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Abstract: We construct manifestly 4D,N = 2 supersymmetric and gauge invariant off-
shell cubic couplings of matter hypermultiplets to the higher integer spin gauge N = 2
multiplets introduced in arXiv:2109.07639. The hypermultiplet is described by an ana-
lytic harmonic 4D,N = 2 superfield q+ with the physical component spins s =

(1
2 , 0

)
and

an infinite number of auxiliary fields. The cubic coupling constructed has the schematic
structure q+Ĥ++

(s) q
+, where Ĥ++

(s) is a differential analytic operator of the highest degree
(s − 1) accommodating the massless gauge N = 2 multiplet with the highest spin s. For
odd s the gauge group generators and couplings are proportional to U(1)PG generator of
the internal SU(2)PG symmetry of the hypermultiplet and so do not exist if SU(2)PG is
unbroken. If this U(1)PG is identified with the central charge of 4D,N = 2 supersym-
metry, a mass for the hypermultiplet is generated and the odd s couplings vanish in the
proper massless limit. For even s the higher-spin gauge transformations and cubic su-
perfield couplings can be defined for both massive and massless (central-charge neutral)
hypermultiplets without including U(1)PG generator. All these features directly extend to
the case of n hypermultiplets with the maximal internal symmetry USp(2n)× SU(2).
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1 Introduction

The theory of higher spin fields attracts vast attention due to its intimate relationships with
both quantum field theory and (super)string theory. In particular, it was conjectured [1]
that the superstring theory describes the “massive” phase of the massless higher spin
theory corresponding to the spontaneous breakdown of the infinite-rank gauge symmetries
of the latter, with masses of the higher-spin excitations being generated through some
generalized Higgs-type mechanism. Though the precise role of the higher-spin fields in
fundamental interactions is still unclear, it is expected that the relevant particles could
dominate the string interactions at high energies (see, e.g., [2]). Like in other instances, the
study of supersymmetric versions of various higher-spin models is of pivotal importance, as
supersymmetry can shed more light on the hidden structures and properties of the theory.
Since the higher-spin theory, like the superstring theory, predicts infinite towers of fermions
and bosons related by supersymmetry, there arises the natural problem of describing these

– 1 –



J
H
E
P
0
5
(
2
0
2
2
)
1
0
4

sets in the appropriate field-theory language, where fields are combined into supermultiplets
and further into superfields. Thus, the issue of describing supersymmetric theories of higher
spins in the superfield approach acquires high actuality.

The superfield formulations have a great privilege to provide an explicit off-shell re-
alization of supersymmetry. They are most preferable for constructing invariant actions
since the transformations of given supersymmetry do not depend on the choice of a specific
model. In four dimensions, there were developed the exhausting superfield formulations of
N = 1 theories in general and chiral 4D,N = 1 superspaces (see, e.g., [3, 4]), as well as of
N = 2 theories in the harmonic superspace and its analytic subspace with half the original
Grassmann coordinates [5–7].

In a recent paper [8] we have constructed the completely off-shell manifestly N = 2
supersymmetric superfield extension of arbitrary 4D integer-spin free massless theory. The
construction was based on the harmonic superspace method [5–7], which so confirmed its
universal role as the most adequate and convenient approach to 4D,N = 2 supersymmet-
ric field theories. The theory constructed yields just N = 2 off-shell supersymmetriza-
tion of the free massless higher-spin field theory pioneered by Fronsdal [9] and Fang and
Fronsdal [10].

The natural next step is to set up interacting extensions of the free theory. The
construction of interactions in the theory of higher spins is a very important, but highly
difficult task. The only fully nonlinear constructions known at the moment are limited to
the Vasiliev’s theory in (A)dSd [11–13] (for a review see [14–18]) and the 3D Chern-Simons
higher spin gravity formulations [19–22] (for a review see [23]). As for the interacting higher
spin theories in the Lagrangian approach, one of the possible obstructions here is provided
by no-go theorems imposing significant restrictions on the corresponding interactions (for
a review and references see, e.g., [24]). The statement of the no-go theorems relevant
to our consideration is that the constraints on the low-energy scattering in flat space-time
seemingly forbid massless particles with spins s > 2 to participate in interactions. However,
in many cases no-go theorems may be evaded by relaxing various original assertions.

The simplest higher spin interaction is described by a cubic vertex, e.g., bilinear in the
matter fields and of the first order in gauge fields. At present, there is an extensive liter-
ature related to the construction of cubic higher spin interactions. The cubic s − s′ − s′′
couplings for massless fields of arbitrary helicity in flat space-time have been pioneered
in [25, 26] in the light-cone formalism.1 Generalizations of these results are presented
in [27–37]. Higher-spin interactions with matter fields and the corresponding conserved
currents were firstly considered in [36, 37] as the manifestly Poincaré invariant vertices in
the Lagrangian approach. Some more recent results concerning higher spin cubic interac-
tion can be found in [38–49].

The study of supersymmetric higher spin theories has been pioneered in [50, 51] in
the component approach (for further development see, e.g., [52–55] and the references
therein). Recently, various methods have been developed for deriving and exploring the
supersymmetric cubic vertices in on-shell supersymmetric formulations [56–59].

1In [26] the corresponding cubic vertex was found for supermultiplets using a light-cone superspace.
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The superfield off-shell formulations of the N = 1 supersymmetric free massless higher
spin theories in 4D flat and AdS spaces were constructed for the first time in [60–62]. The
superfield Lagrangian description of the free massless N = 2 higher spin supermultiplets in
terms of N = 1 superfields was developed in [63, 64]. Superconformal free higher spin field
models in theN = 2 superfield approach were discussed in [65–67]. A superfield formulation
of N = 1 free massive higher spin fields was constructed in [68]. Supersymmetric N = 1
generalizations of the purely bosonic cubic vertices with matter and the corresponding
supercurrents were explored in terms of N = 1 superfields in [69–76].

Let us turn back to 4D,N = 2 supersymmetric theory. The most general lower spin
4D,N = 2 matter multiplet is hypermultiplet with the physical component spins s = (1

2 , 0).
The off-shell hypermultiplet requires an infinite number of auxiliary fields and admits an
unconstrained formulation only in N = 2 harmonic superspace [5]. So if one intends to
study off-shell N = 2 cubic vertices, it is unavoidable to use the harmonic superspace
approach.

In this paper we construct, for the first time, the off-shell manifestly N = 2 super-
symmetric cubic couplings 1

2 −
1
2 − s of an arbitrary integer higher spin s gauge N = 2

multiplet to the hypermultiplet matter in 4D,N = 2 harmonic superspace.2 The couplings
are linear in the analytic gauge superfields, bilinear in the analytic hypermultiplet q+ su-
perfields and are written as integrals over the analytic harmonic superspace. An interesting
new peculiarity is the necessity of breaking the Pauli-Gürsey SU(2)PG symmetry of the free
hypermultiplet action down to U(1) for odd spins s and the explicit presence of this U(1)
generator in the gauge transformations and the relevant superfield cubic actions. If this
U(1) generator is identified with the central charge of rigid 4D,N = 2 supersymmetry, it
induces a mass for the hypermultiplet and only even spin couplings survive in the mass-
less limit. As regards the higher-spin gauge superfields, we deal with the same linearized
actions for them as in ref. [8].

