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Abstract

We study the one-loop effective action for 6D, N = (1, 0) supersymmetric Yang–Mills (SYM) theory 
with hypermultiplets and 6D, N = (1, 1) SYM theory as a subclass of the former, using the off-shell formu-
lation of these theories in 6D, N = (1, 0) harmonic superspace. We develop the corresponding supergraph 
technique and apply it to compute the one-loop divergences in the background field method ensuring the 
manifest gauge invariance. We calculate the two-point Green functions of the gauge superfield and the hy-
permultiplet, as well as the three-point gauge-hypermultipet Green function. Using these Green functions 
and exploiting gauge invariance of the theory, we find the full set of the off-shell one-loop divergent contri-
butions, including the logarithmic and power ones. Our results precisely match with those obtained earlier 
in [1,2] within the proper time superfield method.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Investigation of quantum corrections in higher-dimensional gauge theories is an exciting prob-
lem with a long history (see, e.g., [3–10] and references therein). On the one hand, because of 
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dimensionful coupling constant, these theories are not renormalizable by formal power-counting. 
On the other hand, extended supersymmetry is capable to improve the ultraviolet behavior of a 
theory. And indeed, it was shown in the above papers that, e.g., in six-dimensional supersymmet-
ric Yang–Mills theories the one- and two-loop amplitudes are finite. It is extremely interesting 
to analyze the impact of extended supersymmetry on a general structure of ultraviolet diver-
gences in higher-dimensional gauge theories and to learn whether the supersymmetry is powerful 
enough for construction of the renormalizable and, perhaps, finite higher dimensional quantum 
field-theoretical models.

To accomplish this program, it is natural to start with such a formulation of the theory which 
makes manifest and off-shell as much underlying symmetries as possible. In our case these are 
supersymmetry and gauge invariance. In 4D theories, N = 1 supersymmetry becomes manifest 
in the N = 1 superfield formalism (see e.g. [11,12]). Both supersymmetries of 4D, N = 2 the-
ories can also be made manifest by making use of the N = 2 harmonic superspace approach 
[13–16]. The gauge invariance is manifest in the framework of background field method, which 
can also be formulated in superspace.

In this paper we consider 6D, N = (1, 0) and N = (1, 1) supersymmetric Yang–Mills (SYM) 
theories, which, to certain extent, are similar to 4D, N = 2 and N = 4 SYM theories, respec-
tively. From the N = (1, 0) supersymmetry standpoint, such theories describe the interacting 
gauge multiplet and hypermultiplets. Both these theories can be formulated in 6D, N = (1, 0)

harmonic superspace [17–22], so that N = (1, 0) supersymmetry remains a manifest off-shell 
symmetry at all steps of quantum calculations. Moreover, the gauge symmetry can be made 
manifest by using the background field method which has been formulated in harmonic super-
space in [23–25]. Thus, the harmonic superspace approach augmented with the background field 
method allows one to better figure out the restrictions imposed by gauge symmetry and extended 
supersymmetry on the structure of the ultraviolet divergences. However, it should be noted that, 
in general, N = (1, 0) theories are plagued by anomalies [26–28] and it seems impossible to 
construct a regularization which would simultaneously preserve both supersymmetry and gauge 
symmetry. This is an essential difference from the 4D case, where an invariant regularization for 
N = 2 supersymmetric gauge theories can be constructed [29,30] as a proper generalization of 
the higher-derivative regularization worked out in [31,32].

Our basic aim in this paper is to study in detail off-shell structure of the one-loop divergences 
of 6D, N = (1, 0) and N = (1, 1) SYM theories, in both the gauge multiplet and the hypermul-
tiplet sectors.

Earlier in Refs. [1,2] we have studied the one-loop divergences using the operator proper – 
time method in N = (1, 0) harmonic superspace (for the case of non-supersymmetric theories 
this method was initiated in [33,34]). It has been demonstrated that the general N = (1, 0) theory 
with hypermultiplets in an arbitrary representation R of the gauge group G is divergent in the 
one-loop approximation. However, in the special case of N = (1, 1) SYM theory, which corre-
sponds to the hypermultiplet in the adjoint representation, the divergences cancel each other and 
the theory proves to be one-loop finite off shell. It gave us a ground to expect a better ultraviolet 
behavior of this theory in higher loops as well. It is worth pointing out that the 4D analog of 
N = (1, 1) theory is N = 4 SYM theory, which is finite to all loops [35–38].

In this paper we develop in detail the harmonic supergraph approach to the study of the 
one-loop divergences in 6D, N = (1, 0) and N = (1, 1) SYM theories. Such an approach for 
calculating the structure of divergences is more familiar, as compared to the operator proper-time 
method, and it provides an appropriate basis for studying the higher-loop divergences. Besides, 
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we will clarify and justify some subtle aspects of the calculations which have been performed in 
our previous papers [1,2].

The proper-time technique is very efficient for one-loop calculations. However, for calculat-
ing the higher-loop contributions to effective action this technique turns out not so convenient. 
Usually, for calculation of the divergent diagrams, a simpler technique is used. Just such a tech-
nique is developed in this paper, with a possibility of its further applications for higher-loop 
calculations. Note that in the N = (1, 0) harmonic superspace approach the number of divergent 
one-loop supergraphs is infinite, because the gauge superfield is dimensionless. Surely, it is diffi-
cult to calculate exactly a sum of infinite number of divergent supergraphs. However, it is possible 
to calculate divergent diagrams with small numbers of external gauge lines and then to restore 
the exact result by gauge symmetry arguments. In this paper we demonstrate how this method 
can be applied for calculating the divergent part of the one-loop effective action of N = (1, 0)

SYM theory with the hypermultiplet in an arbitrary representation of the gauge group.
The paper is organized as follows. In Sect. 2 we formulate N = (1, 0) SYM theory with 

hypermultiplets in harmonic superspace and introduce the notation. Sect. 3 is devoted to the 
quantization of the theory. In particular, we construct the background field method and describe 
the gauge fixing procedure. Feynman rules for the theory under consideration are presented in 
Sect. 4. Using these rules, in Sect. 5 we calculate the divergent supergraphs with the minimal 
numbers of external gauge legs and then restore the full result for the divergent part of the one-
loop effective action by the gauge symmetry reasonings. The results obtained are listed and 
discussed in Sect. 6. Technical details of the harmonic supergraph calculations are collected in 
Appendices A and B.

2. N = (1, 0) supersymmetric gauge theories in 6D harmonic superspace

The harmonic superspace approach [16] is convenient for describing extended supersymmet-
ric theories, mainly because all symmetries of the theory in this approach are manifest. In our 
notation the harmonic variables are denoted by u±i , where u−

i = (u+i )∗. These variables are 
constrained by the condition u+iu−

i = 1. The anticommuting left-handed spinor coordinates are 
denoted by θa

i and the usual coordinates are denoted by xM , where M = 0, . . .5. The coordinates 
of the ordinary N = 2 superspace are z ≡ (xM, θa

i ), and ζ ≡ (xM
A , θ+a) are analytic coordinates 

defined as

xM
A ≡ xM + i

2
θ−γ Mθ+; θ±a ≡ u±

i θai , (2.1)

where γ M are six-dimensional γ -matrices. This implies that the corresponding integration mea-
sures can be written as∫

d14z =
∫

d6x d8θ;
∫

dζ (−4) ≡
∫

d6x d4θ+. (2.2)

Note that∫
d8θ =

∫
d4θ+(D+)4, (2.3)

where we have introduced the notation

(D+)4 = − 1

24
εabcdD+

a D+
b D+

c D+
d (2.4)

with D+
a = u+Di

a (similarly, D−
a ≡ u−Di

a).
i i
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In harmonic superspace the action of the 6D, N = (1, 0) SYM theory has the form [19]

SSYM = 1

f 2
0

∞∑
n=2

(−i)n

n
tr

∫
d14z du1 . . . dun

V ++(z, u1) . . . V ++(z, un)

(u+
1 u+

2 ) . . . (u+
n u+

1 )
, (2.5)

where f0 is the bare coupling constant, which in 6D has the dimension m−1. The gauge super-
field V ++(z, u) satisfies the analyticity condition

D+
a V ++ = 0 (2.6)

and is real with respect to the special “tilde” conjugation, ˜V ++ = V ++. It can be presented as 
V ++(z, u) = V ++AtA, where tA are the generators of the fundamental representation of the 
gauge group G. In our notation they satisfy the relations

tr(tAtB) = 1

2
δAB; [tA, tB ] = if ABCtC, (2.7)

where f ABC are the gauge group structure constants.
The expression for the SYM action is essentially simplified in the abelian case. Namely, only 

terms quadratic in the gauge superfield V ++ survive:

SU(1) = 1

4f 2
0

∫
d14z

du1du2

(u+
1 u+

2 )2
V ++(z, u1)V

++(z, u2). (2.8)

In this paper we will consider 6D, N = (1, 0) SYM theory with massless hypermultiplets 
residing in a certain representation R of gauge group. In the harmonic superspace formalism, the 
total action of such a system reads

S = 1

f 2
0

∞∑
n=2

(−i)n

n
tr

∫
d14z du1 . . . dun

V ++(z, u1) . . . V ++(z, un)

(u+
1 u+

2 ) . . . (u+
n u+

1 )

−
∫

dζ (−4)du q̃+∇++q+ , (2.9)

where the analytic superfield q+ describes the hypermultiplet. The covariant harmonic derivative 
in Eq. (2.9) is defined as

∇++ = D++ + iV ++ = D++ + iV ++AT A . (2.10)

The “flat” harmonic derivatives D±±, D0 are defined by1

D++ = u+i ∂

∂u−i
; D−− = u−i ∂

∂u+i
; D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
(2.11)

and T A in (2.10) are the generators of the gauge group in the representation R, such that 
[T A, T B ] = if ABCT C . We will consider only simple gauge groups, so that

tr(T AT B) = T (R)δAB; tr(T A
AdjT

B
Adj) = f ACDf BCD = C2δ

AB; (T AT A)i
j = C(R)i

j .

