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1 Introduction

It is well known that field theories with standard kinetic terms and standard interactions

are not renormalizable in higher dimensions because of the dimensionful coupling constants

and the too slow decrease of propagators at large momenta. Supersymmetry is sometimes

capable to improve the ultraviolet behavior in the lowest loops [1–4], but does not lead to

the renormalizability [4] even in theories with maximally extended supersymmetry [5–8].

A way to obtain a higher-dimensional renormalizable theory is to allow the action to

include terms with higher derivatives. The study of the higher derivative theories at the

classical and quantum levels has a long history that apparently begins with the seminal work

by Pais and Uhlenbeck [9]. Although the higher-derivative theories suffer from the ghost

states in the spectrum, they still attract much attention and are widely used in gravity,

cosmology and quantum field theory (see, e.g., [10–14]). Some of the recent applications, as

well as the discussion of ways to evade the problem of ghosts, can be found in refs. [15–20]

and reviews [21, 22] (and the references therein). So, the higher-derivative models are

considered to be very interesting and deserving the study from different points of view.

An important example of application of the higher-derivative theories is the regulariza-

tion by higher-order covariant derivatives [23, 24]. This regularization is self-consistent and,

for supersymmetric theories, can be formulated in a manifestly supersymmetric way [25–28]

consistent with the non-renormalization theorems (see, e.g., [29–31]). When applied for

investigating quantum corrections in supersymmetric field theories, the higher-derivative

regularization allowed to reveal some interesting features of them (see, e.g., [32, 33] and

references therein). This is one more argument why it is useful to study the quantum

corrections in higher-derivative supersymmetric theories in various dimensions.
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In this paper we consider the six-dimensional higher-derivative supersymmetric gauge

theory proposed in ref. [34] and calculate the divergent part of the one-loop effective action,

using the regularization by dimensional reduction. This theory describes the following set

of the interacting 6D fields: the vector field, the Weyl spinor field, and three real scalar

fields, all being in the adjoint representation of the gauge group. In the gauge field sector

the action starts with the term containing four derivatives

− 1

g20
tr

∫
d6x (∇MFMN )2, (1.1)

where FMN is the standard Yang-Mills strength. This implies that the coupling constant

g0 is dimensionless. The manifestly supersymmetric formulation of the theory in 6D,

N = (1, 0) harmonic superspace and the full off-shell component form of the action in the

Wess-Zumino gauge were earlier given in ref. [34].1

In the case under consideration, the issue of renormalizabity was studied in [34] (see

also [35]) in a component formulation and in [36] in a superfield formalism. The actual

calculations definitely show that the theory is renormalizable at one loop.2 The one-loop

divergences, renormalization of the coupling constant and the corresponding beta-function

in this theory were calculated in refs. [34, 35] by two different methods based on the

component formulations.

The study of various aspects of the four-dimensional supersymmetric quantum field

theories (see, e.g., the monographs [29–31]) provided an evidence that the most attractive

and elegant way of investigating their quantum properties is by using superfield methods.

The superfield formulation of 6D supersymmetric theories was constructed in refs. [38–40]

in terms of 6D, N = (1, 0) harmonic superspace which is quite similar to its 4D, N = 2

prototype [41–43]. The main advantage of such a formulation is the possibility to keep

manifest N = (1, 0) supersymmetry at all steps of quantum calculations. In our recent

papers [44–50] we developed the harmonic superfield approach for calculating the lowest

off-shell quantum corrections in various 6D, N = (1, 0) and N = (1, 1) supersymmetric

theories. In the present paper we apply this superfield technique for studying the one-loop

effective action in 6D, N = (1, 0) higher-derivative gauge theory of ref. [34].

The paper is organized as follows. In section 2 we collect the basic notions of 6D,

N = (1, 0) harmonic superspace and the formulation of the model under consideration

within its framework. Section 3 presents the manifestly supersymmetric and gauge covari-

ant quantization of this theory and the construction of the corresponding effective action.

In section 4 we compute the one-loop divergences by a direct calculation of the harmonic su-

pergraphs and find the β-function. The results and some further problems are summarized

in Conclusion. The technical details of the calculation are contained in appendices A and B.

1The radical difference of such a higher-derivative theory from the theories regularized by higher-order

derivatives is that the actions of the latter theories involve higher-derivative terms as corrections to the

standard kinetic terms with canonical numbers of derivatives (two for bosons and one for fermions), while

in the case under consideration no canonical kinetic terms are present from the very beginning.
2The theory under consideration possesses a chiral anomaly [37] which, in principle, can violate the

renormalizability. However it is known that the anomaly does not affect the form of one-loop divergences.
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2 Harmonic superspace formulation of 6D, N = (1, 0) higher-derivative

SYM theory

The harmonic superspace technique is most convenient for formulating theories with 6D,

N = (1, 0) supersymmetry as it suggests the manifestly supersymmetric and gauge invari-

ant scheme of their quantization.