The cubic couplings of the hypermultiplet to N = 2 higher spin gauge superfield
constructed in the present paper are based on the gauge principle: the interactions are
resulted from localization of global symmetry. We begin with the free hypermultiplet theory
in harmonic superspace and find for this theory an infinite set of higher-derivative global
symmetry transformations. The localization of these transformations in the harmonic
analytic superspace requires introducing the corresponding higher spin gauge harmonic
superfields with the gauge group already described in [8]. As a result, we arrive at the
manifestly N = 2 supersymmetric cubic interactions of the hypermultiplet with the higher
spin gauge superfields, in the first order in the latter.3

The paper is organized as follows. Section 2 is devoted to a brief description of a
completely off-shell invariant action for the free massless N = 2 gauge theory with an ar-
bitrary maximal integer spin s of the supermultiplet. In section 2.2 we introduce the ana-
lytic N = 2 invariant differential superfield operators associated with the higher-derivative

2We use the bold letters s to denote the highest spin (“superspin”) in N = 2 supermultiplet.
3A cubic coupling of massless on-shell hypermultiplet to higher spin superconformal gauge superfields was

recently studied in [67]. Here we deal entirely with off-shell interactions and do not concern superconformal
theories at all.
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hypermultiplet gauge transformations. Just these operators are the basic ingredients of
our construction. In section 3 we present the detailed derivation of the manifest form of
1
2 −

1
2 − s couplings of N = 2 higher spins to the hypermultiplet for s = 1, 2, 3, 4, as well

as the corresponding global and local transformations of the hypermultiplet. A general-
ization to arbitrary even and odd N = 2 spins is the subject of section 4. In section 5 we
summarize the results, briefly describe a generalization to an arbitrary number of hyper-
multiplets (with the internal symmetry USp(2n)) and discuss possible directions of further
development of the material presented.

2 N = 2 supersymmetric higher spins in harmonic superspace

We will deal with N = 2 harmonic superspace (HSS) in the analytic basis parametrized
by the following set of coordinates [5–7]

Z =
(
xm, θ+µ, θ̄+µ̇, u±i , θ

−µ, θ̄−µ̇
)
≡
(
ζ, θ−µ, θ̄−µ̇

)
, (2.1)

ζ =
(
xm, θ+µ, θ̄+µ̇, u±i

)
, (2.2)

where the standard notation of ref. [5] is used. In particular, u±i are harmonic variables
parametrizing the internal sphere S2, u+iu−i = 1, the indices ± denote the harmonic U(1)
charges of various quantities and the index i = 1, 2 is the doublet index of the automorphism
group SU(2)aut acting only on the harmonic variables. The set (2.1) is closed under the
rigid N = 2 supersymmetry transformations

δεx
αα̇ = −2i

(
ε−αθ̄+α̇ + θ+αε̄−α̇

)
, δεθ

±µ̂ = ε±µ̂ , δεu
±
i = 0 , ε±µ̂ = εµ̂iu±i , (2.3)

where we employed the condense notation,4 µ̂ = (µ, µ̇). These transformations also leave
intact the harmonic analytic subspace ζ (2.2).

Both the harmonic superspace and its analytic subspace are self-conjugated under the
generalized tilde involution [5]:

x̃m = xm , θ̃±α = θ̄±α̇ ,
˜̄
θ±α̇ = −θ±α , ũ±i = −u±i , ũ±i = u±i . (2.4)

The HSS formulation of N = 2 gauge theories coupled to the hypermultiplet matter
uses an extension of the HSS (2.1) by a fifth coordinate x5,

Z =⇒ (Z, x5) ⊃ (ζ, x5) , x̃5 = x5 , (2.5)

with the following analyticity-preserving transformation law under N = 2 supersymmetry,

δεx
5 = 2i

(
ε−θ+ − ε̄−θ̄+). (2.6)

This coordinate can be interpreted as associated with the central charge in N = 2 Poincaré
superalgebra.

4Hereafter, we use the notations µ̂ ≡ (µ, µ̇), ∂±
µ̂ = ∂/∂θ∓µ̂, (θ+̂)2 ≡ (θ+)2−(θ̄+)2 and ∂αα̇ = σmαα̇∂m. The

summation rules are ψχ = ψαχα, ψ̄χ̄ = ψ̄α̇χ̄
α̇, Minkowski metric is diag(1,−1,−1,−1) and � = ∂m∂m =

1
2∂

αα̇∂αα̇.
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An important ingredient of the HSS formalism is the harmonic derivatives D++ and
D−− which have the following form in the analytic basis

D++ = ∂++ − 2iθ+ρθ̄+ρ̇∂ρρ̇ + θ+µ̂∂+
µ̂ + i(θ+̂)2∂5 , (2.7)

D−− = ∂−− − 2iθ−ρθ̄−ρ̇∂ρρ̇ + θ−µ̂∂−µ̂ + i(θ−̂)2∂5 , (2.8)
[D++,D−−] = D0 , D0 = ∂0 + θ+µ̂∂−µ̂ − θ

−µ̂∂+
µ̂ . (2.9)

Here we used the standard notations for the partial derivatives with respect to harmonic
variables:

∂++ = u+i ∂

∂u−i
, ∂−− = u−i

∂

∂u+i , ∂0 = u+i ∂

∂u+i − u
−i ∂

∂u−i
. (2.10)

The crucial difference between the derivatives D++ and D−− is that D++ preserves
analyticity, while D−− does not. All superfields except for the hypermultiplet are assumed
to be x5-independent, while the action of ∂5 on the hypermultiplet is identified with the
generator of some U(1) isometry of the free hypermultiplet action (see section 3).

For what follows it will be useful to present the “passive” transformations of various
partial derivatives under N = 2 supersymmetry:

δε∂
−
α = 2iε̄−α̇∂αα̇ − 2iε−α∂5 , δε∂

−
α̇ = −2iε−α∂αα̇ − 2iε̄−α̇∂5 ,

δε∂αα̇ = δε∂5 = 0 . (2.11)

2.1 Analytic prepotentials and invariant action

In this section we summarize the main results of [8]. We present all the necessary infor-
mation about description of N = 2 higher spin supermultiplets in harmonic superspace.
Detailed examples of spin 2 and spin 3 description were given in [8], here we will at once
deal with the general structure of arbitrary spin s theory.

The N = 2 gauge multiplet of highest integer spin s (s ≥ 2)5 is accommodated by two
real analytic bosonic superfields

h++
α(s−1)α̇(s−1)(ζ), h++5

α(s−2)α̇(s−2)(ζ) (2.12a)

and two conjugated analytic spinor superfields

h+++
α(s−1)α̇(s−2)(ζ), h+++

α(s−2)α̇(s−1)(ζ), (2.12b)

where the symbols α(s) and α̇(s) stand for totally symmetric combinations of s spinor
indices, α(s) := (α1, . . . αs), α̇(s) := (α̇1, . . . α̇s). The index 5 in (2.12a) is inherited
from the spin 2 case where h++5 is the linearized form of the analytic vielbein of N = 2
supergravity associated with the central charge ∂5. The corresponding gauge group is

5One can include the spin s = 1 into this hierarchy as well: it is described by a single analytic superfield
h++ and encompasses the Abelian gauge N = 2 multiplet (spins (1, 1/2, 1/2, 0) on shell).
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implemented by the transformations:6

δλh
++α(s−1)α̇(s−1) =D++λα(s−1)α̇(s−1)

+ 2i
[
λ+α(s−1)(α̇(s−2)θ̄+α̇s−1) + θ+(αs−1 λ̄+α(s−2))α̇(s−1)],

δλh
++5α(s−2)α̇(s−2) =D++λα(s−2)α̇(s−2)

− 2i
[
λ+(α(s−2)αs−1)α̇(s−2)θ+

αs−1 + λ̄+(α̇(s−2)α̇s−1)α(s−2)θ̄+
α̇s−1

]
,

δλh
++α(s−1)α̇(s−2)+ =D++λ+α(s−1)α̇(s−2) ,

δλh
++α̇(s−1)α(s−2)+ =D++λ̄+α̇(s−1)α(s−2) .

