic 

covariant derivatives acquire the connections V ++ and V −− ,

∇±± = D±± + iV ±± , Ṽ ±± = V ±± ,

δV ±± = −∇±±λ(ζ, u) , (2.5)
[∇−−, D+
a ] = ∇−

a , [∇++,∇−
a ] = D+

a ,

[∇++, D+
a ] = [∇−−,∇−

a ] = 0 , (2.6)

where (ζ, u) stands for the analytic subspace coordinates. The real 
connection V ++(ζ, u) is analytic (in virtue of the third constraint 
in (2.6)) and it is an unconstrained potential of the theory. The 
component expansion of V ++(ζ, u) in the Wess–Zumino gauge 
reads

V ++
W Z = θ+aθ+b Aab(x(an)) + (θ+)3

aλia(x(an))u−
i

+ 3(θ+)4 Dik(x(an))u−
i u−

k . (2.7)

It involves the gauge field Aab , the gaugino field λi a and the aux-
iliary field D(ik) .

The second, non-analytic harmonic connection V −−(z, u) is 
uniquely determined in terms of V ++ as a solution of the har-
monic zero-curvature condition [11]. In the abelian case the latter 
is

[∇++,∇−−] = D0 ⇔ D++V −− − D−−V ++ = 0. (2.8)

The equation (2.8) can be solved for V −− as

V −−(z, u) =
∫

du1
V ++(z, u1)

(u+u+
1 )2

. (2.9)

Using the connection V −− , we can construct the spinor and vector 
superfield connections and define the covariant spinor superfield 
strengths W ±a

W +a = −1

6
εabcd D+

b D+
c D+

d V −− , W −a = D−−W +a . (2.10)

We also define the Grassmann-analytic superfield [8]

F ++ = 1

4
D+

a W +a = (D+)4 V −− , D+
a W +b = δb

a F ++ ,

D++ F ++ = 0 , (2.11)

which will be used for construction of the counterterms.
The superfield action of 6D, N = (1, 0) abelian model of gauge 

multiplet interacting with hypermultiplet has the form

S[V ++,q+] = 1

4 f 2

∫
d14z

du1du2

(u+
1 u+

2 )2
V ++(z, u1)V ++(z, u2)

−
∫

dζ (−4)du q̃+∇++q+, (2.12)

where f is a dimensionful coupling constant ([ f ] = −1). The hy-
permultiplet superfield q+(x, θ) has a short expansion q+(z) =
f i(x)u+

i + θ+ aψa(x) + . . ., with a doublet of massless scalars fields 
f i(x) and the spinor field ψα as the physical fields. It also in-
volves an infinite tail of auxiliary fields coming from the harmonic 
expansions. Both the superfield q+(ζ, u) and its ˜-conjugate q̃+
[11] obey the analyticity constraint, D+

α q+ = D+
α q̃+ = 0. The action 

(2.12) is invariant under the gauge transformation

V ++ ′ = −ieiλD++e−iλ + eiλV ++e−iλ , q+ ′ = eiλq+ , (2.13)

where λ = λ(ζ, u) is the analytic gauge parameter introduced in 
(2.5). Using the zero curvature condition (2.8), one can derive a 
useful relation between arbitrary variations of harmonic connec-
tions [8]

δV −− = 1

2
(D−−)2δV ++ − 1

2
D++(D−−δV −−) . (2.14)

Classical equations of motion following from the action (2.12)
read
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δS

δV ++ = 0 ⇒ 1

2 f 2
F ++ − iq̃+q+ = 0 ,

δS

δq̃++ = 0 ⇒ ∇++q+ = 0 . (2.15)

Note that the superfield F ++ is real under the ˜ conjugation,

F̃ ++ = F ++ . The ˜-reality of the first equation in (2.15) (as well 
as of the action (2.12)) is guaranteed by the conjugation rule ˜̃q+ = −q+ [11].

3. Background field method

In this section we outline the background field method for 
the model (2.12). The construction of gauge invariant effective ac-
tion in the model under consideration is very similar to that for 
4D, N = 2 supersymmetric gauge theories [15,16] (see also the re-
views [17]).1

We split the superfields V ++, q+ into the sum of the “back-
ground” superfields V ++, Q + and the “quantum” ones v++, q+ ,

V ++ → V ++ + f v++, q+ → Q + + q+ , (3.1)

and then expand the action in a power series in quantum fields. 
As a result, we obtain the classical action as a functional of back-
ground superfields and quantum superfields.