In our notation the coordinates of 6D Minkowski space and the N = (1, 0) Grassmann

coordinates are denoted by xM and θai, with M = 0, . . . , 5, a = 1, . . . , 4, and i = 1, 2.

The coordinates (xM , θai, u±i ) of the harmonic superspace include in addition the harmonic

variables u±i which obey the constraints u+iu−i = 1, u−i ≡ (u+i)∗. Having these coordinates

at hand, one can construct the harmonic derivatives

D++ = u+i
∂

∂u−i
; D−− = u−i

∂

∂u+i
; D0 = u+i

∂

∂u+i
− u−i ∂

∂u−i
, (2.1)

which generate an SU(2) algebra. The harmonic superspace contains an analytic subspace

closed under the 6D, N = (1, 0) supersymmetry transformations. It is parametrized by

the coordinates

xMA = xM +
i

2
θ−γMθ+; θ±a = u±i θ

ai, (2.2)

where γM are 6D γ-matrices.

We also introduce the harmonic spinor covariant derivatives

D+
a = u+i D

i
a; D−a = u−i D

i
a , (2.3)

the only non-zero anticommutation relation among which being {D+
a , D

−
b } = i(γM )ab∂M .

Due to the anticommutativity of the derivatives D+
a any product of four such derivatives

(defined with respect to the same harmonic variable u) is reduced to the expression

(D+)4 = − 1

24
εabcdD+

a D
+
b D

+
c D

+
d . (2.4)

In this paper we adopt the following convention for the superspace integration measures

needed for constructing N = (1, 0) invariant actions:∫
dζ(−4) ≡

∫
d6x d4θ+;

∫
d14z ≡

∫
d6x d8θ =

∫
d6x d4θ+(D+)4. (2.5)

In the harmonic superspace formulation the gauge field is carried by the superfield

V ++(z, u) = V ++AtA which obeys the analyticity condition

D+
a V

++ = 0 (2.6)

and is real with respect to a generalized conjugation denoted by a tilde, Ṽ ++ = V ++.

In this paper we use the Hermitian generators tA which are normalized by the conditions

tr(tAtB) = δAB/2. From the gauge superfield V ++ one can construct a non-analytic

superfield

V −−(z, u) ≡
∞∑
n=1

(−i)n+1

∫
du1du2 . . . dun

V ++(z, u1)V
++(z, u2) . . . V

++(z, un)

(u+u+1 )(u+1 u
+
2 ) . . . (u+n u+)

, (2.7)

– 3 –
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and, further, the harmonic gauge superfield strength

F++ ≡ (D+)4V −−. (2.8)

It is evidently analytic. Moreover, it satisfies the off-shell condition

∇++F++ ≡ D++F++ + i[V ++, F++] = 0 , (2.9)

which is a consequence of the harmonic flatness condition

D++V −− −D−−V ++ + i[V ++, V −−] = 0 . (2.10)

The latter can be considered as a definition of V −−.

The gauge transformations in the harmonic superspace are parametrized by a real

(with respect to the tilde-conjugation) analytic superfield λ = λAtA:

V ±± → eiλV ±±e−iλ − ieiλD±±e−iλ, F++ → eiλF++e−iλ . (2.11)

The 6D, N = (1, 0) supersymmetric generalization of the usual 6D Yang-Mills theory

in the harmonic superspace formulation is given by the action [51]

SSYM =
1

f20

∞∑
n=2

(−i)n

n
tr

∫
d14z du1 . . . dun

V ++(z, u1) . . . V
++(z, un)

(u+1 u
+
2 ) . . . (u+n u

+
1 )

, (2.12)

with the coupling constant f0 having the dimension of the inverse mass. It is clear that this

theory is not renormalizable by power counting. The one-loop divergences for this theory

have been calculated in ref. [46].

In the present paper we will consider a different theory which contains the higher

(four) derivatives. Unlike the second-order derivative SYM theory with the action (2.12),

the higher-derivative theory we are considering is characterized by a dimensionless coupling

constant. Such a theory was formulated in harmonic 6D superspace in [34]. It is described

by the following manifestly gauge invariant and N = (1, 0) supersymmetric action

S = ± 1

2g20
tr

∫
dζ(−4)du (F++)2 = ± 1

4g20

∫
dζ(−4)du

(
F++A

)2
, (2.13)

where the analytic harmonic superfield strength F++ is defined in eq. (2.8). The aim of

our paper is to investigate the one-loop divergences for the theory with the action (2.13).

The sign of the action (2.13) deserves some comments. In conventional field theory

models without higher derivatives the overall sign is fixed by the requirement that the

energy is positive. In the higher-derivative theories the energy is not positively defined in

general. This means, that there are no actual reasons to fix an overall sign of the action

in such theories. This is why we cannot fix the sign of the action (2.13).3 Note that in

ref. [34] there was chosen the sign minus (corresponding to the sign in (1.1)) since it gives

rise to the correct sign in front of the component kinetic term of the triplet of scalar fields

entering the gauge N = (1, 0) multiplet (the former auxiliary fields). However, this does

not imply the positivity of energy for all component fields which involve higher-derivative

ghosts for any sign. In ref. [35] there was chosen the sign “plus”. In order to have a freedom

to compare our results with those obtained in refs. [34, 35], we prefer not to fix the overall

sign of the action.

