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Abstract

We construct N = 2 supersymmetric low-energy effective action of 5D, N = 2 supersymmetric Yang–
Mills (SYM) theory in 5D, N = 1 harmonic superspace. It is obtained as a hypermultiplet completion of 
the leading W lnW -term in the N = 1 SYM low-energy effective action by invoking the second implicit 
on-shell N = 1 supersymmetry. After passing to components, the N = 2 effective action constructed dis-
plays, along with other terms, the SO(5)-invariant F 4/X3 term. Though we specialize to the case of SU(2)

gauge group spontaneously broken to U(1), our consideration is applicable to any gauge symmetry broken 
to some abelian subgroup.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Extended supersymmetry in diverse dimensions imposes stringent constraints on the classical 
and effective quantum superfield actions of gauge theories. The most prominent example is sup-
plied by the four-derivative term in the low-energy 4D, N = 4 SYM effective action which, in the 
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sector of N = 2 gauge multiplet, is accommodated by a non-holomorphic superfield potential [1]. 
An N = 4 supersymmetric completion of this potential was constructed in N = 2 harmonic su-
perspace [2–5], in N = 3 harmonic superspace [6] and in various on-shell N = 4 harmonic 
superspaces [7,8] (see [9] for a review). By these works, the origin of non-renormalizability of 
the N = 4 SYM low-energy effective action against higher-loop quantum corrections was re-
vealed and links with the leading terms in the effective action of D3 brane on the AdS5 × S5

background were established.
In 3D gauge theories, the constraints imposed by an extended supersymmetry allowed one to 

determine the leading quantum corrections in N = 4 SYM theory [10,11], and to construct N =
3 superfield ABJM action [12]. This technique proved also useful for displaying the structure of 
the leading terms in 2D gauge theories with extended supersymmetry [13].

A common feature of all the above-mentioned results is that the leading contributions to the 
low-energy effective actions in gauge theories with extended supersymmetry take a reasonably 
simple form upon the proper choice of the superfield description. The constraints due to the 
extended supersymmetry (together with the requirement of scale invariance) are strong enough 
to fix the form of the superfield potentials in such theories up to an overall coefficient to be 
found further from quantum considerations. In some exceptional cases, e.g., in 4D, N = 4 SYM 
theory, the numerical value of this overall coefficient can yet be fixed on the topological grounds, 
without the actual need to apply to quantum computations [7].

In this paper, we study the implications of extended supersymmetry for the low-energy ef-
fective action of 5D SYM theory. This theory is of interest from several points of view. It 
is non-renormalizable by power-counting because of the dimensionful coupling constant g, 
[g] = −1/2. Nevertheless, it was argued that a non-perturbative quantum completion of this 
model describes 6D, N = (2, 0) superconformal field theory compactified on a circle [14–16]. 
An additional confirmation of this conjecture came from the exact computations of the partition 
function in this theory by the localization technique [17–21].

Despite the non-renormalizability of 5D, N = 1 SYM, it is still reasonable to study one-loop 
quantum corrections in this theory, keeping in mind that in the odd-dimensional field theories 
divergences can appear (within the dimensional regularization) only at even loops. One-loop 
contributions to the effective action of 5D, N = 1 SYM theory were calculated in Refs. [22,23]
for the case of gauge group SU(2) spontaneously broken to U(1). The leading contribution is 
given by the 5D supersymmetric Chern–Simons term [22], while the next-to-leading one was 
found in [23] in the form

c0

∫
d5|8zduW ln

W

�
, (1.1)

where W is the 5D, N = 1 abelian gauge superfield strength, � is a scale parameter, [�] = 1, and 
the integration is performed over the full N = 1 harmonic superspace with measure d5|8zdu ≡
d5xd8θdu. It is easy to check that the action (1.1) is �-independent. The Chern–Simons term 
incorporates two-derivative quantum corrections to the effective action, while (1.1) is N = 1
superfield extension of the four-derivative “F 4/φ3”-terms.