(2.12)

1 One can easily see that they form an SU(2) algebra.
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The representation R can in general be reducible. For an irreducible representation R, C(R)i
j

is proportional to δj
i . If R is the adjoint representation, the action (2.9) describes the N = (1, 1)

SYM theory. In this case, the action (2.9) is invariant under an extra hidden N = (0, 1) super-
symmetry which mixes the gauge superfield and the hypermultiplet.

The N = (1, 0) SYM action (2.9) is invariant under the gauge transformations

V ++ → eiλV ++e−iλ − ieiλD++e−iλ; q+ → eiλq+, (2.13)

where λ = λAtA, when checking the invariance of the pure gauge-field part of the action, and λ =
λAT A while dealing with the hypermultiplet part. The parameters λA are the analytic superfields 
which are real with respect to the tilde-conjugation, λ̃A = λA .

One more necessary ingredient of the superfield formalism is a non-analytic superfield V −−
introduced as a solution of the “harmonic flatness condition”

D++V −− − D−−V ++ + i[V ++,V −−] = 0 . (2.14)

This superfield can be solved for from (2.14) in terms of V ++ as

V −−(z, u) ≡
∞∑

n=1

(−i)n+1
∫

du1 . . . dun

V ++(z, u1) . . . V ++(z, un)

(u+u+
1 )(u+

1 u+
2 ) . . . (u+

n u+)
. (2.15)

Under gauge transformations (2.13) V −− is transformed as

V −− → eiλV −−e−iλ − ieiλD−−e−iλ. (2.16)

From the geometric point of view, this superfield is the connection covariantizing the harmonic 
derivative D−−:

D−− ⇒ ∇−− ≡ D−− + iV −−. (2.17)

It can be used to construct the important analytic superfield strength

F++ ≡ (D+)4V −−, (2.18)

which transforms homogeneously, as F++ → eiλF++e−iλ.
In the abelian case, the action of the gauge theory-hypermultiplet system can be written as

S = 1

4f 2
0

∫
d14z

du1du2

(u+
1 u+

2 )2
V ++(z, u1)V

++(z, u2) −
∫

dζ (−4)du q̃+∇++q+, (2.19)

where ∇++ = D++ + iV ++, and it is invariant under the gauge transformations

V ++ → V ++ − D++λ; V −− → V −− − D−−λ; q+ → eiλq+. (2.20)

In this case Eq. (2.14) becomes linear,

D++V −− = D−−V ++, (2.21)

and so provides the linear solution for V −−,

V −−(z, u) =
∫

du1
V ++(z, u1)

(u+u+
1 )2

. (2.22)

The analytic superfield F++ in the abelian case is gauge invariant.
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3. Quantization and background field method in N = (1, 0) harmonic superspace

It is convenient to quantize 6D, N = (1, 0) theories directly in N = (1, 0) harmonic super-
space, thus ensuring the manifestly supersymmetric form of the quantum corrections. It is also 
convenient to make use of the background field method, which gives the manifestly gauge in-
variant effective action.

The background-quantum splitting is introduced by the substitution

V ++ = V ++ + v++, (3.1)

where V ++ denotes the background gauge superfield, while v++ is the quantum gauge super-
field. In supergraphs, external lines corresponding to the background gauge superfield will be 
denoted by the bold wavy lines, while the external lines corresponding to the quantum gauge su-
perfield – by the usual wavy lines. Note that we do not make the background-quantum splitting 
for the hypermultiplet. This is admissible because such a splitting is linear and we will choose the 
gauge-fixing term to be independent of the hypermultipet. This implies that the effective action 
will depend only on the sum of the quantum and background hypermultiplet superfields, so that 
there is no actual need to separately introduce the background hypermultiplet superfield.

After the background-quantum splitting, the gauge invariance (2.13) amounts to the back-
ground gauge invariance

V ++ → eiλV ++e−iλ − ieiλD++e−iλ; v++ → eiλv++e−iλ; q+ → eiλq+, (3.2)

and the quantum gauge invariance

V ++ → eiλV ++e−iλ; v++ → eiλv++e−iλ − ieiλD++e−iλ; q+ → eiλq+. (3.3)

To obtain the gauge invariant effective action, one should fix a gauge only with respect to the 
quantum superfields, without breaking the background gauge invariance (3.2). For example, it is 
possible to add the following gauge-fixing term:

Sgf = − 1

2f 2
0 ξ0

tr
∫

d14z du1du2
(u−

1 u−
2 )

(u+
1 u+

2 )3
D++

1

[
e−ib(z,u1)v++(z, u1)e

ib(z,u1)
]

× D++
2

[
e−ib(z,u2)v++(z, u2)e

ib(z,u2)
]
, (3.4)

where b(z, u) is the background bridge superfield. The bridge is related to the background su-
perfields V ++ and V −− by the relations

V ++ = −ieibD++e−ib; V −− = −ieibD−−e−ib. (3.5)

Note that the hypermultiplet does not enter Eq. (3.4) and the theory is invariant under the 
background gauge transformations even without the background-quantum splitting for the q+
superfields.

The expression (3.4) is an analog of the usual ξ -gauge. The terms quadratic in the quantum 
gauge superfield in the total action become

S(2) + S
(2)
gf = 1

2f 2
0

(
1 − 1

ξ0

)
tr

∫
d14z du1du2

1

(u+
1 u+

2 )2
v++(z, u1)v

++(z, u2)

+ 1

2f 2ξ
tr

∫
dζ (−4) duv++(z, u)�v++(z, u), (3.6)
0 0
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where � ≡ ∂2. We observe that in the Feynman gauge ξ0 = 1 this expression is essentially simpli-
fied, as in the case of the usual Yang–Mills theory. Note that, when deriving (3.6), we integrated 
by parts and used the relation

D++
1

1

(u+
1 u+

2 )3
= 1

2
(D−−

1 )2δ(3,−3)(u1, u2). (3.7)

Then we again integrated by parts with respect to (D−−
1 )2, taking into account Eq. (2.3) and the 

identity

1

2
(D+)4(D−−)2v++ = �v++, (3.8)

which follows from the analyticity of the quantum gauge superfield v++.
The gauge-fixing term (3.4) is invariant under the transformations (3.2) which act on the 

bridge as

eib → eiλeibeiτ , (3.9)

where τ = τ(x, θ) is a gauge parameter independent of the harmonic variables.
Note that in the abelian case the bridge superfield is not present in the gauge-fixing action. 

Also, in the abelian case it is not necessary to introduce ghosts. The latter are required by the 
quantization procedure only for non-abelian gauge theories. In the considered theory one is led 
to insert, into the generating functional, some determinants corresponding to the Faddeev–Popov 
and Nielsen–Kallosh ghosts.

The Faddeev–Popov ghosts b and c are anticommuting analytic superfields in the adjoint 
representation of the gauge group. The action for them has the form

SFP = tr
∫

dζ (−4) dub∇++(
∇++c + i[v++, c]

)
, (3.10)

where ∇++c = D++c + i[V ++, c] is the background covariant derivative.
Also it is necessary to insert into the generating functional the determinants corresponding to 

the Nielsen–Kallosh ghosts,

�NK ≡ Det1/2 ��
∫

Dϕ exp
(
iSNK

)
, (3.11)

where 
��≡ 1

2 (D+)4(∇−−)2 and ϕ is a commuting analytic Nielsen–Kallosh ghost superfield in 
the adjoint representation of the gauge group with

SNK = −1

2
tr

∫
dζ (−4) du (∇++ϕ)2. (3.12)

Introducing anticommuting analytic superfields ξ (+4) and σ in the adjoint representation of the 
gauge group, one can write Det

�� in the form of the functional integral,

Det
��=

∫
Dξ(+4)Dσ exp

(
i tr

∫
dζ (−4) du ξ (+4) �� σ

)
. (3.13)

Thus, the generating functional of the considered theory can be written as

Z =
∫

Dv++ Dq̃+ Dq+ DbDcDϕ Det1/2 �� exp
[
i(S + Sgf + SFP + SNK + Ssources)

]
,

(3.14)
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Fig. 1. Propagators of various superfields: (1), (2), (3), and (4) stand for the gauge, hypermultiplet, Faddeev–Popov and 
Nielsen–Kallosh ghost propagators, respectively.

where Ssources denotes the relevant source terms. For example, the sources for the quantum gauge 
and hypermultiplet superfields can be introduced as∫

dζ (−4) du
[
v++AJ (+2)A + j (+3)i (q+)i + j̃

(+3)
i (̃q+)i

]
. (3.15)

Likewise, it is possible to add sources for other superfields involved.

4. Propagators, vertices and supergraphs

The Feynman rules for 6D, N = (1, 0) supersymmetric gauge theories in harmonic super-
space are very similar to those in the case of 4D, N = 2 supersymmetric theories which have 
been considered in detail in [14,15].