(2.13)

These transformations can be used to choose the appropriate WZ gauge and then show
that the physical multiplet involves spins

(
s, s− 1

2 , s−
1
2 , s− 1

)
:

h++α(s−1)α̇(s−1) =− 2iθ+ρθ̄+ρ̇Φα(s−1)α̇(s−1)
ρρ̇ + (θ̄+)2θ+ψα(s−1)α̇(s−1)iu−i

+ (θ+)2θ̄+ψ̄α(s−1)α̇(s−1)iu−i + (θ+)2(θ̄+)2V α(s−1)α̇(s−1)(ij)u−i u
−
j ,

h++5α(s−2)α̇(s−2) =− 2iθ+ρθ̄+ρ̇C
α(s−2)α̇(s−2)
ρρ̇ + (θ̄+)2θ+ρα(s−2)α̇(s−2)iu−i

+ (θ+)2θ̄+ρ̄α(s−2)α̇(s−2)iu−i + (θ+)2(θ̄+)2Sα(s−2)α̇(s−2)(ij)u−i u
−
j ,

h++α(s−1)α̇(s−2)+ = (θ+)2θ̄+
µ̇ P

α(s−1)α̇(s−2)µ̇

+
(
θ̄+
)2
θ+
ν

[
εν(αMα(s−2))α̇(s−2) + T α̇(s−2)(α(s−1)ν)

]
+ (θ+)2(θ̄+)2χα(s−1)α̇(s−2)iu−i ,

h++α̇(s−1)α(s−2)+ = ˜(
h++α(s−1)α̇(s−2)+) .

(2.14)

Here the fields

Φα(s−1)α̇(s−1)
ρρ̇ , ψα(s−1)α̇(s−1)i, ψ̄α(s−1)α̇(s−1)i, C

α(s−2)α̇(s−2)
ρρ̇ (2.15)

are physical and describe the bosonic spin s, a doublet of the fermionic s − 1
2 spin fields

and the bosonic spin s− 1. All other fields are auxiliary.
For discussion of the residual gauge transformations and further features of the com-

ponent reduction we refer the reader to [8], where all details in the s = 2 and s = 3 cases
were presented. It was shown there that the residual gauge transformations completely
coincide with the corresponding transformations for the physical bosonic [9] and fermionic
fields [10].

To construct the invariant linearized actions, one must introduce the negatively charged
potentials

h−−α(s−1)α̇(s−1)(Z), h−−5
α(s−2)α̇(s−2)(Z) ,

h−−+
α(s−1)α̇(s−2)(Z), h−−+

α̇(s−1)α(s−2)(Z).
(2.16)

6Our normalization of h++α(s−1)α̇(s−1) and λα(s−1)α̇(s−1) differs by the factor 2 from the one used in [8].
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They are defined as solutions of the harmonic flatness conditions:

D++h−−α(s−1)α̇(s−1) −D−−h++α(s−1)α̇(s−1) = 0 ,
D++h−−5α(s−2)α̇(s−2) −D−−h++5α(s−2)α̇(s−2) = 0 ,
D++h−−α(s−1)α̇(s−2)+ −D−−h++α(s−1)α̇(s−2)+ = 0 ,
D++h−−α̇(s−1)α(s−2)+ −D−−h++α̇(s−1)α(s−2)+ = 0 .

(2.17)

These extra non-analytic potentials will not be present in the Lagrangian of cubic inter-
actions with hypermultiplet and are needed only for constructing the invariant actions of
the gauge superfields.

The bosonic analytic prepotentials (2.12a), (2.12b) and the negatively charged poten-
tials (2.16) have non-standard transformation laws under N = 2 global supersymmetry:7

δεh
±±α(s−1)α̇(s−1) = −2i

[
h±±α(s−1)(α̇(s−2)+ε̄−α̇s−1) − h±±α̇(s−1)(α(s−2)+ ε−αs−1)] ,

δεh
±±5α(s−2)α̇(s−2) = 2i

[
h±±(α(s−2)αs−1)α̇(s−2)+ε−αs−1 + h±±α(s−2)(α̇(s−2)α̇s−1)+ ε̄−α̇s−1

]
.

(2.18a)

Spinor potentials have the standard N = 2 superfield passive transformation rules:8

δεh
±±α(s−1)α̇(s−2)+ = 0, δεh

±±α̇(s−1)α(s−2)+ = 0 . (2.18b)

As the building blocks of N = 2 supersymmetric actions, one defines non-analytic
N = 2 singlet superfields,

G±±α(s−1)α̇(s−1) = h±±α(s−1)α̇(s−1) + 2i
[
h±±α(s−1)(α̇(s−2)+θ̄−α̇s−1)

− h±±α̇(s−1)(α(s−2)+ θ−αs−1)],
G±±5α(s−2)α̇(s−2) = h±±5α(s−2)α̇(s−2) − 2i

[
h±±(α(s−2)αs−1)α̇(s−2)+θ−αs−1

+ h±±α(s−2)(α̇(s−2)α̇s−1)+ θ̄−α̇s−1

]
.

(2.19)

It is straightforward to be convinced that indeed δεG±±··· = 0.
The newly introduced superfields satisfy the harmonic flatness conditions

D++G−−α(s−1)α̇(s−1) −D−−G++α(s−1)α̇(s−1) = 0 ,
D++G−−5α(s−2)α̇(s−2) −D−−G++5α(s−2)α̇(s−2) = 0

and transform under the gauge group as

δλG
±±α(s−1)α̇(s−1) = D±±Λα(s−1)α̇(s−1) , δλG

±±5α(s−2)α̇(s−2) = D±±Λα(s−2)α̇(s−2) ,

(2.20)
7δε is the passive transformation, which differs from the active transformation δ∗

ε by the “transport
term”, δ∗

ε = δε − δεZM∂M , where M = (αα̇, µ̂+, 5). Though the gauge superfields do not depend on x5,
∂5h

±±... = 0, the derivative ∂5 can be non-zero on the matter hypermultiplet superfields, see section 3.
8In the full nonlinear case of hypothetical “higher-spin N = 2 supergravities” the rigid N = 2 super-

symmetry is expected to be included in the general gauge transformations.
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where Λ’s are composed out of the analytic gauge parameters λ’s and the coordinates θ−α̂’

Λα(s−1)α̇(s−1) = λα(s−1)α̇(s−1) + 2i
[
λ+α(s−1)(α̇(s−2)θ̄−α̇s−1) − λ̄+α̇(s−1)(α(s−2)θ−αs−1)],

Λα(s−2)α̇(s−2) = λα(s−2)α̇(s−2) − 2i
[
λ+(α(s−2)αs−1)α̇(s−2)θ−αs−1

− θ̄−α̇s−1 λ̄
+(α̇(s−2)α̇s−1)α(s−2)] . (2.21)

The N = 2 gauge invariant action, up to a normalization factor, has the universal form
for any s:

S(s) = (−1)s+1 1
κ2
s

∫
d4xd8θdu

{
G++α(s−1)α̇(s−1)G−−α(s−1)α̇(s−1)

+G++5α(s−2)α̇(s−2)G−−5
α(s−2)α̇(s−2)

}
, (2.22)

where κs is a higher spin analog of Newton’s constant. The N = 2 supersymmetry of (2.22)
is manifest, while the gauge invariance can be checked by bringing the gauge variation of
S(s) to the form

δλS(s) = 2(−1)s+1 1
κ2
s

∫
d4xd8θdu

{
D−−Λα(s−1)α̇(s−1)G++

α(s−1)α̇(s−1)

+D−−Λα(s−2)α̇(s−2)G++5
α(s−2)α̇(s−2)

}
(2.23)

and proceeding further by taking into account that the ++-potentials in (2.19) are linear
in the negatively charged coordinates with the analytic coefficients. The straightforward
calculation immediately yields that δλS(s) = 0.