The purpose of this paper is to study leading terms in the low-energy effective action of 
5D, N = 2 SYM theory in harmonic superspace. Although such terms might be found by direct 
quantum computations in 5D, N = 1 superspace, we determine them here on the symmetry 
grounds, just by constructing N = 2 completion of the 5D, N = 1 SYM effective action via 
addition of the proper hypermultiplet terms. The effective action constructed corresponds to the 
Coulomb branch of 5D, N = 2 SYM theory, with the gauge group being broken to some abelian 
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subgroup (e.g., the maximal torus), and, in general, depends on the massless abelian N = 2 gauge 
multiplets valued in the algebra of this subgroup. For simplicity, we concentrate on the case of the 
gauge group SU(2) and only briefly discuss (in subsect. 2.3) the case of SU(N) gauge symmetry.

To start with, we point out that the 5D, N = 1 Chern–Simons term does not admit an N = 2
completion because it respects the invariance under 5D, N = 1 superconformal algebra F(4)

which is unique and has no higher N extensions [24]. According to this argument, the Chern–
Simons term is forbidden as a quantum correction in the low-energy effective action of the N = 2
SYM theory. From the field-theory point of view, it is possible to show, by direct quantum com-
putations in 5D, N = 1 superspace, that the two-derivative contributions (the Chern–Simons 
term) to the N = 2 SYM effective action coming from the hypermultiplet and from the ghost 
superfields cancel each other. Indeed, the background field method for 5D, N = 1 SYM theory 
[23] mimics the one for the 4D, N = 2 SYM theory in harmonic superspace [25,26]. In particu-
lar, the structure of ghost superfields in these theories is the same. In Refs. [27,28] it was proved 
that the hypermultiplet contributions to the 4D, N = 4 SYM one-loop effective action are fully 
canceled by the contributions from the ghost superfields. Since this proof is purely formal, it 
holds true for the 5D, N = 2 SYM theory as well. Note also that this cancellation is analogous 
to the well-known phenomenon in 3D case [10,11], where Chern–Simons term cannot arise as a 
quantum correction to the effective action in supersymmetric gauge theories with N > 2.

As we demonstrate in the next section, the four-derivative term (1.1), on the contrary, admits 
the unique hypermultiplet completion under the requirement of N = 2 supersymmetry involving 
an implicit 5D, N = 1 on-shell supersymmetry alongside with the manifest off-shell N = 1 one. 
The procedure of constructing such a hypermultiplet completion is quite analogous to the one 
developed in [2] for finding the N = 4 hypermultiplet extension of the 4D, N = 2 SYM effective 
action. In the component formulation, the 5D, N = 2 effective action constructed displays the 
F 4/|X|3-term where |X|2 is SO(5)-invariant bilinear combination of scalar fields.

It is worth to point out that the term (1.1) (as well as its analogs for the higher-rank gauge 
groups) may arise in quantum theory only as a one-loop quantum correction to the effective 
action. Indeed, it is scale-invariant and so is independent of the dimensionful gauge coupling 
constant g. On the other hand, within the background field method in harmonic superspace [25,
23], all higher-loop Feynman graphs involve a gauge superfield vertex with the coupling con-
stant g. Thus, all higher-loop quantum corrections to the effective action cannot give rise to 
renormalization of the coefficient c0 in Eq. (1.1) since they violate scale invariance. However, 
in contrast to the 4D case, this coefficient is not protected against non-perturbative corrections. 
Such corrections will be discussed elsewhere.

Our last comment concerns the possible relation of the effective action in 5D gauge theory to 
the D-brane low-energy dynamics. The classical action of 5D, N = 2 SYM theory with U(N)

gauge group can be interpreted as an action of a stack of N D4 branes in flat space–time. The 
N = 2 supersymmetric completion of the F 4/φ3-term (1.1) can presumably be identified with 
that of the four-derivative term in the low-energy effective action of a single D4 brane on the 
AdS6 × S4 background.