To construct the gauge invariant effective action, we need to 
impose the gauge-fixing conditions only on quantum superfields. 
As in the four-dimensional case [15], we introduce the gauge-fixing 
function in the form

F (+4) = D++v++. (3.2)

We consider the abelian gauge theory, where gauge-fixing func-
tion (3.2) is background-field independent. This means that the 
Faddeev–Popov ghosts are also background-field independent and 
so make no contribution to the effective action. According to (3.2), 
the gauge-fixing part of the quantum field action has the form

SG F = −1

4

∫
d14zdu1du2

v++(1)v++(2)

(u+
1 u+

2 )2

+ 1

8

∫
d14zduv++(D−−)2 v++ . (3.3)

A formal expression of the effective action �[V ++, Q +] for the 
theory under consideration is constructed by the Faddeev–Popov 
procedure (see the reviews [17] for details).

In the one-loop approximation, the first quantum correction to 
the classical action �(1)[V ++, Q +] is given by the following path 
integral [15,16]:

ei�(1)[V ++,Q +] =
∫

Dv++Dq+Dq̃+ eiS2[v++, q+; V ++, Q +] . (3.4)

Here, the full quadratic action S2 is the sum of the classical action 
(2.12), with the background-quantum splitting accomplished, and 
the gauge-fixing action (3.3)

1 There are two approaches for constructing the background field method for 
4D, N = 2 SYM theories. One is formulated in the conventional N = 2 superspace 
[18], while another in 4D, N = 2 harmonic superspace [15,19] (see also the reviews 
[17]). The first formulation faces some troubles basically related to an infinite num-
ber of FP ghosts. The second approach is free of such difficulties and provides a 
convenient tool for manifestly covariant loop calculations. In this paper we gener-
alize it to 6D, N = (1, 0) gauge theory. Though in our case the problem of ghosts 
is absent at all because we deal with the abelian theory, the harmonic background 
field method looks most preferable like in 4D case.
S2 = 1

4

∫
dζ (−4)du v++�(2,2)v++

−
∫

dζ (−4)du
{

q̃+∇++q+ + f Q̃ +iv++q+ + f q̃+iv++ Q +}
,

(3.5)

where the operator �(2,2) = 1
2 (D+)4(D−−)2 transforms the ana-

lytic superfields v++ into analytic superfields. The Green function, 
associated with �(2,2) , G(2,2)(z1, u1|z2, u2) = i〈v++(z1,

u1)v++(z2, u2)〉, is given by the expression similar to that in the 
4D, N = 2 case [11]

G(2,2)
τ (1|2) = −2

(D+
1 )4

�1
δ14(z1 − z2)δ

(−2,2)(u1, u2) . (3.6)

The action S2 (3.5) is a quadratic form of quantum fields, with 
the coefficients depending on background fields. For further use, 
it is convenient to diagonalize this quadratic form, that is to de-
couple the quantum superfields v++ and q+ . To achieve this, one 
performs the special change of the quantum hypermultiplet vari-
ables2 in the path integral, such that it removes the mixed terms,

q+
1 = h+

1 − f

∫
dζ

(−4)
2 du2 G(1,1)(1|2) iv++

2 Q +
2 , (3.7)

with h+ being the new independent quantum superfield. It is 
evident that the Jacobian of the variable change (3.7) is unity. 
Here G(1,1)(ζ1, u1|ζ2, u2) = i〈q̃+(ζ1, u1)q+(ζ2, u2)〉 is the super-
field hypermultiplet Green function in the τ -frame (G(1,1)(1|2) =
−G(1,1)(2|1)). This Green function is analytic with respect to both 
arguments and satisfies the equation

∇++
1 G(1,1)

τ (1|2) = δ
(3,1)
A (1|2)

⇒ G(1,1)
τ (1|2) = (∇+

1 )4(∇+
2 )4




�1

δ14(z1 − z2)

(u+
1 u+

2 )3
, (3.8)

where δ(3,1)
A (1|2) is the covariantly-analytic delta-function and 




�
is the covariantly-analytic d’Alembertian [6] which acts on analytic 
superfields as follows