The dimension of the coupling constant κs is fixed by the dimension of the analytic
prepotentials. In mass units, the “engineering” dimension of the analytic gauge potentials
is [h++α(s−1)α̇(s−1)] = [h++5α(s−2)α̇(s−2)] = −(s− 1), [h++α(s−1)α̇(s−2)+] = −s+ 3

2 , whence
[κs] = −(s−1). These dimensions differ from the canonical ones. For example, the engineer-
ing dimension of the physical spin s field Φα(s−1)α̇(s−1)

ρρ̇ in (2.15) is [Φα(s−1)α̇(s−1)
ρρ̇ ] = −(s−2),

while its canonical dimension is +1. The canonical dimensions can be always restored by
redefining the superfields in the set (2.12a) and their negatively charged counterparts as
h±±... = κsh

±±...
can . In what follows, it will be more convenient to deal with the gauge

superfields of engineering dimensions.
Summarizing, here we have repeated the main results of [8]. We presented the trans-

formation laws of the spin s superfields under both the gauge group (2.13) and N = 2
global supersymmetry (2.18a), (2.18b) and then wrote down the invariant action (2.22)
which is valid for any s.

2.2 Gauge transformations via differential operators

In this section, we define analytic, N = 2 supersymmetry-preserving differential operators
which encode all the analytic prepotentials of the spin s higher spin supermultiplet. We
will start with the case of N = 2 Einstein supergravity (corresponding to s = 2) and
then generalize this construction to an arbitrary higher spin N = 2 supermultiplet. These
operators will play the key role in the construction of cubic couplings of hypermultiplet to
higher spin gauge multiplets.
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2.2.1 Differential operators for gauge transformations in N = 2 Einstein su-
pergravity

One of the underlying principles of Einstein N = 2 supergravity in harmonic superspace [5]
is the covariantization of flat harmonic derivative (2.7)

D++ → D++ = D++ + Ĥ++
(2) ,

Ĥ++
(2) := h++αα̇∂αα̇ + h++µ̂+∂−µ̂ + h++5∂5 , (2.24)

[∂+
µ̂ , Ĥ

++
(2) ] = 0 . (2.25)

Analytic superfields h++αα̇, h++µ̂+ and h++5 are unconstrained analytical prepotentials of
N = 2 Einstein supergravity. One can easily check that the operator Ĥ++

(2) is invariant
under N = 2 global supersymmetry (2.11) accompanied by (2.18a) and (2.18b) specialized
to the case s = 2. Note that the operator Ĥ++

(2) and its arbitrary spin s generalizations
Ĥ++

(s) are dimensionless and the engineering dimensions of the component gauge superfields
are uniquely fixed by the dimensions of the related (higher-order) derivatives.

Fundamental gauge group of Einstein N = 2 supergravity (its “minimal” ver-
sion [77, 78]) is the following group of superdiffeomorphisms of the analytic harmonic
superspace:

δλx
αα̇ = λαα̇(ζ), δλx5 = λ5(ζ), δλθ+µ̂ = λ+µ̂(ζ),

δλu
±i = 0. (2.26)

It will be useful for future application to realize these transformations on the gauge
superfields as the “active” ones using the differential operator:

Λ̂(2) := λαα̇∂αα̇ + λ+µ̂∂−µ̂ + λ5∂5 := ΛM∂M . (2.27)

Hereafter we use the notations M = (αα̇, µ̂+, 5). By construction, the full covariant
harmonic derivative is invariant under the action of gauge group of supergravity:

δλD
++ = 0 . (2.28)

From (2.28) one can easily deduce the active transformation laws for the analytic prepo-
tentials (2.13)

δ∗λD
++ = δ∗λĤ++

(2) = δ∗λh
++M∂M = [D++, λM∂M ] . (2.29)

For instance,

δ∗λh
++αα̇ = D++λαα̇ + 2i

(
λ+αθ̄+α̇ − θ+αθ̄+α̇)− (λM∂Mh++αα̇) . (2.30)

The linearized form of the transformation law (2.29) reads:

δ∗λĤ++
(2) = δλĤ++

(2) = [D++, Λ̂(2)] . (2.31)

So we conclude that the analyticity preserving N = 2 supersymmetry invariant differential
operator Ĥ++

(2) has the very simple linearized transformation law realized as the commutator
of the flat harmonic derivative with the differential operator involving all the superfield
gauge parameters which are contracted with the corresponding partial derivatives. In the
case of spins s ≥ 3 there are no realizations of the gauge groups on the coordinates, so just
the active form of gauge transformations proves to be relevant.
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2.2.2 Differential operators for gauge transformations in N = 2 spin s higher
spin theory

Now we will extend s = 2 construction of N = 2 supersymmetry invariant analytic dif-
ferential operator Ĥ++

(2) (2.24) to general higher N = 2 spins s. It will be the necessary
ingredient for construction of interactions of hypermultiplet with higher spins.

First of all, we will define the analytic N = 2 invariant differential operator that is a
natural extension of the differential operator (2.24) for s = 2:

Ĥ++α(s−2)α̇(s−2) := h++α(s−2)α̇(s−2)M∂M . (2.32)

Here s ≥ 2 and it is assumed that the corresponding spinor indices in h++α(s−2)α̇(s−2)M

are always symmetrized with those in M , e.g., h++α(s−2)α̇(s−2)γγ̇ = h++(α(s−2)γ)(α̇(s−2)γ̇).
The corresponding operator involving the analytic gauge parameters is constructed as a
natural generalization of (2.27):

Λ̂α(s−2)α̇(s−2) := λα(s−2)α̇(s−2)M∂M , (2.33)

with the same convention concerning the spinor indices hidden in the index M , e.g.,
λα(s−2)α̇(s−2)γγ̇ = λ(α(s−2)γ)(α̇(s−2)γ̇). In these notations, the gauge transformations (2.13)
are realized as

δλĤ++
(s) = [D++, Λ̂(s)] , (2.34)

where

Ĥ++
(s) := Ĥ++α(s−2)α̇(s−2)∂s−2

α(s−2)α̇(s−2) ,

Λ̂(s) := Λ̂α(s−2)α̇(s−2)∂s−2
α(s−2)α̇(s−2) (2.35)

and
∂kα(k)α̇(k) := ∂(α1α̇1 . . . ∂αk)α̇k . (2.36)

Note, that here, in contrast to the spin 2 case (2.31), we added s − 2 vector derivatives
∂s−2
α(s−2)α̇(s−2) in (2.34). These extra derivatives are necessary both for reproducing the

correct transformation properties of the analytic prepotentials from (2.34) and for ensuring
the compatibility with the rigid N = 2 supersymmetry. Indeed, it is easy to check that
only the operator Ĥ++

(s) is N = 2 supersymmetric, δεĤ++
(s) = 0. For s ≥ 3, neither the

operator (2.32) nor any its contraction with ∂αα̇, such that some amount of the free spinor
indices is left, are invariant under N = 2 supersymmetry (2.11), (2.18).

One can also construct a useful N = 2 superfield:

Γ++
(s) = ∂s−2

α(s−2)α̇(s−2)Γ
++α(s−2)α̇(s−2) , (2.37)

where we used the notation

Γ++α(s−2)α̇(s−2) = ∂ββ̇h
++(α(s−2)β)(α̇(s−2)β̇) − ∂−β h

++(α(s−2)β)α̇(s−2)+

−∂−
β̇
h++α(s−2)(α̇(s−2)β̇)+ = (−1)P (M)∂Mh

++α(s−2)α̇(s−2)M , (2.38)
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with P (M) = 0 for M = αα̇ and P (M) = 1 for M = µ̂+. It possesses the simple gauge
transformation law:

δλΓ++
(s) = D++Ω(s) , Ω(s) :=

(
∂s−2
α(s−2)α̇(s−2)Ω

α(s−2)α̇(s−2)), (2.39)

where
Ωα(s−2)α̇(s−2) := (−1)P (M)(∂Mλα(s−2)α̇(s−2)M) . (2.40)

The superfield Γ++
(s) is also invariant under N = 2 supersymmetry (2.11) and (2.18):

δεΓ++
(s) = 0 . (2.41)

We will use the operator (2.35) and the superfield (2.37) for construction of gauge-
invariant couplings with the hypermultiplet. Note that there are only one N = 2 super-
symmetric invariant operator Ĥ++

(s) and only one invariant superfield Γ++
(s) which are linear

in the analytic prepotentials. This will significantly restrict the possible cubic couplings
with the hypermultiplet.