2. Low-energy effective action of N = 2 SYM theory

In this section, we construct the low-energy effective action of N = 2 SYM theory with the 
gauge group SU(2) as a hypermultiplet completion of the term (1.1). We start our consideration 
with a brief account of the N = 1 SYM and hypermultiplet models in 5D harmonic superspace. 
We follow the notation and conventions of Refs. [29,23].
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2.1. Classical action

N = 2 gauge multiplet in 5D, N = 1 harmonic superspace is described by a pair of ana-
lytic superfields (V ++, q+

a ), where V ++ is the N = 1 gauge multiplet and q+
a ≡ (q+, −q̄+) is 

the hypermultiplet. The former is described by the classical action written in the full harmonic 
superspace [30]

SYM = 1

2g2

∞∑
n=2

(−i)n

n
tr

∫
d5|8zdu1 . . . dun

V ++(z, u1)V
++(z, u2) . . . V ++(z, un)

(u+
1 u+

2 )(u+
2 u+

3 ) . . . (u+
n u+

1 )
,

(2.1)

where g is a coupling constant of mass-dimension −1/2. This action yields the equation of 
motion

(D+)2W = 0 , (2.2)

where (D+)2 ≡ D+α̂D+
α̂

and W is a superfield strength of the gauge N = 1 multiplet. It may be 
expressed via the non-analytic prepotential V −−

W = i

8
(D+)2V −− , (2.3)

which, in turn, is expressed through V ++ by the harmonic-flatness condition

D++V −− − D−−V ++ + i[V ++,V −−] = 0 . (2.4)

The classical action of the hypermultiplet q+a(a = 1, 2) in the adjoint representation of the 
gauge group reads [31–33]

Sq = 1

2g2 tr
∫

dζ (−4)q+
a D++q+a , (2.5)

where dζ (−4) is the integration measure on the analytic superspace and D++ = D++ + i[V ++, 
is the gauge-covariant harmonic derivative. The corresponding equation of motion is

D++q+
a = 0 . (2.6)

The action of N = 2 gauge multiplet in N = 1 harmonic superspace is just the sum of (2.1)
and (2.5),

SN=2 = SYM + Sq . (2.7)

This action is invariant under the implicit N = 1 supersymmetry

δq+
a = −1

2
(D+)4[εaα̂θ−α̂V −−] , δV ++ = εa

α̂
θ+α̂q+

a , (2.8)

where εa
α̂

is the relevant anticommuting parameter. Though the equation (2.2) is modified for the 
total action (2.7) by the hypermultiplet source term in the right-hand-side, it is not the case for 
the massless Cartan-subalgebra valued abelian superfields which we will be interested in. In the 
abelian case, the equations of motion for the N = 1 gauge multiplet (2.2) and hypermultiplet 
(2.6) are simplified to the form

(D+)2W = 0 , D++q+ = 0 . (2.9)
a



58 I.L. Buchbinder et al. / Nuclear Physics B 940 (2019) 54–62
It is straightforward to show that on these equations the implicit supersymmetry transformations 
(2.8) are reduced to

δq±
a = i

2
εα̂
a (D±

α̂
W) , δW = − i

8
εa
α̂
D−α̂q+

a + i

8
εa
α̂
D+α̂q−

a . (2.10)

2.2. N = 2 effective action

The part of the superfield N = 1 SYM effective action containing the component four-
derivative term reads [23]

S0 = c0

∫
d5|8zduW ln

W

�
, (2.11)

where W is the abelian gauge superfield strength, � is a scale parameter and c0 is a dimension-
less constant. Owing to the representation (2.3) implying 

∫
d5|8zdu W = 0, the action (2.11) is 

independent of the scale �, dS0/d� = 0.
The precise value of the constant c0 in the effective action (2.11) depends on the gauge group 

representation content of the hypermultiplet matter [23]. Here, we do not fix the value of this 
constant and construct N = 2 supersymmetric generalization of (2.11), keeping c0 arbitrary. 
This construction follows the same steps as in Ref. [2] where the similar N = 4 completion of 
the leading term of the 4D, N = 2 SYM effective action was found.

The variation of the action (2.11) under the hidden supersymmetry transformations (2.10)
may be cast in the form

δS0 = ic0

4

∫
d5|8zduεa

α̂
q+
a

D−α̂W

W
. (2.12)

In deriving this equation we employed the abelian counterparts of the relations (2.3), (2.4), the 
equations of motion (2.9) and integration by parts with respect to the harmonic and covariant 
spinor derivatives.