3This point was also noted in [35].
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3 Background field quantization in harmonic superspace

The harmonic superspace technique makes it possible to construct the manifestly N =

(1, 0) supersymmetric quantization procedure. It is also convenient to use the background

superfield method [52–54] which provides a manifestly gauge invariant effective action. In

6D, N = (1, 0) harmonic superspace it is formulated similarly to the 4D, N = 2 case

treated in [55, 56]. In particular, the background-quantum splitting is linear,

V ++ = V ++ + v++, (3.1)

where V ++ and v++ are the background and quantum gauge superfields, respectively.

After the substitution of (3.1) in the action (2.13) the gauge invariance (2.11) amounts to

the two types of transformations. The background gauge invariance

V ++ → eiλV ++e−iλ − ieiλD++e−iλ; v++ → eiλv++e−iλ (3.2)

remains a manifest symmetry of the effective action, while the quantum gauge invariance

V ++ → V ++; v++ → eiλ(v++ + V ++)e−iλ − V ++ − ieiλD++e−iλ (3.3)

is broken by the gauge-fixing procedure down to the invariance under the BRST transfor-

mations. It is assumed that the gauge-fixing term should be chosen invariant under the

transformations (3.2). The harmonic superspace analog of the ξ-gauge is then given by

the action

Sgf = ∓ 1

2g20ξ0
tr

∫
d14z du1 du2

(u−1 u
−
2 )

(u+1 u
+
2 )3

eib1e−ib2(∇++
2 v++

2 ) eib2e−ib1
_
���1 (∇++

1 v++
1 ),

(3.4)

where the operator
_
��� ≡ 1

2
(D+)4(∇−−)2 (3.5)

is reduced to the covariant analog of the d’Alambertian operator, when acting on analytic

superfields.4 The background covariant derivatives are defined as

∇++ = D++ + iV ++; ∇−− = D−− + iV −−. (3.6)

Evidently, if they act on a superfield in the adjoint representation (e.g., on v++), the gauge

superfields should be expanded over the generators of the adjoint representation, so that

∇±±v++ = D±±v++ + i[V ±±, v++]. (3.7)

The background bridge superfield b in eq. (3.4) is related to the background superfields

V ++ and V −− (constructed out of V ++ by the equation similar to (2.7)) via the relations

V ++ = −ieibD++e−ib; V −− = −ieibD−−e−ib. (3.8)

4In principle, in the framework of the background field method we could use any appropriate gauge

preserving the background gauge invariance. However, it is technically convenient to choose the action Sgf

to be of the same degree in derivatives as the classical action.
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The subscripts 1 and 2 in eq. (3.4) refer to the harmonic variables u1 or u2 present in Sgf .

Similar notation will be used below.

The action for the Faddeev-Popov ghosts corresponding to the gauge-fixing action (3.4)

is obtained in the standard way (see, e.g., [55]) and is given by

SFP = tr

∫
dζ(−4)du b∇++

(
∇++c+ i[v++, c]

)
, (3.9)

where the anticommuting analytic superfields b and c stand for the Faddeev-Popov

antighosts and ghosts, respectively. However, the presence of the operator
_
��� in eq. (3.4)

change the form of the Nielsen-Kallosh determinant. Namely, in the case under considera-

tion it can be written in the form

∆NK = Det−1/2(∇++)2 Det
_
��� =

∫
DϕDχ(+4)Dσ exp (iSNK) , (3.10)

where the set of Nielsen-Kallosh ghosts involves the commuting analytic superfield ϕ to-

gether with the Grassmann-odd analytic superfields χ(+4) and σ, all being in the adjoint

representation of the gauge group. The action for these ghosts reads

SNK = tr

∫
dζ(−4)du

(
−1

2
(∇++ϕ)2 + χ(+4)

_
��� σ

)
. (3.11)

Then the generating functional for the considered theory can finally be written in the form

Z[ Sources,V ++] =

∫
Dv++DbDcDϕDχ(+4)Dσ exp

{
i
(
S+Sgf+SFP+SNK+Ssources

)}
.

(3.12)

The source term is defined as

Ssources =

∫
dζ(−4)du J++Av++A + . . . , (3.13)

where dots denote terms corresponding to various ghost superfields. The effective action

Γ[ Fields,V ++] is defined as the Legendre transform of the generating functional for the

connected Green functions W ≡ −i lnZ. Setting all quantum fields equal to zero, we obtain

the manifestly gauge invariant action Γ[V ++] ≡ Γ[ Fields→ 0,V ++].