3 Hypermultiplet couplings: spins 1, 2, 3, 4

3.1 Hypermultiplet in harmonic superspace

The N = 2 hypermultiplet free action has the form [5–7]:9

S =
∫
dζ(−4) L+4

free = −
∫
dζ(−4) 1

2q
+aD++q+

a = −
∫
dζ(−4) q̃+D++q+, [q+a] = 1. (3.1)

We can write the action in the two equivalent forms: in terms of the pseudo-real analytic
superfield q+a(ζ) with the Pauli-Gürsey SU(2)PG doublet indices (a = 1, 2) or in terms of
the complex superfields q+ and q̃+. These two representations are related by:

q+
a = (q+,−q̃+), q̃+

a ≡ q+a = εabq+
b = (q̃+, q+) . (3.2)

Hereafter, we will use the first form of the action since the manifest SU(2)PG symmetry
crucially simplifies the calculations.

A peculiarity of our theory is the presence of the derivative ∂5 and of the corresponding
gauge superfields. The option ∂5q

+a 6= 0 is most general (though the choice ∂5q
+a = 0

is also admissible). In order to avoid any integration over x5, we impose the standard
Scherk-Schwarz condition that ∂5q

+a coincides (up to a phase factor) with the action of
some U(1)PG ⊂ SU(2)PG. Without loss of generality we assume

q+(x, θ+, u, x5) = e−imx
5
q+(x, θ+, u) ⇔ ∂5q

+a := im(τ3)abq+b, (3.3)

(τ3)ab =
(

1 0
0 −1

)
= −(τ3) ab , (τ3)ab = εac(τ3)cb =

(
0 −1
−1 0

)
. (3.4)

9We use the standard definition of the analytic superspace integration measure [5]:

dζ(−4) := d4xd2θ+d2θ̄+du .
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The parameter m is a mass of the hypermultiplet, so we deal with the massive hypermul-
tiplet in the general case. It is easy to check that

∂5(q+aD++q+
a ) = 0 . (3.5)

The action (3.1) is invariant under the rigid N = 2 supersymmetry,

δ∗ε q
+a = −δεZM∂Mq+a , (3.6)

where we need to take into account also the transformation of x5 (2.6) for m 6= 0. Be-
cause of (3.5), it does not affect the N = 2 supersymmetry transformation of the La-
grangian, though modifies N = 2 transformation of q+a. The internal symmetry of the
single hypermultiplet action is SU(2)PG × SU(2)aut in the massless case (∂5q

+a = 0) and
U(1)PG × SU(2)aut in the massive case (∂5q

+a 6= 0).
The equation of motion for the free massive hypermultiplet is:

D++q+a = 0. (3.7)

On shell, the analytic harmonic superfield q+a is reduced to:

q+(ζ) = f iu+
i + θ+αψα + θ̄+

α̇ κ̄
α̇ +m(θ+)2f iu−i −m(θ̄+)2f iu−i + 2iθ+σnθ̄+∂nf

iu−i . (3.8)

Eq. (3.7) also implies the massive equations of motion for the physical fields. We will not
need their explicit form. The massless hypermultiplet corresponds to setting m = 0 in (3.3)
and (3.8).

In the sequel we will derive the coupling of the hypermultiplet to the gauge super-
multiplets of integer spins described in the HSS approach by analytic superfields (2.12a)
and (2.12b).

3.2 Guiding principles

Before turning to our basic subject, we will formulate a few generic á priori restrictions on
the structure of possible interactions:

• Analyticity. We require that coupling must be analytic because hypermultiplet is
described by an analytic superfield and the well known couplings of the hypermultiplet
to the gauge and supergravity N = 2 theories preserve the analyticity. Moreover,
the harmonic analyticity is one of the major and crucial features of the harmonic
superspace approach and it proved its power while having constructed N = 2 Fronsdal
theory in the harmonic superspace [8].

• N = 2 supersymmetry. The manifest rigid N = 2 supersymmetry is a necessary
ingredient of our construction and it is one of the main general reasons for employ-
ing harmonic superspace. Since the hypermultiplet has the N = 2 transformation
law (3.6) the gauge higher-spin superfields must also appear in a way preserving
N = 2 supersymmetry. This requirement significantly limits the possible form of cu-
bic interaction. Using the results of section 2.2.2 the gauge superfields can appear only
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within two possible terms, the first one involving the supersymmetry-invariant dif-
ferential operator (2.35), and the second one involving the supersymmetry-invariant
superfield (2.37):

S
(s)
int(1) =

∫
dζ(−4) Aabq

+aĤ++
(s) q

+b , (3.9a)

S
(s)
int(2) =

∫
dζ(−4) Γ++

(s) Babq
+aq+b . (3.9b)

Here Aab and Bab = Bba are some matrices, which in general can break the Pauli-
Gürsey SU(2)PG symmetry. The possible structure of these matrices is fully specified
by the gauge symmetry (which, in turn, is determined by the appropriate global
symmetry of the q+ action through the gauging procedure).

• Gauge invariance. The most crucial property is gauge invariance in the leading order
in the gauge superfield.
As usual, the gauge transformations should be defined through gauging of the global
symmetry transformations and so should yield global symmetry upon restricting
gauge parameters to constant values.
We know the linearized gauge transformation laws of the basic quantities Ĥ++

(s) (2.34)
and Γ++

(s) (2.39). So in the leading order in the gauge parameters, the gauge variation
of the full action should be composed of the two possible terms:

δλS
(s)
int(1) =

∫
dζ(−4) Aabq

+a[D++, Λ̂α(s−2)α̇(s−2)]∂s−2
αα̇ q+b , (3.10a)

δξS
(s)
int(2) =

∫
dζ(−4)

(
D++∂s−2

αα̇ Ωα(s−2)α̇(s−2)
)
Bab q

+aq+b . (3.10b)

These variations must be canceled by the appropriate variations of the free hypermul-
tiplet action induced by the higher-spin gauge transformations of the hypermultiplet.

Thus, the general strategy for building cubic interactions of the hypermultiplet with
the given spin s supermultiplet should be the following. As the starting point, one finds out
the appropriate global symmetry of the free hypermultiplet action realized on the superfield
q+a. Secondly, one considers the most general gauging of this global symmetry and singles
out the necessary combinations of the gauge transformations of the hypermultiplet ensuring
cancelation of the gauge superfield variations (3.10a) and (3.10b). Finally, from the last
two steps, one determines the matrices Aab and Bab, and, as a result, derives the sought
cubic couplings.

It is worth emphasizing that the general gauging procedure described above makes it
possible to gauge all global symmetries realized on the hypermultiplet. Thus it is capable to
yield all admissible local first-order Noether couplings of the hypermultiplet to higher-spin
gauge fields (see the relevant discussion also in section 5).

3.3 Spin 1 coupling

The construction of the vector multiplet coupling to hypermultiplet is well known [5–7].
Here we adapt it to the generic form applicable to higher spins.
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Rigid symmetry. The free hypermultiplet action (3.1) is invariant under the U(1) rigid
transformation which can be realized as a “shift” with respect to x5 with the generator (3.3).
Now we will gauge this global symmetry.