� = 1

2
(D+)4(∇−−)2

= � + iW + a∇−
a + i F ++∇−− − i

4
(D−

a W +a) , (3.9)

with � = 1
2 εabcd∇ab∇cd = ∇M∇M . Note that the covariant d’Alem-

bertian transforms the analytic superfields into analytic super-
fields. After some algebra, the quadratic part of the action S2 (3.5)
splits into the vector-multiplet dependent part

S V ect
2 [V ++, Q +] = 1

4

∫
dζ

(−4)
1 du1 v++

1

×
∫

dζ
(−4)
2 du2

{
�δ

(2,2)
A (1|2)

− 4 f 2 Q̃ +
1 G(1,1)(1|2)Q +

2

}
v++

2 , (3.10)

and the hypermultiplet part

S H yp
2 [V ++] = −

∫
dζ (−4)du h̃+(

D++ + iV ++)
h+ . (3.11)

2 A similar substitution was used in [16], [20] and [21] for computing one- and 
two-loop effective actions in supersymmetric theories, and in [22] for non-local 
change of fields in non-supersymmetric QED.
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We see that the quadratic part of the action in the vector multiplet 
sector S V ect

2 is an analytic nonlocal functional of the quantum field 
v++ . It also contains an interaction between background vector 
multiplet and hypermultiplet through the background-dependent 
Green function G(1,1)(V ++).

The actions (3.10) and (3.11) specify the one-loop quantum cor-
rection to the classical action (2.12):

�(1)[V ++, Q +] = i

2
Tr ln

{
� − 4 f 2 Q̃ +G(1,1) Q +}

+ iTr ln ∇++ . (3.12)

The expression (3.12) is the starting point for studying the one-
loop effective action in the model (2.12). In the next sections we 
will calculate the divergent part of (3.12).

4. Structure of one-loop counterterms

In this section we analyze the superficial degree of divergence 
in the model under consideration. The formal structure of Green 
functions of the vector multiplet (3.6) and the hypermultiplet (3.8)
in 6D, N = (1, 0) gauge theory is analogous to that in the four 
dimensional N = 2 case. Hence, we can directly make use of the 
similar analysis in four dimensional N = 2 theory [19]. As in the 
four-dimensional theory, the Green functions in the case under 
consideration contain enough number of Grassmann δ-function to 
prove the non-renormalization theorem according to which the 
loop contribution to the supergraphs defining the effective action 
can be written as a single integral over the total 6D, N = (1, 0)

superspace.
Let us consider L-loop supergraph G with P propagators, V ver-

tices, N Q external hypermultiplet legs, and an arbitrary number of 
gauge superfield external legs. We denote by ND the number of 
spinor covariant derivatives acting on the external legs as a result 
of integration by parts in the process of transforming the con-
tributions to a single integral over d8θ . The superficial degree of 
divergence ω(G) of the supergraph G can be found by counting 
the degrees of momenta in the loop integrals.

The supergraph G involves L integrals over 6-momenta, which 
contribute 6L to the degree of divergence. Each of the hypermulti-
plet vertices contains one integration over d4θ+ . Propagators of the 
gauge superfields contribute the factors 1/k2, (D+)4, as well as the 
Grassmann δ-functions. Similarly, propagators of the hypermulti-
plet superfields contribute 1/k2, (D+)4 for each of two harmonic 
arguments of propagator (3.8) (eight D+-factors on a whole), and 
also the Grassmann δ-functions. From each hypermultiplet propa-
gator we take the operator (D+)4 and so complete d4θ+ to d8θ

in all hypermultiplets lines, except for the number 1
2 N Q of them. 

Then we consider the corresponding vertices and we take 1
2 N Q

operators (D+)4 off the propagators, which allow us to restore 
the integrations over d8θ . After calculating the supergraph we will 
end up with a single d8θ integration. The other V − 1 integra-
tions, where V is a total number of vertices, are done due to the 
Grassmann δ-functions. The remaining P − V + 1 = L Grassmann 
δ-functions survive. Each of them is killed by eight D+

a . Therefore, 
the number of remaining D+

a is 4P − 2N Q − 8L. This implies that 
the superficial degree of divergence is

ω(G) = (6L − 2P )+ (2P − N Q − 4L)− 1

2
ND = 2L − N Q − 1

2
ND ,

(4.1)

where ND is the number of the spinor covariant derivatives acting 
on the external lines.