In order to find the propagator of the quantum gauge superfield, we consider the linearized 
equation of motion for this superfield (setting the background gauge field equal to zero) in the 
presence of the source term (3.15):

1

2ξ0f
2
0

�v++A(z,u1) + 1

2f 2
0

(
1 − 1

ξ0

)
×

∫
du2

1

(u+
1 u+

2 )2
(D+

1 )4v++A(z,u2) + J (+2)A(z,u1) = 0. (4.1)

Its solution can be written as

v++A(z,u1) = −2ξ0f
2
0� J (+2)A(z,u1) + 2f 2

0 (ξ0 − 1)

�2

×
∫

du2
1

(u+
1 u+

2 )2
(D+

1 )4J (+2)A(z,u2). (4.2)

This implies that the propagator of the gauge superfield in the ξ -gauge reads

(G
(2,2)
V )AB(z1, u1; z2, u2)

= −2f 2
0

(ξ0� (D+
1 )4δ(2,−2)(u2, u1)

−ξ0 − 1

�2
(D+

1 )4(D+
2 )4 1

(u+
1 u+

2 )2

)
δ6(x1 − x2)δ

8(θ1 − θ2)δ
AB. (4.3)

Below we will use the gauge ξ0 = 1, in which the propagator has the simplest form, with the 
second term vanishing. The propagator of the gauge superfield will be graphically represented 
by the wavy line ending at the points 1 and 2, see Fig. 1, where it is denoted by (1).

The propagator of the hypermultiplet superfields can be defined similarly, and it is given by 
the expression

(G(1,1)
q )i

j (z1, u1; z2, u2) = (D+
1 )4(D+

2 )4 1

�δ14(z1 − z2)
1

(u+u+)3
δi

j , (4.4)

1 2



I.L. Buchbinder et al. / Nuclear Physics B 921 (2017) 127–158 135
Fig. 2. Vertices coming from the hypermultiplet part of the action.

where

δ14(z1 − z2) ≡ δ6(x1 − x2)δ
8(θ1 − θ2). (4.5)

This propagator will be represented by the line ending at the points 1 and 2. It is denoted by the 
symbol (2) in Fig. 1. The external hypermultiplets will be also denoted by such lines.

The propagators of the Faddeev–Popov and Nielsen–Kallosh ghosts have the form

(D+
1 )4(D+

2 )4

2� δ14(z1 − z2)
(u−

1 u−
2 )

(u+
1 u+

2 )3
δAB. (4.6)

They are given, respectively, by the dashed and dotted lines connecting the points 1 and 2 and 
denoted in Fig. 1 by the symbols (3) and (4).

Also, we will need the propagator of the superfields ξ (+4) and σ introduced in Eq. (3.13). It 
is easy to see that it is given by the expression

− (D+
1 )4

2� δ14(z1 − z2)δ
(0,0)(u1, u2)δ

AB. (4.7)

The only coupling of the gauge superfield with the hypermultiplet ones comes from the hy-
permultiplet action:

SI = −i

∫
dζ (−4) du (̃q+)i(V ++)i

j (q+)j

= −i

∫
dζ (−4) du (̃q+)i(V ++ + v++)i

j (q+)j , (4.8)

where (V ++)i
j = f0V

++A(T A)i
j . This implies that the supergraphs can contain vertices with 

two hypermultiplet legs and one leg of the background or quantum gauge superfield. These ver-
tices are presented in Fig. 2. In the abelian case, these are the only interaction vertices at all.

In the non-abelian case there are infinitely many interaction vertices, because the action (2.5)
contains terms involving all powers (n ≥ 2) of the gauge superfield V ++. Clearly, each line in 
such vertices represents the quantum superfield v++ or the background gauge superfield V ++. 
Expressions for the vertices with purely quantum gauge legs can be read off from Eq. (2.5). 
The vertices with legs of the background gauge superfield can also come from the gauge fixing 
action (3.4). On the external background superfield legs in such vertices there always appears the 
bridge superfield.

As the action (3.10) contains two background supersymmetric derivatives ∇++, there are ver-
tices with two Faddeev–Popov ghost legs and one or two legs of the gauge superfield. Note that 
the maximal number of the quantum gauge superfield legs equals one, because the Faddeev–
Popov action contains only first degree of v++.

The Nielsen–Kallosh ghosts interact only with the background gauge superfield. Like in the 
case of Faddeev–Popov ghosts, only three- and four-point vertices are present. The vertices 
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containing legs of the superfields ξ (+4) and σ can involve an arbitrary number of the external 
background superfield V ++ legs, because the operator 

�� contains the superfield V −− given by 
an infinite series (2.15).

5. Structure of one-loop divergences

5.1. General analysis

According to the general analysis performed in [39] the on-shell logarithmic divergences in 
the one-loop approximation can be written as

�
(1)
∞,ln =

∫
dζ (−4) du

[
c1(F

++A)2 + ic2F
++A(̃q+)i(T A)i

j (q+)j + c3

(
(̃q+)i(q+)i

)2]
,

(5.1)

where c1, c2, and c3 are numerical real coefficients. They have been found in [1] by using the 
proper time method.

The degree of divergence in N = (1, 0) gauge theory can be deduced as follows. The effec-
tive action is dimensionless. On the other hand, any contribution to this dimensionless effective 
action can be presented as an integral over the total superspace. The harmonic variables are di-
mensionless, while [d6x] = m−6 and [d8θ ] = m4. The gauge superfields on the external legs 
are dimensionless, [V ++] = m0, while the external hypermultiplet legs contribute [q+] = m2. In 
our notation, each gauge propagator gives f 2

0 , where [f0] = m−1, and each purely gauge vertex 
gives f −2

0 . If ND spinor derivatives act to the external lines, they also contribute ND/2 to the 
total dimension. Therefore, taking into account that the effective action is dimensionless, we ob-
tain that the dimension of the momentum integral ω in a supergraph with PV gauge propagators, 
VV purely gauge vertices, and Nq external hypermultiplet legs should be equal to

ω = 6 − 4 + 2PV − 2VV − 2Nq − 1

2
ND . (5.2)

The quantity ω is the superficial degree of divergence. For hypermultiplets the number of external 
legs can be written as Nq = 2(−Pq + Vq), where Pq and Vq are numbers of hypermultiplet 
propagators and the hypermultiplet-containing vertices, respectively. For the closed loops of the 
Faddeev–Popov ghosts the similar equality is PFP = VFP, where PFP and VFP are numbers of the 
Faddeev–Popov ghost propagators and vertices, respectively. Using these relations we obtain

ω = 2 + 2(PV + Pq + PFP) − 2(Vq + VV + VFP) − Nq − 1

2
ND

= 2 − 2V + 2P − Nq − 1

2
ND , (5.3)

where

P = PV + Pq + PFP and V = VV + Vq + VFP (5.4)

are total numbers of propagators and vertices in the considered diagram, respectively. Since the 
number of loops is L = 1 − V + P , the result for the degree of divergence can be also rewritten 
as

ω = 2L − Nq − 1
ND. (5.5)
2
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Fig. 3. One-loop contribution to the two-point Green function of the background superfield in the abelian case.

The supergraph is convergent if ω < 0, otherwise it is divergent. The relation (5.5) allows one 
to list all possible types of divergent supergraphs and compare the corresponding counterterms 
with the expression (5.1). In the one-loop approximation the divergences correspond to ω = 2
and 0. Further analysis depends on the choice of regularization.

Let Nq = 0, ND = 0, so that ω = 2, and use the dimensional-reduction type of regularization. 
Then the only admissible counterterm in the gauge multiplet sector is given by the first term in 
(5.1), with dimensionless divergent coefficient c1. Being dimensionless, this coefficient must be 
proportional to 1/ε, where ε = d − 6 is a regularization parameter. Let still Nq = 0, ND = 0, 
ω = 2, but use now the cut-off regularization. In this case we have the cut-off momentum � and, 
hence, there are two admissible counterterms in the gauge multiplet sector. Like in the previous 
case, one of them is given by the first term in (5.1) with dimensionless divergent coefficient c1, 
which should now be proportional to ln�. The second one is proportional to �2 multiplied by 
the classical action of the pure 6D, N = (1, 0) SYM theory.

Let Nq = 2, ND = 0 (so that ω = 0) and use the dimensional-reduction regularization. The 
admissible counterterm is given by the second term in (5.1) with the dimensionless divergent 
coefficient c2, which must be proportional to 1/ε. In the case of the cut-off regularization we 
again obtain the counterterm corresponding to the second term in (5.1) with dimensionless di-
vergent coefficient c2 proportional to ln�. Also, from Eq. (5.5) we derive that c3 = 0, because 
the relevant structure corresponds to the convergent graphs with Nq = 4, ND = 0 and, hence, 
ω = −2.

In this paper we carry out the one-loop calculations both in the dimensional reduction scheme 
and in the cut-off regularization. We confirm the results of [1] by an independent calculation 
of superdiagrams in the dimensional regularization. In addition to the results of [1], we find all 
the one-loop counterterms in the cut-off regularization scheme and show that there is actually a 
counterterm proportional to SSYM . In the N = (1, 1) SYM theory, all the one-loop divergences 
are canceled off shell.