Gauging. The spin 1 gauge transformations read:

δλq
+a = −λ5∂5q

+a, ∂5q
+a := im(τ3)abq+b , (3.11)

where λ5(ζ) is an arbitrary analytic gauge parameter. The formalism of section 2.2.2 is
adapted to this degenerate case as

D++ ⇒ D++
(1) = D++ + Ĥ++

(1) , Ĥ++
(1) = h++5∂5 , (3.12)

δλĤ++
(1) = [D++, Λ̂(1)], Λ̂(1) = λ5∂5 ⇒ δλh

++5 = D++λ5 . (3.13)

The transformation of the hypermultiplet action (3.1) under (3.11) reads:

δλL+4
free = i

1
2(D++λ5)q+a∂5q

+
a = im

1
2(τ3)ab(D++λ5)q+aq+b . (3.14)

If D++λ5 = 0, the gauge transformation (3.11) becomes a rigid internal symmetry of the
action, in the full agreement with gauging procedure. In order to make the action (3.1)
invariant under gauge transformations (3.11), one needs just the compensating gauge su-
perfield h++5(ζ) which is introduced through the substitution (3.12)

L+4
free → L+4(s=1)

gauge = L+4
free −

1
2q

+aĤ++
(1) q

+
a = L+4

free − im
1
2h

++5(τ3)abq+aq+b . (3.15)

Using the gauge transformations δh++5 = D++λ5, one can choose the Wess-Zumino gauge
for h++5 as:

h++5
WZ =− 2iθ+σmθ̄+Am − i(θ+)2φ̄+ i(θ̄+)2φ

+ 4(θ̄+)2θ+αψiαu
−
i − 4(θ+)2θ̄+

α̇ ψ̄
α̇iu−i + (θ+)2(θ̄+)2Diju−i u

−
j , (3.16)

which yields just the off-shell field content of N = 2 Maxwell multiplet. The engineer-
ing dimension of h++5 is −1 and the passing to the gauge superfield h++ with the zero
canonical dimension is accomplished as h++ = mh++5. The gauge invariant and N = 2
supersymmetric action of the spin 1 gauge superfield has the standard form,

S(s=1) = 1
κ2
s=1

∫
d4xd8θduh++h−− , [κs=1] = 0 . (3.17)

Note that the action (3.15) is exactly invariant under the gauge transformations (3.11)
and (3.13) in consequence of the relation

δλ
(
(τ3)abq+aq+b

)
∼ 2(τ3)ab(τ3)acq+cq+b ∼ εbcq+cq+b = 0. (3.18)

In the case of higher spin couplings (s > 2), no such an exact gauge invariance is present
in the leading order in gauge superfields in view of absence of the analogous relations. So
it is the peculiarity of the spin 1 coupling only.
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One more notable feature of the simplest case considered is the following. The re-
lations (3.11) and (3.15) imply that if the hypermultiplet is x5 independent, the mass
parameter m vanishes in (3.15) and a non-trivial cubic coupling of such a massless hyper-
multiplet to spin 1 gauge field is seemingly impossible. To avoid this obstacle and get a
possibility to construct the cubic coupling for both massive and massless theory, one can
resort to the following reasoning. The main point is that in general it is not obligatory to
identify the central charge ∂5 with the generator J of U(1)PG ⊂ SU(2)PG to be gauged.
The basic condition for such a generator is

[D++
(1) , J ] = 0 , (3.19)

whence, without loss of generality,

Jq+a = i(τ3)abq+b . (3.20)

This corresponds just to replacing ∂5 to J in the gauge transformation law (3.11):

δ′λq
+a = −λJq+a = −i λ(τ3)abq+b , [λ] = 0 . (3.21)

Hence the hypermultiplet can still be chosen ∂5-neutral (∂5q
+a = 0) and thus massless. The

interaction with Maxwell multiplet will have the same form as in (3.15), where we have to
replace m by 1 and h++5 by the dimensionless h++. Note that in the massive case, with
∂5q

+a ∼ i(τ3)abq+b 6= 0, it is necessary to identify ∂5 with the gauged U(1)PG generator
J (up to an unessential constant of mass dimension, ∂5 ∼ mJ), in order to preserve the
gauge invariance of the total q+a action. In the massless case J still commutes with all
N = 2 supersymmetry generators (as SU(2)PG generators do) but has no any relation with
the central charge.

Let us point out once more that the N = 2 Maxwell theory analytic potential and its
coupling to the charged hypermultiplet can be constructed without any reference to the
fictitious coordinate x5 and its interplay with the generator J . The way we have followed
here is just a simple illustration of the general procedure outlined in the previous subsection.
As we will see soon (in the subsections 3.5 and 4.1), the above procedure with the extra
coordinate x5 and the matrix generator J perfectly well works for all odd spins s ≥ 3 .

We finish this subsection with the two comments.
First, in the gauge-covariant derivative (3.12) one can remove the mass-generating

background in D++ just by redefining h++5 → h++5 − i[(θ+)2 − (θ̄+)2], before any iden-
tification of ∂5 with U(1)PG ⊂ SU(2)PG.10 This means that, in the gauged s = 1 theory
for the single hypermultiplet, there is no actual difference between massive and massless
cases: the mass parameter m appears only as a coupling constant in the minimal interac-
tion (3.15) and can be removed (or set equal to 1) by the proper rescaling of h++5 (the
same phenomenon can be easily traced also in the component formulation).

Secondly, perhaps a more convincing explanation why it is useful to introduce the
matrix generator J ⊂ su(2)PG besides ∂5 is as follows. As we saw in the previous section,

10Such a redefinition leaves invariant, up to a total harmonic derivative, the action of h++5 and slightly
changes the N = 2 supersymmetry transformation of h++5 by adding a particular gauge transformation.
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the differential operators relevant to the spin s case are always of the order (s − 1), so it
would be more natural to describe the spin 1 by the differential operators of the zeroth
order, than of the first order as in (3.13). Such a description, in accord with the general
scheme of section 2, amounts to

D++ ⇒ D++
(1) = D++ + Ĥ++ , Ĥ++ = h++J , (3.22)

δλĤ++ = [D++, Λ̂] , Λ̂ = λJ ⇒ δλh
++ = D++λ . (3.23)

The flat harmonic derivative D++ is still defined by the general expression (2.7), with the
central charge operator ∂5. The relevant gauge transformation of q+a is now postulated as
in (3.21), with the SU(2)PG symmetry matrix generator J properly realized on q+a. The
covariantization of (3.22), when it acts on q+a, is then accomplished as

D++
(1) q

+a =
(
D++ + Ĥ++)q+a = D++q+a + ih++(τ3)abq+b . (3.24)

The standard condition [D++
(1) , J ]q+a = 0 still admits the solution ∂5q

+a = 0 , which yields
a massless hypermultiplet. For ∂5q

+a 6= 0 , the same condition necessitates the relation
∂5 ∼ J , yielding the massive hypermultiplet. As we argued above, for the spin 1 coupled
to the hypermultiplet, the massive and the massless Lagrangians are related through a
redefinition of the gauge superfield h++. However, no such an equivalence between massive
and massless Lagrangians is valid for higher odd spins s ≥ 3. It is just the description
outlined here that directly extends to the s ≥ 3 case.

3.4 Spin 2 coupling

The hypermultiplet coupling to N = 2 supergravity (s=2) is also well known [6, 7, 79, 80].
Here we repeat the relevant construction in the form most convenient for further general-
izations.