Like in the case of standard 6D, N = (1, 0) SYM theory [45, 46], there are two ways to

calculate divergent terms in this action. One of them is based on the superfield proper-time

technique and preserves manifest gauge invariance at all steps. Another goes through the

direct calculation of the relevant Feynman supergraphs with invoking gauge invariance at

the final stage. Here we employ the second method, leaving the first one for the future study.

4 Calculation of the divergent supergraphs

The one-loop contribution to the two-point Green function of the background gauge su-

perfield for the considered model is given by the supergraphs depicted on figure 1. We will

calculate it in the minimal gauge ξ = 1, where ξ is the renormalized gauge-fixing parame-

ter. The external wavy lines in the supergraphs on figure 1 represent the background gauge

– 6 –
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Figure 1. Supergraphs which allow to calculate the divergent part of the one-loop effective action

for the model (2.13). The dashed lines stand for all ghost superfields present in the theory.

superfield V ++ (or the background bridge b). The wavy internal lines correspond to the

propagators of the quantum gauge superfield v++. In the Feynman gauge this propagator

has the simplest form and is given by the expression

− δ2Z0

δJ++A
1 δJ++B

2

∣∣∣∣
J++=0

= ±2ig20
1

∂4
(D+

2 )4δ14(z1 − z2) δ(2,−2)(u1, u2), (4.1)

where

δ14(z1 − z2) ≡ δ6(x1 − x2) δ8(θ1 − θ2) (4.2)

and Z0 denotes the generating functional of the free theory. The dashed lines denote

propagators of the Faddeev-Popov and Nielsen-Kallosh ghosts. All ghost contributions

have already been calculated earlier [45, 46]. Actually, the ghost part of the generating

functional for the theory under consideration and for the theory (2.12) differ only in the

expression (∫
Dχ(+4)Dσ exp

{
i tr

∫
dζ(−4)duχ(+4)

_
��� σ

})1/2

. (4.3)

However, according to [46] this expression cannot produce divergences. This implies that

the total ghost contribution (which include both Faddeev-Popov and Nielsen-Kallosh parts

and can be found by calculating the supergraphs (3) and (4) in figure 1) coincides with the

one for the theory (2.12) and, according to [46], is equal to

(
∆Γ(1)
∞
)
ghost

=
C2

3ε(4π)3
tr

∫
dζ(−4)du (F++)2, (4.4)

where it is assumed that the regularization by dimensional reduction is used, with ε ≡ 6−D.

The constant C2 is defined by the equation fACDfBCD = C2δ
AB, where the structure

constants fABC are given by the commutator of generators, [tA, tB] = ifABCtC .

Thus, it remains to calculate only the one-loop divergences produced by the super-

graphs containing a loop of the quantum gauge superfield. These divergences are completely

determined by the part of the total action quadratic in the quantum gauge superfield (which

does not contain other quantum superfields). Obviously, such terms are present only in the

classical action (2.13) and the gauge-fixing action (3.4). In appendix A we demonstrate

– 7 –
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that, in the Feynman gauge ξ0 = 1,5

S(2)+Sgf =± 1

2g20
tr

∫
dζ(−4) duv++

_
���2v++

∓ i

2g20
tr

∫
d14z du1 du2

1

(u+1 u
+
2 )2

eib1e−ib2v++
2 eib2e−ib1 [F++

1 ,∇−−1 v++
1 ]. (4.5)

Starting from this expression we calculate the one-loop divergences coming from the super-

graphs which contain a loop of the quantum gauge superfield (see appendix B). Namely,

from the expression (4.5) we find the vertices in the supergraphs depicted on figure 1. Next,

we calculate the first two supergraphs in figure 1 and obtain the corresponding contribution

to the divergent part of the two-point Green function of the background gauge superfield.

Finally, taking into account the background gauge invariance of the effective action, we

obtain the general result for all one-loop divergences coming from the supergraphs with a

loop of the quantum gauge superfield inside. The result is given by the expression(
∆Γ(1)
∞
)
gauge

= − 4C2

ε(4π)3
tr

∫
dζ(−4)du (F++)2. (4.6)

Summing up eqs. (4.4) and (4.6), we obtain that the divergent part of the one-loop effective

action for the theory (2.13) regularized by the dimensional reduction takes the form

∆Γ(1)
∞ =

(
∆Γ(1)
∞
)
gauge

+
(
∆Γ(1)
∞
)
ghost

= − 11C2

3ε(4π)3
tr

∫
dζ(−4)du (F++)2. (4.7)

This result exactly agrees with the ones obtained in refs. [34, 35] starting from the compo-

nent formulation of the theory in the Wess-Zumino gauge.