Equivalently, the degree of divergence can be calculated, us-
ing dimension reasonings. Each gauge propagator brings f 2, [ f 2] =
m−2. The external gauge superfields are dimensionless, [V ] = m0, 
while the dimension of hypermultiplets is [q] = m2. The effective 
action also contains a single integration over the full superspace. 
Taking into account that [d6x] = m−6 and [d8θ] = m4 we see that

−ω(G) = −2 − 2P V + 2N Q + 1

2
ND , (4.2)

where P V is the number of gauge propagators. For hypermultiplets 
N Q = 2(−P Q + V Q ), so that

ω(G) = 2 − 2V + 2P − N Q − 1

2
ND = 2L − N Q − 1

2
ND . (4.3)

Our aim is to calculate a divergent part of the one-loop effec-
tive action, in this case the number of loops in Eq. (4.3) is L = 1. 
Due to the analyticity of the hypermultiplet superfield, D+q+ = 0, 
the number ND of spinor covariant derivatives acting on the exter-
nal legs is equal to zero, ND = 0. Thus, in our case the superficial 
degree of divergence ω(G) (4.3) is reduced to

ω1−loop(G) = 2 − N Q . (4.4)

Let us apply the relation (4.4) to the analysis of the one-loop 
divergences. According to the general consideration of ref. [8], the 
possible contributions to divergent part of the effective action of 
abelian theory is given by the following integral over the analytic 
subspace of harmonic superspace:

�div =
∫

dζ (−4)du
{

c1(F ++)2 + ic2 Q̃ + F ++ Q + + c3(Q̃ + Q +)2
}

.

(4.5)

Here, the coefficients c1, c2, c3 depend on the regularization pa-
rameters.3

Let N Q = 0, then ω = 2. The corresponding divergent structure 
has to be quadratic in momenta and given by the full N = (1, 0)

superspace integral. The unique possibility is

�
(1)
1 ∼

∫
d14z du V −−�V ++ , (4.6)

where � = 1
2 (D+)4(D−−)2. Integrating in (4.6) by parts, we can 

transfer the factor (D+)4 from d’Alembertian on V −− and use the 
definition of superfield F ++ (2.11). Then we take one factor D−−
off the second multiplier and make use of the zero-curvature con-
dition (2.8). More precisely,

�
(1)
1 ∼

∫
d14z du F ++(D−−)2 V ++

= −
∫

d14z du D−− F ++D−−V ++

= −
∫

d14z du D−− F ++D++V −−

=
∫

d14z du D++D−− F ++V −−. (4.7)

After that we commute the operators D++ and D−− , use the prop-
erty D++ F ++ = 0 and obtain D++ D−− F ++ = D0 F ++ = 2F ++ . Fi-
nally, passing to the analytical subspace, we have

3 In this paper we use the proper-time regularization (see [6,23] and references 
therein) preserving the supersymmetry at least at one loop and are interested in 
the logarithmic divergences only. One-loop logarithmic divergences are known to 
be not susceptible to such subtleties of quantum field theory as, e.g., presence of 
anomalies. We emphasize that the regularization aspects of six dimensional theo-
ries deserve a special attention, like those in four dimensional theories (see e.g., 
discussion in [24]). However, various choices of regularization scheme do not affect 
the form of one-loop logarithmic divergences which are the subject of our paper.
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�
(1)
1 = c1

∫
dζ (−4) du (F ++)2. (4.8)

The coefficient c1 is divergent in the limit of removing the regular-
ization.

Let N Q = 2, then ω = 0. The unique candidate divergent term 
involving no dependence on momenta and representable as an in-
tegral over the full N = (1, 0) superspace reads

�
(1)
2 ∼

∫
d14z du Q̃ +V −− Q + . (4.9)

Passing to the analytic subspace and using (2.11), we immediately 
obtain

�
(1)
2 = ic2

∫
dζ (−4) du Q̃ + F ++ Q + , (4.10)

where, once again, the coefficient c2 is divergent in the limit of 
removing the regularization. We see that the contributions (4.8)
and (4.10) match with the general structure (4.5) of the divergent 
part of the effective action.

For all other values of N Q the index ω is negative and the 
corresponding Feynmann integrals are UV finite. In particular, the 
divergent term of the form (Q̃ + Q +)2 is absent in the one-loop ap-
proximation. Such divergent terms could appear, starting with two 
loops.