Rigid symmetry. The free hypermultiplet possesses the following global supetranslational
symmetry

δrigq
+a = −Λ̂rigq

+a, (3.25)
Λ̂rig =

(
λαα̇ − 2iλ−αθ̄+α̇ − 2iθ+αλ̄−α̇

)
∂αα̇ + λ+α∂−α + λ̄+α̇∂−α̇

+
(
λ5 + 2iλα̂−θ+

α̂

)
∂5 := ΛM∂M . (3.26)

It involves five constant bosonic parameters λαα̇, λ5, four constant spinor parameters λα̂i,
such that λ±α̂ = λα̂iu±i , and it can be treated as a copy of the rigid N = 2 supersymmetry
transformations in their active form. However, we will gauge just it, leaving N = 2
supersymmetry still rigid, so that the latter forms a semi-direct product with the gauge
extension of (3.25). Recall that in the previous subsection we have already introduced
λ5 transformations in order to describe spin 1 supermultiplet after their gauging. The
symmetry (3.25) is an extension of this ∂5 symmetry, such that its gauging generates the
multiplet of minimal N = 2 Einstein supergravity.
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Operator Λ̂rig commutes with the harmonic derivative (we assume, as earlier, that all
operators act on analytic superfields):

[D++, Λ̂rig] = 0 . (3.27)

The Lagrangian (3.1) is invariant, up to total derivative, under these transformations:

δrigL+4
free = 1

2Λ̂rigq
+aD++q+

a + 1
2q

+aD++Λ̂rigq
+
a = 1

2Λ̂rig
(
q+aD++q+

a

)
= (−1)P (M) 1

2∂MΛM
(
q+aD++q+

a

)
= 0 .

(3.28)

Gauging. In this case there are two possibilities for gauge transformations of the hyper-
multiplet:

δ1q
+a = −Λ̂(2)q

+a, Λ̂(2) := λM∂M = λαα̇∂αα̇ + λ+α∂−α + λ̄+α̇∂−α̇ + λ5∂5 , (3.29)

δ2q
+a = −1

2Ω(2)q
+a, Ω(2) := (−1)P (M)∂Mλ

M = ∂αα̇λ
αα̇ − ∂−α λ+α − ∂−α̇ λ̄

+α̇. (3.30)

The relevant first- and zeroth-order differential operators are the particular s = 2 case
of the general operators (2.33) and (2.40). Here λαα̇(ζ), λ+α̂(ζ) and λ5(ζ) are arbitrary
analytic gauge parameters. The first type of transformations, δ1q

+a, corresponds to the
direct gauging of the above supertranslations, while the second type δ2q

+a can be treated
as a special gauging of the constant-parameter rescaling of the hypermultiplet (which is
not invariance on its own). Under (3.29) the hypermultiplet action (3.1), up to a total
derivative, transforms as:

δ1L+4
free = 1

2q
+a[D++, Λ̂(2)]q+

a −
1
2Ω(2)q

+aD++q+
a . (3.31)

The transformation (3.30) leads to the following variation of the Lagrangian:

δ2L+4
free = 1

2Ω(2)q
+aD++q+

a , (3.32)

where we made use of the evident property

q+a(D++Ω(2))q+
a = 0 . (3.33)

Thus the total gauge variation of the free Lagrangian reads:

(δ1 + δ2)L+4
free = 1

2q
+a[D++, Λ̂(2)]q+

a . (3.34)

This variation vanishes for the constant parameters, so the relevant transformations provide
the evident symmetry of the action.

To couple spin 2 theory to the hypermultiplet we use the differential operator (2.24),

Ĥ++
(2) = h++αα̇∂αα̇ + h++µ̂+∂−µ̂ + h++5∂5 , (3.35)
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with the transformation law (2.31):

δĤ++
(2) = [D++, Λ̂(2)]. (3.36)

Respectively, the gauging is accomplished as:

L+4
free → L+4(s=2)

gauge = L+4
free −

1
2q

+aĤ++
(2) q

+
a . (3.37)

The variation of Ĥ++
(2) in the second term cancels (3.34). So the action (3.37) provides the

gauge invariant coupling of the spin 2 to the hypermultiplet in the leading (first) order in
gauge superfields.

Now we could try to restore the next orders. The δ1 and δ2 variations of the hyper-
multiplet q+a in the second term of (3.37), up to a total derivative, generate the following
new term:

δ̃

(1
2q

+aĤ++
(2) q

+
a

)
= 1

2q
+a[Ĥ++

(2) , Λ̂(2)]q+
a . (3.38)

So, for the full variation of the gauge superfield part we obtain:

δ

(1
2q

+aĤ++
(2) q

+
a

)
= −1

2q
+a[D++, Λ̂(2)]q+

a + 1
2q

+a[Ĥ++
(2) , Λ̂(2)]q+

a . (3.39)

Thus the action (3.37) is not invariant under the gauge transformations (3.29) and (3.30).
The full gauge transformation of the Lagrangian (3.37) reads

δλL+4(s=2)
gauge = 1

2q
+a[Ĥ++

(2) , Λ̂(2)]q+
a . (3.40)

One can cancel this extra unwanted term just by adding the nonlinear term to the linearized
gauge transformation law (2.31):

δfullĤ++
(2) = [D++, Λ̂(2)] + [Ĥ++

(2) , Λ̂(2)] = [D++, Λ̂(2)] . (3.41)

Thus, in contrast to the spin 1 case, where we had the exact gauge invariance without
any modification of the transformation law of the relevant operator Ĥ++

(1) , in the spin 2
case one is led to modify the gauge transformation of Ĥ++

(2) to achieve the complete gauge
invariance.

The deformation (3.41) of the spin 2 transformation law means that the linearized
action of N = 2 supergravity (2.23) must also be modified by including nonlinear terms in
the action, so as to achieve the full gauge invariance for both the pure supergravity gauge
superfield action and the hypermultiplet couplings. It is an essential difference from the spin
1 case where the pure gauge part of the spin 1 total action is given by the action (3.17) and
does not require any correction terms. A complete nonlinear harmonic superfield action
for N = 2 Einstein supergravity has been constructed in [79]. We emphasize that the
discussion of any nonlinear aspects of this kind are beyond the scope of the present paper.

To summarize, we have restored, from the transformation law for hypermultiplet and
gauge fields, the well known complete coupling of the hypermultiplet to the minimal N = 2
supergravity multiplet:

L+4(s=2)
gauge = −1

2q
+aD++q+

a = −1
2q

+a
(
D++ + Ĥ++

(2)

)
q+
a . (3.42)
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It is worth noting that it is easier to check the gauge invariance of the analytic super-
space action with the Lagrangian (3.42), using the passive form of the gauge transforma-
tions

δλD
++ = 0 , δλq

+a = −1
2Ω(2)q

+a , δλdζ
(−4) = dζ(−4)Ω(2) . (3.43)

Our last remark is that it is consistent to choose ∂5q
+a = 0 in the spin s = 2 case.

Under this restriction, the prepotential h++5 drops out from the hypermultiplet action
which so corresponds to the massless hypermultiplet. However, the h++5 term should still
be present in the gauge action (2.22) with s = 2 for ensuring the gauge invariance of
the latter.

3.5 Spin 3 coupling

In this case we will also start with the appropriate rigid transformations. Our previous
consideration suggests that for any s the q+a variation of the highest order in derivatives
involves the same differential operator as in (2.35), ∂M∂s−2

α(s−2)α̇(s−2), i.e. ∂M∂αα̇ for s = 3.
Here á priory we have two options for defining higher-order global transformations of

q+a, such that the second option (an analog of global transformations of spin 1 (3.3) in a
sense) leads to the desired result, while the first option (the most natural generalization of
the spin s = 2 transformation (3.25)) does not ensure the invariance of the Lagrangian.