Adding the expression (4.7) to the classical action (2.13) we can find quantum correc-

tions to the coupling constant g0,

Γ− Sgf =

(
± 1

2g20
− 11C2

3ε(4π)3

)
tr

∫
dζ(−4)du (F++)2

+ finite one-loop contributions + higher order corrections. (4.8)

From this expression we see that the renormalized coupling constant g is related to g0 as

1

g2
=

1

g20
∓ 22C2

3ε(4π)3
+ higher orders, (4.9)

which exactly agrees with the relation obtained in (the revised version of) ref. [34] and in

ref. [35]. It is more convenient to rewrite it in terms of α ≡ g2/4π,

1

α
=

1

α0
∓ 22C2

3ε(4π)2
+ higher orders. (4.10)

This relation implies that the one-loop β-function is given by the expression

β(α) = ∓11α2C2

24π2
+ higher orders. (4.11)

Thus, the lower sign corresponds to the Landau zero, while the upper sign corresponds

to the asymptotic freedom. If one takes into account the difference in the notations, the

former choice was used in ref. [34], while the calculation of ref. [35] corresponds to the

latter case.
5When calculating the one-loop divergences, there is no difference between choices ξ0 = 1 and ξ = 1.

– 8 –
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5 Conclusion

In this paper we have considered the higher-derivative 6D, N = (1, 0) supersymmetric

Yang-Mills theory in the harmonic superspace formulation. The theory was quantized

within the background superfield method which allows to preserve the manifest gauge

invariance and 6D, N = (1, 0) supersymmetry at all stages of the quantum calculations.

Using the supergraph technique and the regularization by dimensional reduction we have

calculated the one-loop divergences of the quantum effective action. The calculations were

organized as follows. The divergences were firstly found to the lowest order with respect to

the background gauge superfield. Then, using the manifest gauge invariance, the full result

for the divergent part of the one-loop effective action was restored.6 It was shown that

the divergences can be absorbed into the renormalization of the dimensionless coupling

constant g0. The corresponding β-function was computed and its sign was shown to be

determined by the sign of the initial classical action.

It is natural to expect that the theory will remain renormalizable after adding to the

action (2.13) the action of 6D, N = (1, 0) gauge theory without higher derivatives involving

a dimensionful coupling constant f0. It would be interesting to study the renormalization

properties of such a theory involving two coupling constants g0 and f0. Another interest-

ing problem is the construction of the 6D, N = (1, 1) higher-derivative supersymmetric

gauge theory and the study of its renormalization properties. For this purpose one should

extend the theory considered here by higher-derivative couplings with the hypermultiplet

in the adjoint representation (e.g., along the line of ref. [57]) and try to ensure the hid-

den N = (0, 1) supersymmetry in such an extended 6D system. These problems will be

addressed elsewhere.
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A The second variation of the classical action

For calculating the one-loop divergences we need to single out that part of the action which

is quadratic in the quantum gauge superfields. As is evident from eq. (3.1), to this end one

should calculate the second variation of the action, then make the replacement

δV ++ → v++; V ++ → V ++, (A.1)

and finally multiply the result by 1/2.

The first variation of the action (2.13) is given by the expression

δS = ± 1

g20
tr

∫
dζ(−4)duF++δF++ = ± 1

g20
tr

∫
d14z duF++δV −−. (A.2)

6As was already mentioned, an alternative to this calculation is the computational procedure preserving

the manifest gauge invariance at all steps and based on the superfield proper-time technique [45]. We plan

to consider this approach in the forthcoming paper.
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To obtain the variation δV −−, note that, as a consequence of eq. (2.10), it should satisfy

the relation

∇++δV −− = ∇−−δV ++, (A.3)

where the covariant derivatives are defined as

∇++ ≡ D++ + iV ++, ∇−− ≡ D−− + iV −−. (A.4)

Note that, in contrast to eqs. (3.6), these expressions contain the superfields V ±± (instead

of V ±±). The solution of eq. (A.3) satisfies the equation

δV −− =
1

2

(
∇−−

)2
δV ++ − 1

2
∇++∇−−δV −−. (A.5)

Substituting this expression into (A.2) and using (2.9), the first variation of the action can

be presented in the form

δS = ± 1

2g20
tr

∫
d14z duF++

(
∇−−

)2
δV ++. (A.6)

Next, we calculate the second variation

δ2S = δ(δS) = ± 1

2g20
tr

∫
d14z du

(
δF++

(
∇−−

)2
δV ++ + iF++

[
δV −−, ∇−−δV ++

]
+ iF++∇−−

[
δV −−, δV ++

])
. (A.7)

Substituting δF++ = (D+)4δV −− into this expression, after some algebra we obtain

δ2S = ± 1

g20
tr

∫
d14z du

(
δV −−

_
� δV ++

− i

2
δV −−

[
F++, ∇−−δV ++

]
+
i

2
δV −−

[
∇−−F++, δV ++

])
, (A.8)

where
_
� ≡

1

2
(D+)4

(
∇−−

)2
. (A.9)

To find the variation δV −− we introduce the (non-analytic) bridge superfield b related

to V ±± by the relations similar to (3.8),

V ++ = −ieibD++e−ib; V −− = −ieibD−−e−ib. (A.10)

Then, taking into account that ∇±± = eibD±±e−ib, the solution of eq. (A.3) can be written

as [58]

δV −−1 =

∫
du2

1

(u+1 u
+
2 )2

eib1e−ib2δV ++
2 eib2e−ib1 , (A.11)

where the subscripts refer to the corresponding harmonic variables.