5. Divergent part of the one-loop effective action

In the previous section we discussed the general structure of 
the one-loop contributions to the divergent part of effective action. 
Here we perform the direct calculation of the coefficients c1 and 
c2 in (4.5).

The (F ++)2 part of the effective action depends only on the 
background vector multiplet V ++ and is defined by the second 
term in eq. (3.12). More precisely,

�
(1)

F 2 [V ++] = iTr ln ∇++ = −iTr ln G(1,1) . (5.1)

Here G(1,1) is the superfield propagator for hypermultiplet (3.8). 
The details of calculation for (5.1) were discussed in recent works 
[7,23]. We consider an arbitrary variation of the expression (5.1)

δ�
(1)

F 2 [V ++] = −i Tr δ iV ++ G(1,1)

=
∫

dζ
(−4)
1 du1 δV ++ G(1,1)(1|2)

∣∣∣
2=1

. (5.2)

Our aim is to calculate the divergent part of the effective action 
(5.1). In the proper-time regularization scheme [6,23], the diver-
gences are associated with the pole terms of the form 1

ε , ε → 0, 
where ε = 6 − d with space-time dimension d. Taking into account 
the expression for Green function G(1,1) (3.8), one gets

δ�
(1)

F 2 [V ++] =
∫

dζ
(−4)
1 du1δV ++

∞∫
0

d(is)(isμ2)
ε
2

× eis



�1(D+
1 )4(D+

2 )4 δ14(z1 − z2)

(u+
1 u+

2 )3

∣∣∣2=1

div
. (5.3)

Here s is the proper-time parameter and μ is an arbitrary reg-
ularization parameter of mass dimension. Like in the four- and 
five-dimensional cases, one makes use of the identity (see [25] for 
details)
(D+
1 )4(D+

2 )4 δ14(z1 − z2)

(u+
1 u+

2 )3

= (D+
1 )4

{
(u+

1 u+
2 )(∇−

1 )4 − (u−
1 u+

2 )�−−
1

− 4



�1
(u−

1 u+
2 )2

(u+
1 u+

2 )

}
δ14(z1 − z2) , (5.4)

where we have introduced the notation

�−− = i∇ab∇−
a ∇−

b + 4W −a∇−
a − (D−

a W −a) . (5.5)

One can show [21] that only the first term in (5.4) gives contribu-
tion to the divergent part of the one-loop effective action

δ�
(1)

F 2 [V ++] =
∫

dζ
(−4)
1 du1δV ++(1) ×

×
∞∫

0

d(is)(isμ2)
ε
2 eis




�1(u+
1 u+

2 )(D+
1 )4(D−

1 )4 ×

× δ14(z1 − z2)

∣∣∣2=1

div
. (5.6)

Those terms in the right hand side of (5.6) which produce the di-
vergent part read

eis



�(u+
1 u+

2 )e−is



�
∣∣∣2=1

div
= −i

(is)2

2
(�F ++)

− i
(is)3

6

{
4(∂M∂N F ++)∂M∂N

}
. (5.7)

Then we pass to momentum representation of the delta function 
and calculate the proper-time integral. This leads to the expression

δ�
(1)

F 2 [V ++] = − 1

3(4π)3ε

∫
dζ (−4)du δV ++ �F ++ . (5.8)

Let us compare (5.8) with (4.5). Keeping in mind the defini-
tion F ++ = (D+)4 V −− , we can transform the variation (5.8) to the 
form

δ�
(1)

div = 2c1

∫
dζ (−4)du F ++(D+)4δV −− . (5.9)

Then we use the relation between δV −− and δV ++ (2.14) and the 
property D++ F ++ = 0. After that we restore the full 6D , N =
(1, 0) superspace measure,

δ�
(1)

div = c1

∫
dzdu F ++(D−−)2δV ++ +

∫
duD++(...) , (5.10)

and integrate by parts with respect to (D−−)2. Omitting the total 
derivative terms and passing to the analytic subspace, we obtain

δ�
(1)

div = c1

∫
dzdu (D−−)2 F ++δV ++ (5.11)

= c1

∫
dζ (−4)du (D+)4(D−−)2 F ++δV ++. (5.12)

The derivatives (D+)4 act only on (D−−)2 F ++ because δV ++ is an 
analytic superfield. Then we use the definition of analytic d’Alam-
bertian � = 1