The expression (2.12) may be partly canceled by the variation of the action

S1 = c1

∫
d5|8zdu

q+aq−
a

W
, (2.13)

where the coefficient c1 will be defined below. The variation of this action under (2.10) reads

δS1 = ic1

∫
d5|8zdu

q+aεα̂
a (D−

α̂
W)

W
− i

8
c1

∫
d5|8zdu

q+aq−
a

W 2 (εb
α̂
D+α̂q−

b − εb
α̂
D−α̂q+

b ) .

(2.14)

The first term in the right-hand side in (2.14) cancels the variation (2.11) if

c1 = −c0

4
, (2.15)

while the last term in (2.14) may be cast in the form

δ(S0 + S1) = − ic0

12

∫
d5|8zdu

q+aq−
a

W 3 εb
α̂
q+
b D−α̂W . (2.16)

In deriving this expression, we integrated by parts and used cyclic identities for SU(2) indices. 
To cancel this expression we need to add the next term
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S2 = c2

∫
d5|8zdu

(q+aq−
a )2

W 3 , c2 = c0

24
. (2.17)

Instead of evaluating the variation of the term (2.17) we proceed to the general case and look 
for the full N = 2 effective action in the form

SN=2
eff =

∫
d5|8zdu

[
c0W ln

W

�
+

∞∑
n=1

cn

(q+aq−
a )n

W 2n−1

]
, (2.18)

with some coefficients cn. Let us consider two adjacent terms in the sum in (2.18):

cn

(q+aq−
a )n

W 2n−1 + cn+1
(q+aq−

a )n+1

W 2n+1 . (2.19)

It is possible to show that the variation of the denominator in the first term cancels the variation 
of the nominator in the second term, if the coefficients are related as

(n + 1)cn+1 = −cn

n(2n − 1)

n + 2
. (2.20)

Taking into account Eq. (2.15), we find from this recurrence relation the generic coefficient

cn = (−1)n(2n − 2)!
n!(n + 1)!2n

c0 . (2.21)

This allows us to sum up the series in (2.18) and to represent the effective action in the closed 
form

SN=2
eff = c0

∫
d5|8zduW

[
ln

W

�
+ 1

2
H(Z)

]
, (2.22)

where

Z ≡ q+aq−
a

W 2 , (2.23)

and

H(Z) = 1 + 2 ln
1 + √

1 + 2Z

2
+ 2

3

1

1 + √
1 + 2Z

− 4

3

√
1 + 2Z . (2.24)

It is easy to check that H(0) = 0 , H ′(0) = − 1
2 , in agreement with (2.21).

The action (2.22) is N = 2 supersymmetric extension of the effective action (2.11). It would 
be interesting to reproduce this result from the perturbative quantum computations in 5D har-
monic superspace, like it has been done in the 4D case in [3–5].

2.3. Generalization to SU(N) gauge group

In the previous subsection we found the effective action (2.22) for a single massless N = 2
gauge multiplet. Within a field theory, this effective action is expected to come out from N = 2
SYM theory (2.7) with the SU(2) gauge group spontaneously broken to its U(1) subgroup. It 
is straightforward to generalize this result to a higher-rank gauge group. For instance, for the 
SU(N) gauge group spontaneously broken to the maximal torus [U(1)]N−1 we obtain

SN=2
eff = c0

N∑ ∫
d5|8zduWIJ

[
ln

WIJ

�
+ 1

2
H(ZIJ )

]
, (2.25)
I<J
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where ZIJ = (q+a)IJ (q−
a )IJ

W 2
IJ

and WIJ = WI −WJ , (q±a)IJ = q±a
I −q±a

J . The superfields WI and 

q±a
I obey the constrains 

∑
I WI = 0, 

∑
I q±a

I = 0 and span the Cartan directions in the Lie alge-
bra su(N). The function H(ZIJ ) for each argument ZIJ is given by the same expression (2.24).

2.4. Component structure

We will be interested in deriving the term F 4/X3 from the effective action (2.18). To this end, 
it is enough to leave only the following component fields in the involved superfields:

q+2 ≡ q+ = f i(x)u+
i , q+1 ≡ q̄+ = −f̄ i (x)u+

i , (2.26)

W = √
2φ(x) − 2iθ+α̂θ−β̂F

α̂β̂
(x) . (2.27)

Here φ̄ = φ, (f i) = f̄i are scalar fields and F
α̂β̂

= F
β̂α̂

is Maxwell field strength of the N = 1
gauge multiplet.