5.2. Two-point Green function of the gauge superfield

We start the computation of the one-loop divergences from the two-point Green function of the 
background gauge superfield. In the considered approximation it is determined by the diagrams 
presented in Fig. 3. The bold external legs in these diagrams correspond to the background gauge 
superfield V ++. Note that in the abelian case the only non-trivial contribution comes from the 
diagram (1), while contributions of all other diagrams vanish. That is why we will start our 
analysis by calculating the coefficient c1 for the abelian theory (2.19).
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Using the standard rules of writing down the contributions of the harmonic supergraphs [16], 
we can present the contribution of the diagram (1) to the effective action of the abelian theory in 
the form

i

2

∫
dζ

(−4)
1 du1 dζ

(−4)
2 du2 V ++(z1, u1)V

++(z2, u2)

× 1

(u+
2 u+

1 )3

(D+
1 )4(D+

2 )4

� δ14(z1 − z2)
1

(u+
1 u+

2 )3

(D+
1 )4(D+

2 )4

� δ14(z1 − z2). (5.6)

One of the two operator factors (D+
1 )4(D+

2 )4 in (5.6) can be used to convert both integrations 
over dζ (−4) into those over d14z,

− i

2

∫
d14z1 du1 d14z2 du2

V ++(z1, u1)V
++(z2, u2)

(u+
1 u+

2 )6

1

�δ14(z1 − z2)

× (D+
1 )4(D+

2 )4

� δ14(z1 − z2). (5.7)

After this, we should take into account that

(D+
1 )4(D+

2 )4δ8(θ1 − θ2) δ8(θ1 − θ2) = (u+
1 u+

2 )4δ8(θ1 − θ2) (5.8)

and perform one of the θ -integrations with the help of the remaining Grassmann δ-function 
δ8(θ1 − θ2). This gives

− i

2

∫
d6x1 d6x2 d8θ du1 du2 V ++(x1, θ, u1)V

++(x2, θ, u2)
1

(u+
1 u+

2 )2

× 1

�δ6(x1 − x2)
1

�δ6(x1 − x2). (5.9)

Next, we rewrite this expression in the momentum space:

− i

2

∫
d6p

(2π)6

∫
d8θ du1 du2 V ++(p, θ,u1)V

++(−p, θ,u2)

× 1

(u+
1 u+

2 )2

∫
d6k

(2π)6

1

k2(k + p)2
. (5.10)

Combining this expression with the tree-level result, the part of the effective action corresponding 
to the two-point function of the background gauge superfield can be written as

�
(2)

V ++ =
∫

d6p

(2π)6

∫
d8θ du1 du2 V ++(p, θ,u1)V

++(−p, θ,u2)
1

(u+
1 u+

2 )2

×
[ 1

4f 2
0

− i

2

∫
d6k

(2π)6

1

k2(k + p)2

]
. (5.11)

From this expression we observe that the considered Green function is quadratically divergent. 
To calculate the momentum integral, we resort to the standard trick of the Wick rotation to the 
Euclidean signature. If � is an UV cutoff, then, taking into account that the volume of the sphere 
S5 is

�5 = 2π(5+1)/2

= 2π3

= π3, (5.12)

�((5 + 1)/2) �(3)
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the leading divergence of the considered Green function can be written in the form

�
(2)

∞,V ++ =
∫

d6p

(2π)6

∫
d8θ du1 du2 V ++(p, θ,u1)V

++(−p, θ,−u2)
1

(u+
1 u+

2 )2

�2

4(4π)3
.

(5.13)

This expression is evidently gauge invariant, so there is no need to add any other quadratically 
divergent term with higher degrees of V ++ to the one-loop effective action. It is easy to see 
that in the coordinate representation it coincides, up to a numerical coefficient, with the classical 
action of the free gauge superfield∫

d14z du1 du2 V ++(z, u1)V
++(z, u2)

1

(u+
1 u+

2 )2

�2

4(4π)3
= f 2

0 �2

(4π)3
SU(1). (5.14)

This form of the quadratic divergence is in agreement with the results of Ref. [7], where the 
relation between leading divergences in various dimensions was analyzed. The 4D theory is 
renormalizable, so that the leading (logarithmic) divergences in the gauge-field sector are pro-
portional to SU(1). They are related with the leading (quadratic) divergences in the 6D theory, 
which, thereby, should be also proportional to SU(1).

It is worth mentioning that it is impossible to calculate quadratic divergences using the reg-
ularization scheme by the dimensional reduction, because the dimensional reduction technique 
does not see these divergences. This is the reason why for computing the quadratic divergences 
one is led to use another regularization which does not break supersymmetries of the theory. Ac-
tually, the only regularization of this type is the Slavnov higher-derivative regularization. It was 
first proposed in [31,32] for non-supersymmetric theories and was generalized to the supersym-
metric case in refs. [41,42]. For 4D N = 2 theories it has been also worked out in the harmonic 
superspace approach [30]. However, to generalize this result to the 6D case, it is necessary to 
use regulators with higher degrees of covariant derivatives as compared with the 4D case. Now, 
this work is in progress. Nevertheless, any version of the higher-derivative regularization will 
evidently produce Eq. (5.13) for the quadratic divergences.

If the theory is regularized through the dimensional reduction, it is possible to calculate only 
the logarithmic divergences. In this case, using the standard Euclidean techniques, we obtain∫

dDk

(2π)D

1

k2(k + p)2
= − p2

3ε(4π)3
+ finite terms, (5.15)

where ε ≡ 6 − D. Taking into account that (p2)E = −(p2)M , within the regularization by di-
mensional reduction the divergent part of the effective action can be written as∫

d6p

(2π)6

∫
d8θ du1 du2 V ++(p, θ,u1)V

++(−p, θ,u2)
1

(u+
1 u+

2 )2

p2

6ε(4π)3
. (5.16)

It is known [39] that the only gauge invariant expression of the considered dimension (in the 
abelian case) is given by∫

dζ (−4) du (F++)2 =
∫

d14z duV −−�V ++

=
∫

d14z du1 du2
1

(u+u+)2
V ++(z, u1)�V ++(z, u2), (5.17)
1 2
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where F++ ≡ (D+)4V −− is a function of the background superfield V ++. Comparing this 
expression with Eq. (5.16) we can present the logarithmical divergences in the gauge-field sector 
in the form

�
(1)
∞,ln = − 1

6ε(4π)3

∫
dζ (−4) du (F++)2 + terms with hypermultiplets (5.18)

(the one-loop divergent contributions containing the hypermultiplet will be calculated below). 
Comparing Eq. (5.18) with Eq. (5.1),2 we conclude that the coefficient c1 in Eq. (5.1) is

c1 = − 1

6ε(4π)3
. (5.19)

This result agrees with the one obtained in [1] by the proper time technique. The coincidence of 
the results derived by two different methods confirms the correctness of the calculations.

The calculation of the diagram (1) in the non-abelian case goes along similar lines. The only 
novelty is the necessity to take into account the gauge group indices and the factor

tr(T AT B) = T (R)δAB, (5.20)

which comes from the generators appearing in the vertices. So in the non-abelian case the dia-
gram (1) is represented by the expression

− i

2
T (R)

∫
d6p

(2π)6

∫
d8θ du1 du2 V ++A(p, θ,u1)V

++A(−p, θ,u2)
1

(u+
1 u+

2 )2

×
∫

d6k

(2π)6

1

k2(k + p)2
. (5.21)

The contributions of the other diagrams depicted in Fig. 3 are calculated in Appendix A.2. 
There we demonstrate that the sum of all diagrams containing the loop of the quantum gauge 
superfield (i.e. (2) and (5)) vanishes and the net result comes solely from the ghost contributions. 
Adding the latter to Eq. (5.21), we obtain the total two-point function of the gauge superfield in 
the form

i

2

[
C2 − T (R)

]∫
d6p

(2π)6

∫
d8θ du1 du2 V ++A(p, θ,u1)V

++A(−p, θ,u2)
1

(u+
1 u+

2 )2

×
∫

d6k

(2π)6

1

k2(k + p)2
. (5.22)

The divergent part of this expression is calculated in the precisely same way as in the abelian 
case. In particular, the leading quadratic divergence can be written as

−
[
C2 − T (R)

]∫
d14z du1 du2 V ++A(z,u1)V

++A(z,u2)
1

(u+
1 u+

2 )2

�2

4(4π)3
. (5.23)

In the case of using the regularization by dimensional reduction the (logarithmical) divergence is 
parametrized by the expression[

C2 − T (R)
]∫

d14z du1 du2 V ++A(z,u1)�V ++A(z,u2)
1

(u+
1 u+

2 )2

1

6ε(4π)3
. (5.24)

2 As soon as we make calculations within the background field method, it is necessary to substitute F++ by the similar 
expression F++ constructed from the background gauge superfield.
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Fig. 4. The diagram contributing to the two-point Green function of the hypermultiplet.

It is worth to point out an essential difference of these results from their abelian counterparts. 
Actually, in the non-abelian case both V −− and F++ are non-linear functions of V ++. This 
implies that there should be also divergent contributions proportional to higher degrees of V ++. 
However, they can be easily restored by taking into account the gauge invariance of the action 
SSYM and the expression tr(F++)2. Comparing quadratic terms in these expressions with (5.23)
and (5.24), respectively, we find that the leading quadratic divergence is

−
[
C2 − T (R)

]f 2
0 �2

(4π)3
SSYM [V ++], (5.25)

while the logarithmic divergence obtained with making use of the dimensional reduction has the 
form

C2 − T (R)

3ε(4π)3
tr

∫
dζ (−4) du (F++)2 , (5.26)

that coincides with the result obtained in [2]. We see that both these expressions vanish in the 
case of N = (1, 1) SYM theory, for which T (R) = C2.