2 (D+)4(D−−)2 and finally find

δ�
(1)

div = 2c1

∫
dζ (−4)du δV ++ �F ++ . (5.13)

As is expected, the variation of the divergent part of effective ac-
tion (5.8) proved to have the same structure as (5.13). Hence we 
obtain, up to an unessential additive constant,
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�
(1)

F 2 [V ++] = − 1

6(4π)3ε

∫
dζ (−4)du (F ++)2 . (5.14)

The hypermultiplet-dependent part Q̃ + F ++ Q + of the one-loop 
counterterm arises from the first term in (3.12).4 In order to calcu-
late this contribution one expands the logarithm in the first term 
(3.12) up to the first order and compute the functional trace

�
(1)
Q F Q [V ++, Q +]
= i

2
Tr ln

{
� − 4 f 2 Q̃ +G(1,1) Q +}

≈ −2i f 2
∫

dζ (−4)du Q̃ + Q + 1

� G(1,1)(1|2)

∣∣∣2=1

div
. (5.15)

We again use the identity (5.4) and consider only the first term 
here, because just this term is responsible for divergence:

1

� G(1,1)(1|2)

∣∣∣2=1

div
= 1

�
(D+

1 )4(D+
2 )4




�1

δ14(z1 − z2)

(u+
1 u+

2 )3

∣∣∣2=1

div

= 1

�
(D+

1 )4(D−
1 )4




�1

(u+
1 u+

2 )δ14(z1 − z2)

∣∣∣2=1

div
.

(5.16)

Now we observe that the first analytic d’Alembertian � in the de-
nominator comes from the pure vector multiplet part and does 
not contain background fields. The second covariant d’Alembertian 



� in the denominator emerges from the Green function for hyper-
multiplet after non-local change of variables (3.7). This operator 
depends on the background vector multiplet as in (3.9).

To calculate the divergent part of the expression under consid-
eration it suffices to take into account only two first terms in the 



�, namely




�= � + i F ++∇−− + . . . .

Other two terms do not contribute to the divergent part of one-
loop effective action in the point-coincidence limit. We expand the 
operator 1




�
up to the first order in i F ++∇−− and act by it on 

the harmonic distribution (u+
1 u+

2 ). Using properties of Grassmann 

delta-function, (D+
1 )4(D−

1 )4δ8(θ1 − θ2)

∣∣∣
2=1

= 1, we obtain

(D+
1 )4(D−

1 )4

�(� + i F ++∇−− + ..)
(u+

1 u+
2 )δ14(z1 − z2)

∣∣∣2=1

div

= −i F ++ (u−
1 u+

2 )

�3
δ6(x1 − x2)

∣∣∣
2=1

. (5.17)

Then one uses the momentum representation of the space-
time δ-function and calculates the momentum integral in the 
ε-regularization scheme. It leads to

1

�3
δ6(x1 − x2)

∣∣∣
2=1

= i

(4π)3

1

ε
, ε → 0 . (5.18)

As a result, one gets

�
(1)
Q F Q [V ++, Q +] = 2i f 2

(4π)3ε

∫
dζ (−4)du Q̃ + F ++ Q + . (5.19)

4 It is known that calculations of harmonic supergraphs with hypermultiplet 
propagators require a certain care related to coinciding harmonic singularities [26]. 
As argued in [26] (see [11,27] as well) this problem can be avoided in all cases of 
interest. In our case we also do not face such a problem.
Summing up the contributions (5.14) and (5.19), we finally ob-
tain

�
(1)

div [V ++, Q +] = − 1

6(4π)3ε

∫
dζ (−4)du

×
{
(F ++)2 − 12 i f 2 Q̃ + F ++ Q +}

. (5.20)

If the background hypermultiplet vanishes, the divergent part of 
the effective action is proportional to the classical equation of mo-
tion F ++ = 0. Therefore the divergence as a whole can be elimi-
nated by a field redefinition (δV ++ ∼ 1

ε F ++) in the classical action 
and the theory under consideration is one-loop finite on shell, in 
accordance with the results of ref. [1]. However, if the background 
hypermultiplet does not vanish, we obtain, after some field redefi-
nition proportional to the equation of motion, the divergent part of 
on-shell effective action in the form �(1)

div ∼ 1
ε

∫
dζ (−4)du(Q̃ + Q +)2. 