Substituting the superfield strength (2.27) into the first term in (2.22), we find

S0 = c0

√
2

3

∫
d5|8z

(θ+α̂θ−β̂F
α̂β̂

)4

φ3 = c0

4
√

2

∫
d5|8zdetF

φ3 (θ+)2(θ+)2(θ−)2(θ−)2 ,

(2.28)

where detF = 1
4!ε

α̂β̂γ̂ δ̂εμ̂ν̂ρ̂σ̂ Fα̂μ̂F
β̂ν̂

Fγ̂ ρ̂F
δ̂σ̂

and (θ±)2 = θ±α̂θ±
α̂

. We integrate over the Grass-
mann variables according to the rule∫

d5|8z (θ+)2(θ+)2(θ−)2(θ−)2f (x) = 4
∫

d5x f (x) , (2.29)

for some f (x). Thus the action (2.28) yields the component term

S0 = c0√
2

∫
d5x

detF

φ3 . (2.30)

In a similar way we can perform the integration over the Grassmann variables in the last term 
in (2.22),∫

d5|8zWH(Z) = √
2
∫

d5x
detF

φ3 [4z4H(4)(z) + 28z3H ′′′(z) + 39z2H ′′(z) + 6zH ′(z)] ,
(2.31)

where

z ≡ Z|θ=0 = f if̄i

2φ2 . (2.32)

Substituting the function (2.24) into Eq. (2.31), we find

c0

2

∫
d5|8zWH(Z) = c0√

2

∫
d5x

detF

(φ2 + f if̄i)3/2
− c0√

2

∫
d5x

detF

φ3 . (2.33)

The last term exactly cancels (2.30). As a result, the total F 4/X3 term in the component form of 
the effective action (2.22) is given by the expression

SN=2
eff = c0√

∫
d5x

detF
3 + . . . , (2.34)
2 |X|
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where dots stand for the remaining terms and

|X| =
√

φ2 + f if̄i . (2.35)

It is remarkable that the scalar fields appear in the denominator in (2.34) just in the SO(5)

invariant combination (2.35). This is a non-trivial property, since the field φ comes from the 
gauge N = 1 multiplet, while f i, f̄i from the hypermultiplet. In the SU(N) case (2.25), SN=2

eff
is given by a sum of the appropriate terms (2.34).

3. Summary and outlook

In this paper, generalizing the approach of Ref. [2] to the 5D case, we constructed the lead-
ing term in the low-energy effective action of 5D, N = 2 SYM theory as the appropriate sum 
of the effective action of 5D, N = 1 SYM theory and the interactions with the hypermultiplet. 
This interaction is fixed, up to an overall coupling constant c0, by the requirement of the implicit 
on-shell 5D, N = 1 supersymmetry extending the manifest off-shell N = 1 supersymmetry to 
an on-shell 5D, N = 2 one. We discussed in detail the case of the gauge group SU(2) sponta-
neously broken to U(1), in which case the effective action depends on a pair of single abelian 
5D, N = 1 gauge multiplet and hypermultiplet, and then considered a more general situation 
with the SU(N) gauge group broken to its maximal torus, with N − 1 pairs of such abelian 
multiplets.

The next obvious problem is to reproduce these effective actions from the appropriate set 
of quantum 5D, N = 1 supergraphs involving the interacting hypermultiplet and N = 1 gauge 
superfields. Also, it would be interesting to establish precise links with the relevant D-brane 
dynamics and the 4D and 6D cousins of the 5D effective action constructed. Finding out the ex-
plicit form of the next-to-leading corrections to this effective action, based as well on the demand 
of implicit 5D, N = 1 supersymmetry, is another interesting task for the future study. Finally, we 
expect that results obtained can in principle be used to study the quantum aspects of the twisted 
5D, N = 2 SYM theory known also as the Witten–Haydys theory [34,35] (see also [36]).
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