– 10 –
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Substituting the expression (A.11) into eq. (A.8) we rewrite the second variation of

the action (2.13) as

δ2S = ± 1

g20
tr

∫
d14z du1 du2

1

(u+1 u
+
2 )2

eib1e−ib2δV ++
2 eib2e−ib1

×
(
_
�1 δV

++
1 − i

2

[
F++
1 , ∇−−1 δV ++

1

]
+
i

2

[
∇−−1 F++

1 , δV ++
1

])
. (A.12)

Making in this expression the replacement (A.1) and multiplying the result by 1/2 we

obtain that part of the action (2.13) which is quadratic in the quantum gauge superfields,

S(2) = ± 1

2g20
tr

∫
d14z du1 du2

1

(u+1 u
+
2 )2

eib1e−ib2v++
2 eib2e−ib1

×
(
_
���1 v

++
1 − i

2

[
F++
1 , ∇−−1 v++

1

]
+
i

2

[
∇−−1 F++

1 , v++
1

])
. (A.13)

To obtain the analogous part of the total action, we should add the gauge-fixing ac-

tion (3.4) to this expression. Using the identity

[ _
���,∇++

]
v++ =

1

2
(D+)4

[(
∇−−

)2
,∇++

]
v++ = −1

2
(D+)4

(
D0∇−− + ∇−−D0

)
v++

= −(D+)4∇−−v++ = −i[F++, v++] (A.14)

after integrating by parts with respect to the harmonic derivatives the gauge-fixing

term (3.4) can be rewritten as

Sgf = ∓ 1

2g20ξ0
tr

∫
d14z du1 du2 e

ib1e−ib2v++
2 eib2e−ib1

{
D++

1 D++
2

(
(u−1 u

−
2 )

(u+1 u
+
2 )3

)
_
���1 v

++
1

+ iD++
2

(
(u−1 u

−
2 )

(u+1 u
+
2 )3

)
[F++

1 , v++
1 ]

}
. (A.15)

Then, with the help of the identities

D++
1 D++

2

(
(u−1 u

−
2 )

(u+1 u
+
2 )3

)
=

1

(u+1 u
+
2 )2
− 1

2

(
D−−1

)2
δ(2,−2)(u1, u2) , (A.16)

D++
2

(
(u−1 u

−
2 )

(u+1 u
+
2 )3

)
=

(u−1 u
+
2 )

(u+1 u
+
2 )3

= −1

2
D−−1

(
1

(u+1 u
+
2 )2

)
(A.17)

it is convenient to rearrange the expression (A.15) to the form

Sgf = ± 1

2g20ξ0
tr

∫
dζ(−4) du v++

_
��� 2v++ ∓ 1

2g20ξ0
tr

∫
d14z du1 du2

1

(u+1 u
+
2 )2

× eib1e−ib2v++
2 eib2e−ib1

{
_
���1 v

++
1 +

i

2
∇−−1 [F++

1 , v++
1 ]

}
. (A.18)
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The quadratic in the quantum gauge superfield part of the total action is obtained as

a sum of the expressions (A.13) and (A.18),

S(2)+Sgf =± 1

2g20ξ0
tr

∫
dζ(−4) duv++

_
��� 2v++± 1

2g20
tr

∫
d14z du1 du2

1

(u+1 u
+
2 )2

eib1e−ib2v++
2

× eib2e−ib1
{(

1− 1

ξ0

)
_
���1 v

++
1 +

i

2

(
1− 1

ξ0

)
[∇−−1 F++

1 ,v++
1 ]− i

2

(
1+

1

ξ0

)
[F++

1 ,∇−−1 v++
1 ]

}
.

(A.19)

This expression is drastically simplified in the Feynman gauge ξ0 = 1. In this gauge

eq. (A.19) is reduced to the expression (4.5).

B Divergences of the supergraphs with a gauge loop

Let us calculate the one-loop divergences coming from the first two supergraphs presented

in figure 1. Both these supergraphs contain a loop of the quantum gauge superfield, so

that the vertices can be found from the expression (4.5). In particular, the triple vertex

present in the supergraph (1) can be written as

∓ 1

4g20
fABC

∫
d14z du ∂2v++A

[
V −−BlinearD

−−v++C +D−−
(
V −−Blinear v

++C
)]

± 1

4g20
fABC

∫
d14z du1 du2

1

(u+1 u
+
2 )2

v++A
2 F++B

linear,1D
−−
1 v++C

1 ≡ Ver1 + Ver2, (B.1)

where the subscript “linear” means that it is enough to consider only the part linear in the

background gauge superfield V ++,

V −−Alinear,1 =

∫
du2

1

(u+1 u
+
2 )2

V ++A
2 ; F++A

linear,1 =

∫
du2

1

(u+1 u
+
2 )2

(D+
1 )4V ++A

2 . (B.2)

We see that the vertex (B.1) can naturally be divided into the two parts, Ver1 and Ver2.