Note that vanishing of quadratic divergences is quite expectable for N = (1, 1) theory. Actu-
ally, the quadratic divergences can appear only in the gauge-multiplet sector, while the formula 
for the degree of divergence (5.5) tells us that in the sector involving hypermultiplets only the 
logarithmically divergent terms can appear. On the other hand, the hidden N = (0, 1) symme-
try would imply the appearance of quadratic divergences in the hypermultiplet sector, once they 
would be present in the gauge-multiplet sector. Since no such divergences are possible in the 
hypermultiplet sector, the quadratic divergences cannot appear in N = (1, 1) theory at all.

5.3. Two-point Green function of the hypermultiplet

Let us now calculate the two-point Green function of the matter hypermultiplet superfields. In 
the one-loop approximation it is determined by the diagram depicted in Fig. 4, for which Nq = 2. 
Then, according to Eq. (5.5), it is logarithmically divergent.

Note that the result for this diagram is gauge-dependent due to the presence of the gauge-
superfield propagator. However, in this paper we do calculations only in the minimal gauge 
corresponding to the choice ξ0 = 1. Then the expression constructed according to the Feynman 
rules has the form

−2if 2
0

∫
dζ

(−4)
1 du1 dζ

(−4)
2 du2 q̃+(z1, u1)

i(T AT A)i
j q+(z2, u2)j
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2 )3
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1 )4(D+

2 )4

� δ14(z1 − z2)
1

� (D+
1 )4δ(2,−2)(u2, u1)δ

14(z1 − z2). (5.27)

As in the case considered in the previous Subsection, the product of derivatives (D+
1 )4(D+

2 )4

present in (5.27) makes it possible to restore two integrations over d14z,
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Fig. 5. The diagrams which determine the three-point gauge-hypermultiplet function. In the abelian case only the dia-
gram (1) is non-vanishing.

−2if 2
0

∫
d14z1 du1 d14z2 du2 q̃+(z1, u1)

iC(R)i
j q+(z2, u2)j

1

(u+
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2 )3
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�δ14(z1 − z2)

× 1

� (D+
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14(z1 − z2) = 0. (5.28)

The vanishing of this expression follows from the property that the product of Grassmann 
δ-functions does not vanish only provided there are at least eight spinor covariant derivatives 
acting on one of them, which is not the case for (5.28). Therefore, in the minimal gauge the hy-
permultiplets are not renormalized in the one-loop approximation. Obviously, this result is valid 
in both non-abelian and abelian cases.

5.4. Three-point gauge-hypermultiplet Green function

In order to determine the coefficient c2 in Eq. (5.1), it suffices to consider the three-point 
gauge-hypermultiplet Green function, which in the one-loop approximation is represented by the 
diagrams depicted in Fig. 5. Evidently, in the abelian case only the diagram (1) remains. This 
is why we will start with studying the one-loop divergence in the abelian case. Again, we will 
calculate the corresponding contribution to the effective action in the minimal gauge ξ0 = 1. For 
the abelian theory (2.19) it has the form
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The calculation of this diagram is described in Appendix B.1. In the momentum representation 
(in the Minkowski space) the result can be presented in the form
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. (5.30)

To find a divergent part of this expression, we perform the Wick rotation in the integral over the 
loop momentum k and rewrite it in the Euclidean space as

2if 2
0

∫
d6k

6

1
2 2 2

. (5.31)

(2π) k (k + q) (k + q + p)
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Evidently, this expression is logarithmically divergent. So far, it is not well-defined, because we 
have not yet specified the regularization. Within the dimensional reduction method [40], it is 
necessary to substitute D = 6 by D = 6 − ε with ε 	= 0. Then, using the standard technique, we 
find ∫

dDk

(2π)6

1

k2(k + q)2(k + q + p)2
= 1

ε(4π)3
+ finite terms. (5.32)

Thus, in the configuration space the divergent part of the considered contribution to the effective 
action is given by
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Rewriting∫
d14z =

∫
dζ (−4) (D+)4 , (5.34)

and taking into account the analyticity of the superfields q̃+ and q+, the expression (5.33) can 
be written in terms of F++ = (D+)4V −− as
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(5.35)

Comparing this expression with Eq. (5.1), we find that

c2 = 2f 2
0

ε(4π)3
. (5.36)

This result coincides with the one obtained in [1] by the proper time technique.
Next, let us consider the non-abelian case. In this case both diagrams in Fig. 5 contribute to 

the Green function. The diagram (1) is calculated in a close analogy with the abelian case. It can 
be represented as
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Repeating the calculation steps described above and also taking into account that

T AV ++T A = V ++BT AT BT A = V ++B
(
T AT AT B + T A[T B,T A]

)
= V ++B

[
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2
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B
]

=
[
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2
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]
V ++, (5.38)

we obtain the expression for the diagram (1) in the form
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where

F++
linear ≡ (D+)4V −−

linear ≡ (D+)4
∫

du1
V ++(z, u1)

(u+u+
1 )2

. (5.40)

The nonlinear terms will be restored below by the gauge-invariance reasoning.
Let us turn to calculating the second diagram in Fig. 5. The details of this calculation are 

described in Appendix B. The expression for the diagram (2) in Fig. 5 obtained there is as follows
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The integral over the loop momentum k is calculated using the Wick rotation. In the case of the 
regularization by the dimensional reduction it can be found based on the result (5.32). Then, the 
divergent part reads
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Adding this contribution to Eq. (5.39), we obtain the total result for the diagrams presented in 
Fig. 5,
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It is linear in V ++ by construction. However, we know that the result for the one-loop di-
vergences should be gauge invariant. The only possible gauge invariant expression yielding 
Eq. (5.43) in the linearization limit is as follows

2if 2
0

1

ε(4π)3

∫
dζ (−4) du (̃q+)i

[
C(R)i

k − C2δ
k
i

]
(F++)k

j (q+)j . (5.44)

It agrees with the result obtained in [2] by the proper time technique. Choosing the representation 
R to be irreducible, we obtain the following value for the coefficient c2:

c2 = 2f 2
0

C(R) − C2

(4π)3ε
. (5.45)

We see that the corresponding divergence vanishes for N = (1, 1) SYM theory, when R is adjoint 
representation.

5.5. Total one-loop divergences of the theory

Let us summarize the results obtained in the previous section and write down the total diver-
gent part of the effective action for 6D, N = (1, 0) SYM theory. If this theory is regularized 
through the dimensional reduction, then

(�(1)∞ )DRED = C2 − T (R)

3ε(4π)3
tr

∫
dζ (−4) du (F++)2

−2if 2
0

1
3

∫
dζ (−4) du q̃+[

C2 − C(R)
]
F++q+. (5.46)
ε(4π)
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However, as we have already mentioned, within the dimensional reduction technique it is impos-
sible to catch quadratic divergencies. They can be obtained, for example, using the momentum 
cut-off regularization. Then the result for the one-loop divergences can be written as

(�(1)∞ )UV cut-off = −[
C2 − T (R)

]f 2
0 �2

(4π)3
SSYM [V ++] + ln�

[C2 − T (R)

3(4π)3
tr

∫
dζ (−4) du

× (F++)2 − 2if 2
0

1

(4π)3

∫
dζ (−4) du q̃+[

C2 − C(R)
]
F++q+]

, (5.47)

where � denotes the ultraviolet cut-off. The first term corresponds to the quadratic divergences, 
while the remaining two terms parametrize the logarithmic divergences.

In the abelian case the corresponding expressions take the form

(�(1)∞ )DRED = − 1

6ε(4π)3

∫
dζ (−4) du (F++)2 + 2if 2

0
1

ε(4π)3

∫
dζ (−4) du q̃+F++q+;

(�(1)∞ )UV cut-off =
∫

d14z du1 du2 V ++(z, u1)V
++(z, u2)

1

(u+
1 u+

2 )2

�2

4(4π)3

+ ln�
[
− 1

6(4π)3

∫
dζ (−4) du (F++)2 + 2if 2

0
1

(4π)3

∫
dζ (−4) du q̃+F++q+]

. (5.48)

6. Summary

In this paper we have studied the quantum aspects of generic supersymmetric 6D, N = (1, 0)

gauge theory of interacting six-dimensional gauge multiplet minimally coupled to hypermulti-
plet. The theory is formulated in N = (1, 0) harmonic superspace that allows one to preserve 
manifest N = (1, 0) supersymmetry at all steps of consideration. Also we used the superfield 
background field method that secures, besides manifest supersymmetry, the manifest classical 
gauge invariance of quantum theory. The 6D, N = (1, 0) harmonic supergraph technique was 
developed to study the off-shell effective action depending on the gauge and hypermultiplet su-
perfields and it was applied for calculating the one-loop divergences. We have considered both 
abelian and non-abelian N = (1, 0) models and also 6D, N = (1, 1) SYM theory as a particular 
case of the general system.

We investigated the divergent part of the one-loop effective action corresponding to the two-
and three-point functions for 6D, N = (1, 0) SYM theory interacting with hypermultiplets. 
Using the supergraph techniques in harmonic superspace we calculated the two-point Green 
functions of both the gauge superfield and the hypermultiplet. Also we found the three-point 
mixed gauge-hypermultiplet Green function. The results for these Green functions allowed us to 
restore the total gauge invariant result for the off-shell one-loop divergences in the theory under 
consideration. The calculations were performed for both abelian and non-abelian models.