Thus, the on-shell divergence in the hypermultiplet sector cannot 
be eliminated and the full theory is not finite even at the one-loop 
level.

6. Summary and outlook

Let us briefly summarize the results obtained. We have con-
sidered the six-dimensional N = (1, 0) supersymmetric theory 
of the abelian vector multiplet coupled to hypermultiplet in the 
6D, N = (1, 0) harmonic superspace formulation. We have stud-
ied the quantum effective action involving dependence on both 
the vector multiplet and the hypermultiplet superfields. The cor-
responding background field method in harmonic superspace was 
formulated, such that it allows one to preserve manifest gauge 
invariance and supersymmetry at all stages of calculating the ef-
fective action. It is important to point out that the superfield prop-
agators in the theory under consideration have, in the sector of 
anticommuting variables and harmonics, the same structure as the 
propagators in 4D, N = 2 SYM theory. It leads to 6D, N = (1, 0)

renormalization theorem, which states that the contribution of 
any supergraph in the theory under consideration can be writ-
ten as a single integral over anticommuting variables of the full 
6D, N = (1, 0) superspace. Using this result, we have calculated 
the superficial degree of divergences and analyzed the structure of 
one-loop counterterms in both the vector multiplet and the hyper-
multiplet sectors. It was shown, in particular, that one of the pos-
sible divergent counterterms in the purely hypermultiplet sector, 
which is allowed on the supersymmetry and dimension grounds 
[8], is actually prohibited at one loop.

We have developed an efficient manifestly gauge invariant and 
N = (1, 0) supersymmetric technique to calculate the one-loop ef-
fective action. As an application of this technique, we found the 
one-loop divergences of the theory under consideration. The re-
sults completely match the analysis of the general structure of di-
vergences based on considering superficial degree of divergences. It 
was shown that, if the background hypermultiplet superfield does 
not vanish, the one-loop divergences cannot be eliminated by any 
field redefinition and the theory is not one-loop finite.

Let us discuss some possible generalizations and extensions 
of the results obtained. As the next step, it is quite natural to 
study the structure of the effective action for the non-abelian 
6D, N = (1, 0) SYM theories. All such theories admit a formu-
lation in 6D, N = (1, 0) harmonic superspace. The background 
field method can be developed quite analogously to the abelian 
case and the one-loop divergences can be calculated. The basic 
difference from the abelian theory considered here will be a self-
interaction of vector multiplet and a non-trivial ghost contribution 
to the effective action, which can change the relative coefficient 
between the (F ++)2 and the Q̃ + F ++ Q + terms in the one-loop 
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divergent part. We expect that the purely hypermultiplet contri-
bution to the divergent part of the one-loop effective action in 
non-abelian theory will be absent as in the abelian theory. Besides 
the divergent part of effective action, it would be interesting to 
study the finite contributions to low-energy effective action, which 
have never been considered before.

It would be extremely interesting to study the effective action 
in 6D, N = (1, 1) SYM theory. Such a theory can be formulated in 
6D, N = (1, 0) harmonic superspace in terms of N = (1, 0) ana-
lytic harmonic superfields, viz. the gauge connection V ++ and the 
hypermultiplet q+, ̃q+ , both in the adjoint representation [8]. This 
theory exhibits the manifest off-shell N = (1, 0) supersymmetry 
and an additional hidden on-shell N = (0, 1) supersymmetry, and 
in many aspects is analogous to 4D, N = 4 SYM theory [11]. It 
was shown, based solely upon the invariance of the effective action 
under both manifest and hidden supersymmetries, that N = (1, 1)

SYM theory is one-loop finite. It would be tempting to analyze the 
divergences of N = (1, 1) SYM theory within the quantum setting 
and explicitly calculate the one-loop counterterms (in parallel with 
constructing the full quantum N = (1, 1) SYM effective action).

It is well known that the 6D, N = (1, 0) supersymmetric the-
ories are anomalous (see discussions of chiral anomalies in higher 
dimensional supersymmetric theories in refs. [28]). It would be 
interesting to study such anomalies in the harmonic superspace 
formulation of 6D, N = (1, 0) SYM coupled to hypermultiplets 
and show, by a direct quantum field theoretical analysis, that the 
N = (1, 1) SYM theory is anomaly-free. We are going to tackle all 
these problems in the forthcoming works.
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