The first one is composed of the terms which include V −−Blinear , while the second one contains

the term with F++B
linear . Therefore, the supergraph (1) in figure 1 splits into three subgraphs,

namely, Ver1 −Ver1, Ver2 −Ver2, and Ver1 −Ver2. The subgraph containing two vertices

Ver1 is very similar to an analogous supergraph calculated in ref. [46] and vanishes due to

the presence of the factors(
D−−1

)2
(u+1 u

+
2 )4
∣∣∣
u1=u2

= 0 or D−−1 D−−2 (u+1 u
+
2 )4
∣∣∣
u1=u2

= 0. (B.3)

The subgraph Ver2 −Ver2 is proportional to∫
d6k

(2π)6
1

k4(k + p)4
(B.4)

and is, therefore, finite. This implies that this subgraph does not contribute to the divergent

part of the one-loop effective action and can be omitted.

Thus, we see that the only non-trivial contribution of the supergraph (1) to the one-

loop divergences can appear from the (logarithmically divergent) subgraph Ver1 − Ver2.

– 12 –



J
H
E
P
0
8
(
2
0
2
0
)
1
6
9

Applying Feynman rules, we find that the considered contribution to the effective action

is given by the expression

Ver1 −Ver2 = − iC2

4

∫
d14z1d

14z2 du1 du2 du3
1

(u+2 u
+
3 )2

V −−Alinear (z1, u1)F
++A
linear(z2, u2)

×
{
D−−2

[
1

∂4
(D+

2 )4δ14(z1 − z2) δ(2,−2)(u1, u2)
]
D−−1

[
1

∂2
(D+

3 )4δ14(z1 − z2) δ(2,−2)(u1, u3)
]

−D−−1 D−−2

[
1

∂4
(D+

2 )4δ14(z1 − z2) δ(2,−2)(u1, u2)
]

1

∂2
(D+

3 )4δ14(z1 − z2) δ(2,−2)(u1, u3)

+D−−2

[
1

∂2
(D+

2 )4δ14(z1 − z2) δ(2,−2)(u1, u2)
]
D−−1

[
1

∂4
(D+

3 )4δ14(z1 − z2) δ(2,−2)(u1, u3)
]

−D−−1 D−−2

[
1

∂2
(D+

2 )4δ14(z1 − z2) δ(2,−2)(u1, u2)
]

1

∂4
(D+

3 )4δ14(z1 − z2) δ(2,−2)(u1, u3)
}
.

(B.5)

Note that, without a loss of generality, we can assume that all spinor derivatives act on

the point z1.

The δ-functions δ14(z1− z2) include δ8(θ1− θ2), and the product of two Grassmannian

δ-functions does not vanish only in the situation when at least 8 spinor covariant derivatives

act on them. Taking into account this property and using the identity

δ8(θ1 − θ2) (D+
1 )4(D+

2 )4δ8(θ1 − θ2) = (u+1 u
+
2 )4δ8(θ1 − θ2) (B.6)

we can do one of the integrals over d8θ. Then, in the momentum representation, eq. (B.5)

can be brought in the form

iC2

2

∫
d8θ du1 du2 du3

∫
d6p

(2π)6
V −−Alinear (−p, θ, u1)F++A

linear(p, θ, u2)
1

(u+2 u
+
3 )2

×
∫

d6k

(2π)6
1

k4(k + p)2

{
D−−2

[
(u+2 u

+
3 )4δ(2,−2)(u1, u2)

]
D−−1 δ(2,−2)(u1, u3)

−D−−1 D−−2

[
(u+2 u

+
3 )4δ(2,−2)(u1, u2)

]
δ(2,−2)(u1, u3)

}
. (B.7)

After integrating by parts with respect to the derivative D−−1 in the last term, this expres-

sion can be rewritten as

iC2

2

∫
d8θ du1 du2 du3

∫
d6p

(2π)6
d6k

(2π)6
1

k4(k + p)2
F++A
linear(p, θ, u2)

{
2

(u+2 u
+
3 )2

× V −−Alinear (−p, θ, u1)D−−2
[
(u+2 u

+
3 )4δ(2,−2)(u1, u2)

]
D−−1 δ(2,−2)(u1, u3) + (u+2 u

+
3 )2

× D−−1 V −−Alinear (−p, θ, u1)D−−2 δ(2,−2)(u1, u2) δ
(2,−2)(u1, u3)

}
, (B.8)

where we took into account that

(u+2 u
+
3 ) δ(2,−2)(u1, u2) δ

(2,−2)(u1, u3) → 0. (B.9)