In the non-abelian case it was demonstrated that the divergences reveal a generic structure, 
first found in [2] on the basis of the operator proper-time technique. Namely, all of these diver-
gences are proportional to the difference of Casimir operators for the adjoint representation and 
representation R to which the hypermultiplet belongs. This leads us to conclude that the 6D, 
N = (1, 1) SYM theory is completely off-shell finite in the one-loop approximation. The results 
for the abelian theory are also consistent with the earlier calculations in [1] where they were done 
by another method. It is worth pointing out that the calculations in terms of supergraphs are more 
transparent and simpler then those within the operator proper-time techniques as performed in 



146 I.L. Buchbinder et al. / Nuclear Physics B 921 (2017) 127–158
[1,2]. It should be mentioned that, besides the logarithmic divergences calculated earlier in [1,2], 
in the present paper we calculated the power divergences which also have an interesting structure 
and vanish for N = (1, 1) SYM theory as well.

The absence of off-shell one-loop divergences in 6D, N = (1, 1) SYM theory raises a ques-
tion concerning the off-shell structure of higher-loop divergences in this theory. We would like 
to recall that the divergences in the hypermultiplet sector have never been considered even on 
shell. The supergraph technique, formulated in this paper, provides a natural ground for higher-
loop calculations. Note that, according to standard renormalization procedure, the calculations 
of the Feynman diagrams for the higher-loop divergences implicate that the divergences of all 
sub-diagrams have been already eliminated with the help of the lower-loop counterterms. Since 
6D, N = (1, 1) SYM theory is off-shell one-loop finite, the analysis of two-loop divergences 
is simplified because the one-loop divergences are absent and there is no need to renormalize 
the one-loop subgraphs. We plan to study the complete off-shell structure of the two-loop diver-
gences of this theory in a forthcoming work.
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Appendix A. Two-point Green function of the background gauge superfield

A.1. Contribution of the Faddeev–Popov and Nielsen–Kallosh ghosts

Let us calculate the diagrams (3) and (6) in Fig. 3 that correspond to the contribution of the 
Faddeev–Popov ghosts. The diagram (3) is given by the expression

i

∫
dζ

(−4)
1 dζ

(−4)
2 du1 du2 f ABCf CDAV ++B(z1, u1)V

++D(z2, u2)

×
[
D++

2

[ (D+
1 )4(D+

2 )4

� δ14(z1 − z2)
(u−

1 u−
2 )

(u+
1 u+

2 )3

]
D++

1

×
[ (D+

1 )4(D+
2 )4

� δ14(z1 − z2)
(u−

1 u−
2 )

(u+
1 u+

2 )3

]
−

[ (D+
1 )4(D+

2 )4

� δ14(z1 − z2)
(u−

1 u−
2 )

(u+
1 u+

2 )3

]
D++

1

× D++
2

[ (D+
1 )4(D+

2 )4

� δ14(z1 − z2)
(u−

1 u−
2 )

(u+
1 u+

2 )3

]]
. (A.1)

Using the relations (2.2), we rewrite it as

−iC2

∫
d14z1 d14z2 du1 du2 V ++A(z1, u1)V

++A(z2, u2)

×
[
D++

2

[ 1

�δ14(z1 − z2)
(u−

1 u−
2 )

(u+
1 u+

2 )3

]
D++

1

[ (D+
1 )4(D+

2 )4

� δ14(z1 − z2)
(u−

1 u−
2 )

(u+
1 u+

2 )3

]
−

[ 1

�δ14(z1 − z2)
(u−

1 u−
2 )

(u+u+)3

]
D++

1 D++
2

[ (D+
1 )4(D+

2 )4

� δ14(z1 − z2)
(u−

1 u−
2 )

(u+u+)3

]]
. (A.2)
1 2 1 2
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In order to get rid of the integrals over the anticommuting variables, we first apply the identity 
(5.8) and, then, calculate one of the anticommuting integral by making use of the δ-function 
δ8(θ1 − θ2). This gives

−iC2

∫
d6x1 d6x2 d8θ du1 du2 V ++A(x1, θ, u1)V

++A(x2, θ, u2)(u
+
1 u+

2 )4

×
[

1

�δ6(x1 − x2)D
++
2

[ (u−
1 u−

2 )

(u+
1 u+

2 )3

] 1

�δ6(x1 − x2)D
++
1

[ (u−
1 u−

2 )

(u+
1 u+

2 )3

]
− 1

�δ6(x1 − x2)
(u−

1 u−
2 )

(u+
1 u+

2 )3

1

�δ6(x1 − x2)D
++
1 D++

2

[ (u−
1 u−

2 )

(u+
1 u+

2 )3

]]
. (A.3)

At the next step, we rewrite this expression in the momentum representation and compute the 
harmonic derivatives,

−iC2

∫
d6p

(2π)6
d8θ du1 du2 V ++A(−p, θ,u1)V

++A(p, θ,u2)

×
∫

d6k

(2π)6

1

k2(k + p)2

[
− (u+

2 u−
1 )(u+

1 u−
2 )

(u+
1 u+

2 )2
− (u−

1 u−
2 )

(u+
1 u+

2 )

]
. (A.4)

To simplify it, we use the identity

(u+
2 u−

1 )(u+
1 u−

2 ) = 1 − (u−
1 u−

2 )(u+
1 u+

2 ). (A.5)

Then, for the diagram (3) we obtain

iC2

∫
d6p

(2π)6
d8θ du1 du2 V ++A(−p, θ,u1)V

++A(p, θ,u2)
1

(u+
1 u+

2 )2

×
∫

d6k

(2π)6

1

k2(k + p)2
. (A.6)

The diagram (6) makes the vanishing contribution, because it contains the block

(D+
1 )4(D+

2 )4

� δ14(z1 − z2)
(u−

1 u−
2 )

(u+
1 u+

2 )3

∣∣∣∣∣
z1=z2; u1=u2

= (u+
1 u+

2 )(u−
1 u−

2 )
1

�δ6(x1 − x2)

∣∣∣
u1=u2

= 0. (A.7)

The contribution of the Nielsen–Kallosh ghosts ϕ is given by the diagrams (4) and (7) in 
Fig. 3. Expressions for them differ from those corresponding to diagrams (3) and (6) by the 
factor −1/2.

However, the Nielsen–Kallosh ghost contribution also includes Det1/2 ��, which is calculated 
using the definition (3.13). It is easy to show that this determinant makes the vanishing contribu-

tion. Actually, the tadpole diagram (7) contains (D+)4δ(z1 − z2)

∣∣∣
z1=z2

= 0, while the diagram of 

the type (4) contains (u+
1 u+

2 )

∣∣∣
u1=u2

= 0. Therefore, no contribution comes from the superfields 

ξ (+4) and σ at all.
Thus, the total ghost contribution to the considered part of the one-loop effective action can 

be written as
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i

2
C2

∫
d6p

(2π)6
d8θ du1 du2 V ++A(−p, θ,u1)V

++A(p, θ,u2)
1

(u+
1 u+

2 )2

×
∫

d6k

(2π)6

1

k2(k + p)2
. (A.8)

A.2. Diagrams with the loop of the gauge superfield

The contribution containing a loop of the quantum gauge superfield is given by the sum of 
the diagrams (2) and (5) in Fig. 3. Let us start with the diagram (2). It is convenient to split this 
diagram into the three parts. The first one contains two vertices coming from the classical action 
SSYM, the second one contains one vertex from SSYM and one vertex from the gauge-fixing action 
Sgf, and the last one contains two vertices, both coming from Sgf.

We start with a sub-diagram containing two SSYM-vertices. The Feynman rules give for it the 
following analytical expression:

− i

4

∫
d14z1 d14z2 du1 du2 du3 du4 du5 du6 f ABCf ABDV ++C(z1, u3)V

++D(z2, u6)

× 1
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(−2,2)(u1, u4)

× (D+
2 )4

� δ14(z1 − z2)δ
(−2,2)(u2, u5). (A.9)

First, we use the identity (5.8) and calculate one of the θ -integrals. Then we calculate two har-
monic integrals by making use of the harmonic δ-functions. After this we obtain

− i

4
C2

∫
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Then, we use the identity

(u+
1 u+

2 )2 = D++
1

[
(u−

1 u+
2 )(u+

1 u+
2 )

]
(A.11)

in the numerator of the harmonic factor and integrate by parts with respect to D++
1 , taking into 

account the relation (3.7). The resulting expression, written in the momentum representation, has 
the form

i
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3 )

]
. (A.12)

The harmonic δ-functions allow one to do one of the harmonic integrals,
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− i

2
C2

∫
d6p

(2π)6
d8θ du1 du2 du3 V ++A(−p, θ,u3)V

++A(p, θ,u1)

×
∫

d6k

(2π)6

1

k2(k + p)2

D++
2 (u−

1 u−
2 )

(u+
2 u+

3 )(u+
1 u+

3 )
, (A.13)

where we used the identity (u−
1 u+

2 ) = D++
2 (u−

1 u−
2 ). Integrating by parts with respect to D++

2 , 
we obtain the final expression for the considered part of the diagram (2),
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. (A.14)

The second sub-diagram (in the diagram (2)) contains one vertex coming from SSYM and 
another one coming from Sgf. The corresponding expression reads

− i
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We start the calculation, using the identity (5.8). Then we calculate the integral over d8θ2 by 
exploiting δ8(θ1 − θ2) and two harmonic integrals with the help of the harmonic δ-functions 
present in the propagators. The expression considered takes the form

− i
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Calculating the action of the harmonic derivative D++
1 and passing to the momentum represen-

tation, we obtain
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It is convenient to rewrite the numerator of the harmonic factor in this expression as

(u+
1 u+

2 ) = D++
1 (u−

1 u+
2 ) (A.18)

and then to integrate by parts with respect to D++. Next, resorting to Eq. (3.7), we find
1
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In the first term the derivative of the bridge gives the superfield V ++, while in the second one it 
is possible to take off one of the harmonic integrals,
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Using the identity

(u−
1 u+

2 ) = D++
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2 ) (A.21)

and integrating by parts with respect to D++
2 , this expression can be rewritten as
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This implies that the contribution of the sub-diagram considered is finally given by the expression
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The last sub-diagram contains two vertices coming from Sgf. It is written in the form
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�
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As before, using Eq. (5.8) and δ-functions, we calculate one of the θ -integrals and two harmonic 
integrals. The result in the momentum representation is written as
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Calculating the harmonic derivatives in this expression, we obtain
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Taking into account the relation
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the last expression can be equivalently written in the form
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After integrating by parts with respect to the harmonic derivatives, we obtain
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that can be expressed in terms of V ++ as

i

2
C2

∫
d6p

(2π)6
d8θ

∫
d6k

(2π)6

1

k2(k + p)2

×
∫

du1 du2 V ++A(−p, θ,u1)V
++A(p, θ,u2)

(u−
1 u−

2 )

(u+
1 u+

2 )
. (A.30)

Summing up the contributions of the three sub-diagrams, (A.14), (A.23), and (A.30), we con-
clude that the diagram (2) vanishes,

i

2
C2

∫
d6p

(2π)6
d8θ

∫
d6k

(2π)6

1

k2(k + p)2

∫
du1 du2 V ++A(−p, θ,u1)V

++A(p, θ,u2)

× (u−
1 u−

2 )

(u+
1 u+

2 )

(
1 − 2 + 1

)
= 0 . (A.31)

Diagram (5) is a sum of two parts. The first one contains the vertex coming from the SYM 
action (2.5), while in the second part the vertex originates from the gauge-fixing term (3.4). It is 
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easy to see that the contribution of every part is vanishing separately. In particular, the first part 
is proportional to

C2

∫
d14z du1 du2 du3 du4 V ++A(z,u1)V

++A(z,u3)
1

(u+
1 u+

2 )(u+
2 u+

3 )(u+
3 u+

4 )(u+
4 u+

1 )

× (D+
2 )4δ14(z1 − z2)δ

(−2,2)(u2, u4)

∣∣∣∣∣
z1=z2=z

. (A.32)

This expression vanishes, because only four spinor derivatives are left there to act on the Grass-
mann δ-function at coincident points. The second part vanishes for the same reason.

Thus, the sum of both diagrams with the loop of the quantum gauge superfield inside yields 
zero.

Appendix B. Gauge-hypermultiplet three-point function

B.1. Abelian case

In this section we describe details of calculating the gauge-hypermultiplet three-point function 
in the abelian case. For the abelian theory only the left diagram in Fig. 5 remains, while the 
right one is absent. In the calculations we use the minimal gauge ξ0 = 1. Then the considered 
contribution to the effective action of the abelian theory (2.19) has the form

−2f 2
0

∫
dζ

(−4)
1 du1 dζ

(−4)
2 du2 dζ

(−4)
3 du3 q̃+(z1, u1)q

+(z3, u3)V
++(z2, u2)

× (D+
1 )4

� δ(2,−2)(u3, u1)δ
14(z1 − z3)

1

(u+
1 u+

2 )3

(D+
1 )4(D+

2 )4

�
× δ14(z1 − z2)

1

(u+
2 u+

3 )3

(D+
2 )4(D+

3 )4

� δ14(z2 − z3). (B.1)

Like in the previous cases, we start by converting the integrals over dζ (−4) into integrals over the 
full measure d14z,

−2f 2
0

∫
d14z1 du1 d14z2 du2 d14z3 du3 q̃+(z1, u1)q

+(z3, u3)V
++(z2, u2)

× 1

�δ(2,−2)(u3, u1)

× δ14(z1 − z3)
1

(u+
1 u+

2 )3

(D+
1 )4(D+

2 )4

� δ14(z1 − z2)
1

(u+
2 u+

3 )3

1

�δ14(z2 − z3). (B.2)

Using the δ-functions, we can calculate integrals over d8θ3 and du3,

2f 2
0

∫
d14z1 du1 d14z2 du2 d6x3 q̃+(z1, u1)q

+(x3, θ1, u1)V
++(z2, u2)

1

�
× δ6(x1 − x3)

1

(u+u+)6

(D+
1 )4(D+

2 )4

� δ14(z1 − z2)
1

�δ6(x2 − x3)δ
8(θ1 − θ2). (B.3)
1 2
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As the next step, using the identity (5.8), we obtain

2f 2
0

∫
d14z1 du1 d14z2 du2 d6x3 q̃+(z1, u1)q

+(x3, θ1, u1)V
++(z2, u2)

1

�
× δ6(x1 − x3)

1

(u+
1 u+

2 )2

1

�δ14(z1 − z2)
1

�δ6(x2 − x3). (B.4)

The remaining δ-function δ8(θ1 −θ2) can be used to perform the integration over d8θ2. The result 
of these manipulations in the coordinate representation is

2f 2
0

∫
d6x1 d6x2 d6x3 d8θ du1 du2 q̃+(x1, θ, u1)q

+(x3, θ, u1)V
++(x2, θ, u2)

1

�
× δ6(x1 − x3)

1

(u+
1 u+

2 )2

1

�δ6(x1 − x2)
1

�δ6(x2 − x3). (B.5)

After converting this expression to the momentum representation (in the Minkowski space) we 
arrive at the following final answer

−2f 2
0

∫
d6p

(2π)6

d6q

(2π)6
d8θ du1 du2 q̃+(q + p, θ,u1)q

+(−q, θ,u1)V
++(−p, θ,u2)

× 1

(u+
1 u+

2 )2

∫
d6k

(2π)6

1

k2(q + k)2(q + k + p)2
. (B.6)

B.2. Non-abelian theory: the second diagram in Fig. 5

In this section we outline the calculation of the diagram (2) in Fig. 5. It is convenient to split 
it into two pieces. The first one corresponds to that part of the three-point gauge vertex which 
comes from the classical action S, while the second piece corresponds to that part of the vertex 
which comes from the gauge-fixing term Sgf. We calculate these two contributions separately. 
The expression for the first piece constructed by the Feynman rules in harmonic superspace is 
written as

−2if 2
0

∫
dζ

(−4)
1 dζ

(−4)
2 d14z3 du1 du2 du3 du4 du5

1

(u+
3 u+

4 )(u+
4 u+

5 )(u+
5 u+

3 )

× f ABCV ++C(z3, u5)

× q̃+(z1, u1)
i(T AT B)i

j q+(z2, u2)j
1

(u+
1 u+

2 )3

(D+
1 )4(D+

2 )4

� δ14(z1 − z2)

× (D+
1 )4

� δ14(z1 − z3)δ
(2,−2)(u3, u1)

(D+
2 )4

� δ14(z2 − z3)δ
(2,−2)(u4, u2). (B.7)

Once again, we start by converting the integrals over dζ (−4) into those over d14z. Also we use 
the identity

2f ABCT AT B = f ABC[T A,T B ] = iC2T
C . (B.8)

Then the considered part of the diagram (2) is written as



154 I.L. Buchbinder et al. / Nuclear Physics B 921 (2017) 127–158
f 2
0 C2

∫
d14z1 d14z2 d14z3 du1 du2 du3 du4 du5

1

(u+
3 u+

4 )(u+
4 u+

5 )(u+
5 u+

3 )
V ++C(z3, u5)

× q̃+(z1, u1)
i(T C)i

j q+(z2, u2)j
1

(u+
1 u+

2 )3

(D+
1 )4(D+

2 )4

� δ14(z1 − z2)
1

�δ14(z1 − z3)

× δ(2,−2)(u3, u1)
1

�δ14(z2 − z3)δ
(2,−2)(u4, u2). (B.9)

Harmonic δ-functions can be used to do two harmonic integrations,

f 2
0 C2

∫
d14z1 d14z2 d14z3 du1 du2 du5

1

(u+
2 u+

5 )(u+
5 u+

1 )
q̃+(z1, u1)

i

× V ++(z3, u5)i
j q+(z2, u2)j

× 1

(u+
1 u+

2 )4

(D+
1 )4(D+

2 )4

� δ14(z1 − z2)
1

�δ14(z1 − z3)
1

�δ14(z2 − z3). (B.10)

Two θ -integrals can be calculated by using the δ-functions and the identity (5.8). This gives

f 2
0 C2

∫
d6x1 d6x2 d6x3 d8θ du1 du2 du5 q̃+(x1, θ, u1)

iV ++(x3, θ, u5)i
j q+(x2, θ, u2)j

× 1

(u+
2 u+

5 )(u+
5 u+

1 )