– 13 –
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Once again, integrating by parts with respect to the derivative D−−2 and doing the integral

over du1 with the help of δ(2,−2)(u1, u2), we obtain

Ver1 −Ver2 =
iC2

2

∫
d8θ du2 du3

∫
d6p

(2π)6
d6k

(2π)6
1

k4(k + p)2

×
{

4V −−Alinear (−p, θ, u2)F++A
linear(p, θ, u2) (u−2 u

+
3 ) (u+2 u

+
3 )D−−2 δ(2,−2)(u2, u3)

− 2V −−Alinear (−p, θ, u2)D−−2 F++A
linear(p, θ, u2) (u+2 u

+
3 )2D−−2 δ(2,−2)(u2, u3)

− 2D−−2 V −−Alinear (−p, θ, u2)F++A
linear(p, θ, u2) (u−2 u

+
3 ) (u+2 u

+
3 ) δ(2,−2)(u2, u3)

−D−−2 V −−Alinear (−p, θ, u2)D−−2 F++A
linear(p, θ, u2) (u+2 u

+
3 )2 δ(2,−2)(u2, u3)

}
.

(B.10)

Two last terms in this expression evidently vanish because they contain

(u+2 u
+
3 ) δ(2,−2)(u2, u3) → 0. (B.11)

Integrating by parts with respect to the derivative D−−2 in the remaining terms we see that

the only expression which does not contain the vanishing product (B.11) is

− 2iC2

∫
d8θ du2 du3

∫
d6p

(2π)6
d6k

(2π)6
1

k4(k + p)2

× V −−Alinear (−p, θ, u2)F++A
linear(p, θ, u2) (u−2 u

+
3 )2 δ(2,−2)(u2, u3). (B.12)

After calculating the harmonic integrals, this expression takes the form

− 2iC2

∫
d8θ du

∫
d6p

(2π)6
d6k

(2π)6
1

k4(k + p)2
V −−Alinear (−p, θ, u)F++A

linear(p, θ, u). (B.13)

The momentum integral in this expression is calculated in the Euclidean space after the

standard Wick rotation with the help of dimensional reduction. Clearly, we are interested

in its divergent part only,∫
d6k

(2π)6
1

k4(k+p)2
→ −i

∫
dDK

(2π)D
1

K6
+finite terms =− i

ε(4π)3
+finite terms, (B.14)

where the capital letter K denotes the Euclidean loop momentum.

Thus, in the coordinate representation we obtain the following divergent contribution

coming from the supergraph (1) in figure 1:[
diagram (1)

]
∞

= − 2C2

ε(4π)3

∫
d14z duV −−Alinear F

++A
linear = − 4C2

ε(4π)3
tr

∫
dζ(−4)du

(
F++
linear

)2
.

(B.15)

Now, let us calculate the contribution of the tadpole supergraph (2) in figure 1. The

relevant vertex is also obtained from the expression (4.5) and is composed out of the terms

– 14 –
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quadratic in the background gauge superfield V ++ and in the background bridge b,

± 1

2g20
tr

∫
d14z du

{
i∂2v++[V −−quadratic, D

−−v++] + i∂2v++D−−[V −−
quadratic, v

++]

− ∂2v++[V −−linear, [V
−−
linear, v

++]]− 1

4

(
[V −−linear, D

−−v++] +D−−[V −−
linear, v

++]
)

(D+)4

×
(

[V −−linear, D
−−v++] +D−−[V −−

linear, v
++]
)}
± 1

2g20
tr

∫
d14z du1 du2

1

(u+1 u
+
2 )2

×
{

[b1 − b2, v
++
2 ] [F++

linear,1, D
−−v++

1 ]− iv++
2 [F++

quadratic,1, D
−−v++

1 ]
}
, (B.16)

where V −−quadratic and F++
quadratic are those parts of V −− and F++ which are quadratic in

V ++. Constructing the corresponding expression for the contribution of the supergraph

(2), we see that all terms in it vanish either because the number of spinor derivatives acting

on the anticommuting δ-function at the coincident arguments is less than 8 (for all terms

without (D+)4 in eq. (B.16)), or because of the presence of (u+1 u
+
2 )
∣∣∣
u1=u2

= 0 (for the

terms containing (D+)4). Therefore, the supergraph (2) in figure 1 does not contribute to

the divergent part of the one-loop effective action.

Thus, the one-loop divergences coming from the supergraphs (1) and (2) in figure 1 are

given by eq. (B.15). However, the gauge superfield V ++ is dimensionless, so that the one-

loop divergences are also present in supergraphs with an arbitrary number of the external

gauge legs. The general result for the divergent part of the one-loop effective action can be

restored by resorting to the manifest gauge invariance of the effective action Γ[V ++].7 The

gauge invariant expression which in the lowest approximation yields eq. (B.15) is evidently

given just by eq. (4.6).
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