1

�δ14(z1 − z2)
1

�δ14(z1 − z3)
1

�δ14(z2 − z3). (B.11)

After relabeling the integration variable as u5 → u3, this expression can be written in the mo-
mentum representation (in the Minkowski space) as

−f 2
0 C2

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ du1 du2 du3 q̃+(q + p, θ,u1)

i

× V ++(−p, θ,u3)i
j q+(−q, θ,u2)j

× 1

k2(k + p)2(k + q + p)2

1

(u+
2 u+

3 )(u+
3 u+

1 )
. (B.12)

Let us now express the gauge superfield V ++ through the bridge b in the linearized approxima-
tion,

V ++ = −D++b + irrelevant terms, (B.13)

where we omitted all terms with higher degrees of the bridge superfield. This is justified, since 
we deal only with terms linear in the gauge superfield. Then, after integration by parts, we obtain

f 2
0 C2

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ du1 du2 du3 q̃+(q + p, θ,u1)

i

× b(−p, θ,u3)i
j q+(−q, θ,u2)j

× 1

k2(k + p)2(k + q + p)2
D++

3

[ 1

(u+
3 u+

2 )(u+
3 u+

1 )

]
. (B.14)

According to the identity (3.7), the derivative D++
3 produces two harmonic δ-functions, so (B.14)

becomes



I.L. Buchbinder et al. / Nuclear Physics B 921 (2017) 127–158 155
f 2
0 C2

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ du1 du2 du3 q̃+(q + p, θ,u1)

i

× b(−p, θ,u3)i
j q+(−q, θ,u2)j

1

k2(k + p)2(k + q + p)2

×
[
δ(1,−1)(u3, u2)

1

(u+
3 u+

1 )
+ δ(1,−1)(u3, u1)

1

(u+
3 u+

2 )

]
. (B.15)

Thus, the considered part of the diagram (2) can be finally written as

f 2
0 C2

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ du1 du2 du3 q̃+(q + p, θ,u1)

i

× [b(−p, θ,u1) − b(−p, θ,u2)]i j

× q+(−q, θ,u2)j
1

k2(k + p)2(k + q + p)2

1

(u+
1 u+

2 )
. (B.16)

Now, let us turn to calculating that part of the diagram (2) in which the purely gauge vertex 
comes from the gauge-fixing term Sgf. This contribution is written as

2if 2
0

∫
dζ

(−4)
1 dζ

(−4)
2 d14z3 du1 du2 du3 du4 q̃+(z1, u1)

iT AT Bq+(z2, u2)j f
ABC

× [
bC(z3, u4) − bC(z3, u3)

]
D++

3 D++
4

[ (u−
3 u−

4 )

(u+
3 u+

4 )3

] (D+
1 )4(D+

2 )4

� δ14(z1 − z2)
1

(u+
1 u+

2 )3

× (D+
1 )4

� δ14(z1 − z3) δ(2,−2)(u3, u1)
(D+

2 )4

� δ14(z2 − z3) δ(2,−2)(u4, u2). (B.17)

Following the same strategy as for the diagrams handled before, we convert integrations over 
dζ (−4) into integrations over d14z and calculate two harmonic integrals by making use of the 
harmonic δ-functions. This gives

−f 2
0 C2

∫
d14z1d

14z2 d14z3 du1 du2 q̃+(z1, u1)
i
[
b(z3, u2) − b(z3, u1)

]
i
j q+(z2, u2)j

× D++
1 D++

2

[ (u−
1 u−

2 )

(u+
1 u+

2 )3

] (D+
1 )4(D+

2 )4

� δ14(z1 − z2)
1

(u+
1 u+

2 )3

1

�δ14(z1 − z3)

× 1

�δ14(z2 − z3). (B.18)

Next, we need to calculate integrals over the anticommuting variables and to bring the result into 
the momentum representation. We obtain

f 2
0 C2

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ du1 du2 q̃+(q + p, θ,u1)

i

× [
b(−p, θ,u2) − b(−p, θ,u1)

]
i
j

× q+(−q, θ,u2)j
1

k2(k + p)2(k + p + q)2
(u+

1 u+
2 )D++

1 D++
2

[ (u−
1 u−

2 )

(u+
1 u+

2 )3

]
. (B.19)

Using the identity (3.7) and the equality (u−
1 u+

2 )δ(2,−2)(u1, u2) = −δ(2,−2)(u1, u2), this expres-
sion can be equivalently represented as
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f 2
0 C2

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ du1 du2 q̃+(q + p, θ,u1)

i

× [
b(−p, θ,u2) − b(−p, θ,u1)

]
i
j q+(−q, θ,u2)j

1

k2(k + p)2(k + p + q)2
(u+

1 u+
2 )

×
[ 1

(u+
1 u+

2 )2
− 1

2
(D−−

1 )2δ(2,−2)(u1, u2)
]
. (B.20)

Integrating by parts in the last term with respect to (D−−
1 )2, after some algebra we obtain

f 2
0 C2

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ

1

k2(k + p)2(k + p + q)2

×
[∫

du1 du2 q̃+(q + p, θ,u1)
i
[
b(−p, θ,u2) − b(−p, θ,u1)

]
i
j q+(−q, θ,u2)j

× 1

(u+
1 u+

2 )
−

∫
du q̃+(q + p, θ,u)iD−−b(−p, θ,u)i

j q+(−q, θ,u)j

]
. (B.21)

The first term in this expression cancels the previous part of the considered diagram. Therefore, 
taking into account that

V −−
linear = −D−−b + irrelevant terms, (B.22)

the net result for the contribution of the diagram (2) in Fig. 5 is given by the expression

f 2
0 C2

∫
d6p

(2π)6

d6q

(2π)6

d6k

(2π)6
d8θ

1

k2(k + p)2(k + p + q)2

×
∫

du q̃+(q + p, θ,u)iV −−
linear(−p, θ,u)i

j

× q+(−q, θ,u)j . (B.23)

References

[1] I.L. Buchbinder, E.A. Ivanov, B.S. Merzlikin, K.V. Stepanyantz, One-loop divergences in the 6D, N =
(1, 0) abelian gauge theory, Phys. Lett. B 763 (2016) 375–381, http://dx.doi.org/10.1016/j.physletb.2016.10.060, 
arXiv:1609.00975 [hep-th].

[2] I.L. Buchbinder, E.A. Ivanov, B.S. Merzlikin, K.V. Stepanyantz, One-loop divergences in 6D, N = (1, 0) SYM 
theory, JHEP 1701 (2017) 128, http://dx.doi.org/10.1007/JHEP01(2017)128, arXiv:1612.03190 [hep-th].

[3] P.S. Howe, K.S. Stelle, Ultraviolet divergences in higher dimensional supersymmetric Yang–Mills theories, Phys. 
Lett. B 137 (1984) 175–180, http://dx.doi.org/10.1016/0370-2693(84)90225-9.

[4] P.S. Howe, K.S. Stelle, Supersymmetry counterterms revisited, Phys. Lett. B 554 (2003) 190–196, http://dx.doi.org/
10.1016/S0370-2693(02)03271-9, arXiv:hep-th/0211279.

[5] G. Bossard, P.S. Howe, K.S. Stelle, The ultra-violet question in maximally supersymmetric field theories, Gen. 
Relativ. Gravit. 41 (2009) 919–981, http://dx.doi.org/10.1007/s10714-009-0775-0, arXiv:0901.4661 [hep-th].

[6] G. Bossard, P.S. Howe, K.S. Stelle, A note on the UV behaviour of maximally supersymmetric Yang–Mills theories, 
Phys. Lett. B 682 (2009) 137–142, http://dx.doi.org/10.1016/j.physletb.2009.10.084, arXiv:0908.3883 [hep-th].

[7] E.S. Fradkin, A.A. Tseytlin, Quantum properties of higher dimensional and dimensionally reduced supersymmetric 
theories, Nucl. Phys. B 227 (1983) 252–290, http://dx.doi.org/10.1016/0550-3213(83)90022-6.

[8] N. Markus, A. Sagnotti, A test of finiteness predictions for supersymmetric theories, Phys. Lett. B 135 (1984) 85–90, 
http://dx.doi.org/10.1016/0370-2693(84)90458-1.

http://dx.doi.org/10.1016/j.physletb.2016.10.060
http://dx.doi.org/10.1007/JHEP01(2017)128
http://dx.doi.org/10.1016/0370-2693(84)90225-9
http://dx.doi.org/10.1016/S0370-2693(02)03271-9
http://dx.doi.org/10.1007/s10714-009-0775-0
http://dx.doi.org/10.1016/j.physletb.2009.10.084
http://dx.doi.org/10.1016/0550-3213(83)90022-6
http://dx.doi.org/10.1016/0370-2693(84)90458-1
http://dx.doi.org/10.1016/S0370-2693(02)03271-9


I.L. Buchbinder et al. / Nuclear Physics B 921 (2017) 127–158 157
[9] A. Smilga, Ultraviolet divergences in non-renormalizable supersymmetric theories, arXiv:1603.06811 [hep-th].
[10] L.V. Bork, D.I. Kazakov, M.V. Kompaniets, D.M. Tolkachev, D.E. Vlasenko, Divergences in maximal supersymmet-

ric Yang–Mills theories in diverse dimensions, JHEP 1511 (2015) 059, http://dx.doi.org/10.1007/JHEP11(2015)059, 
arXiv:1508.05570 [hep-th].
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