Option 1. It is chosen as a direct generalization of the spin 2 rigid transformations (3.25),

δrigq
+a = −Λ̂αα̇rig∂αα̇q

+a , (3.44)

Λ̂αα̇rig =
(
λ(αβ)(α̇β̇) − 2iλ(αβ)(α̇−θ̄+β̇) − 2iθ+(αλ̄β)(α̇β̇)−

)
∂ββ̇

+ λ(αβ)α̇+∂−β + λ̄(α̇β̇)α+∂−
β̇

+
(
λαα̇ + 2iλ(αβ)α̇−θ+

β + 2iλα(β̇α̇)−θ̄+
β̇

)
∂5 . (3.45)

Here we used the notation (2.33) for the differential operator Λ̂αα̇ in the s = 3 case.
The bosonic parameters λ(αβ)(α̇β̇), λαα̇, as well as the coefficients of the harmonics in the
fermionic parameters λ(αβ)α̇± = λ(αβ)α̇iu±i , λ̄(α̇β̇)α± = λ̄(α̇β̇)αiu±i , are assumed to be
coordinate-independent. So we face 9 + 4 = 13 bosonic parameters and 2 · 3 · 2 = 12
fermionic parameters. Assuming that the operators act on the analytic superfields, we
check that:

[D++, Λ̂αα̇rig ]∂αα̇ = 0. (3.46)

Using this property and integration by parts one can derive the relevant variation of the
free Lagrangian:11

δrigL+4
free = 1

2εab
(
Λ̂αα̇gl ∂αα̇q+aD++q+b + q+aD++Λ̂αα̇gl ∂αα̇q+b

)
= Λ̂αα̇rig∂αα̇q

+aD++q+
a .

(3.47)

We observe that the variation of the Lagrangian is not reduced to a total derivative,
which means that the transformations (3.44) do not constitute a global symmetry of the

11Hereafter, we always omit total derivatives while operating with the variations of the Lagrangians.
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free hypermultiplet. Thus we need to look for some alternative definition of the rigid
transformations of the hypermultiplet in the spin s = 3 case.

Option 2. This is a generalization of the spin 1 rigid transformations (3.3). We take the
rigid transformations in the form:

δrigq
+a = −Λ̂αα̇rig∂αα̇(Jq+a) = −i(τ3)abΛ̂αα̇rig∂αα̇q

+b. (3.48)

As in the spin s = 1 case, we have introduced here a new generator Jq+a which á priori is
not obliged to be collinear to ∂5 appearing in D++. To substantiate the choice (3.48), we
note that the relevant modification of the important condition (3.46),

[D++, Λ̂αα̇rigJ ]∂αα̇ = 0 , (3.49)

when applied to the hypermultiplet superfield q+a, implies, apart from (3.46), also the
condition

[D++, J ] = 0 . (3.50)
Assuming that J is identified with some U(1)PG ⊂ SU(2)PG, like ∂5, eq. (3.50) leaves us
with only two possibilities:

(a) ∂5q
+a = 0 , Jq+a 6= 0 ; (b) ∂5q

+a ∼ Jq+a = i(τ3)abq+b , (3.51)

the second option being related to the fact that no mutually commuting two generators
can be found in SU(2). Without loss of generality, Jq+a in (3.51a) can be chosen the same
as in (3.51b).

The variation of the free Lagrangian under (3.48) is vanishing,

δrigL+4
free = −i12(τ3)abΛ̂αα̇rig∂αα̇q

+bD++q+a + i
1
2(τ3)abq+aD++Λ̂αα̇rig∂αα̇q

+b = 0 , (3.52)

where we used (3.49) and integrated by parts, with taking account of the properties
∂MΛαα̇Mrig = ∂ββ̇Λαα̇Mrig = 0 , (τ3)ab = (τ3)ba . So the transformation (3.48) provides a
global symmetry of the free hypermultiplet action. Thus we are led to gauge just this
symmetry.

Gauging. The gauge transformation operators in this case are

Λ̂αα̇ = λαα̇M∂M , Λ̂(3) = Λ̂αα̇∂αα̇ = λαα̇M∂M∂αα̇ ,

Ωαα̇ = (−1)P (M)(∂Mλαα̇M ) , Ω(3) = (∂αα̇Ωαα̇
(3)) , (3.53)

where
λαα̇M∂M = λ(αβ)(α̇β̇)∂ββ̇ + λ(αβ)α̇+∂−β + λ̄(α̇β̇)α+∂−

β̇
+ λαα̇∂5 , (3.54)

and all gauge parameters are unconstrained analytic superfields.
There are few admissible transformations laws, which generalize global symmetry (3.48).

It is convenient to choose the following ones as independent:

δ1q
+a = −iΛ̂αα̇∂αα̇(Jq+a) = −iλαα̇M∂M∂αα̇(Jq+a) , (3.55)

δ2q
+a = −i∂αα̇Λ̂αα̇Jq+a = −i(∂αα̇λαα̇M )∂M (Jq+a) + δ1q

+a , (3.56)
δ3q

+a = −i∂αα̇Ωαα̇Jq+a = −i[Ω(3) + Ωαα̇∂αα̇]Jq+a , (3.57)
δ4q

+a = −iΩαα̇∂αα̇(Jq+a) . (3.58)
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We vary L+4
free by the transformations (3.55)–(3.58) with arbitrary coefficients (up to a

common rescaling), using the integration by parts and the relations like

(τ3)abq+aD++q+b = 1
2(τ3)abD++(q+aq+b) ,

(τ3)abq+a∂αα̇q
+b = 1

2(τ3)ab∂αα̇(q+aq+b) .

In particular, up to a total derivative,

δ1L+4
free = i

1
2(τ3)abq+a[D++, Λ̂αα̇]∂αα̇q+b

+ i
1
2(τ3)ab

[
(∂αα̇Λαα̇M )∂Mq+aD++q+b − Ωαα̇q+a∂αα̇D++q+b].

Then, properly fixing the numerical coefficients, we single out two appropriate combi-
nations of the variations (3.55)–(3.58),

δλq
+a = 1

2 (δ1 + δ2 + δ3) q+a , (3.59)

δξq
+a := ξ (δ3 − δ4) q+a , (3.60)

such that they have the necessary form (3.10a), (3.10b) for s = 3:

δλL+4
free = 1

2 (δ1 + δ2 + δ3)L+4
free = i

1
2(τ3)abq+a[D++, Λ̂αα̇]∂αα̇q+b , (3.61)

δξL+4
free = ξ(δ3 − δ4)L+4

free = i
ξ

2
(
D++Ω(3)

)
(τ3)abq+aq+b , (3.62)

ξ being some real parameter. Thus, the requirement of gauge invariance has drastically
limited the possible form of admissible gauge transformations of the hypermultiplet.

Using the transformation law of the gauge operator H++
(3) (2.34),

δĤ++
(3) = δĤ++αα̇∂αα̇ = [D++, Λ̂αα̇]∂αα̇ , (3.63)

where

Ĥ++αα̇ = h++(αβ)(α̇β̇)∂ββ̇ + h++(αβ)α̇+∂−β + h̄++(α̇β̇)α+∂−
β̇

+ h++αα̇∂5 , (3.64)

as well as the transformation law for the superfield Γ++
(3) ,

δΓ++
(3) = ∂αα̇δΓ++αα̇ = D++Ω(3) , (3.65)

where
Γ++αα̇ = ∂ββ̇h

++(αβ)(α̇β̇) − ∂−β h
++(αβ)α̇+ − ∂−

β̇
h++α(α̇β̇)+ , (3.66)

we can cancel the remainder (3.61) and (3.62) of the gauge variation of the free Lagrangian
by introducing couplings to the gauge superfields as

L+4(s=3)
gauge =L+4

free − i
1
2(τ3)abq+aĤ++αα̇∂αα̇q

+b + i
ξ

2Γ++
(3) (τ3)abq+aq+b

=− 1
2q

+a
(
D++ + Ĥ++

(3) J + ξΓ++
(3) J

)
q+
a .

(3.67)
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It will be also useful for the future generalizations to rewrite the transformation laws
δλq

+a and δξq+a as:

δλq
+a = −1

2{∂αα̇, Λ̂
αα̇}Jq+a − 1

2Ω(3)Jq
+a

= −
[
λαα̇M∂M∂αα̇ + 1

2(∂αα̇λαα̇M )∂M + 1
2Ω(3)

]
(τ3)abq+b , (3.68)

δξq
+a = −ξΩ(3) Jq

+a = −iξΩ(3) (τ3)abq+b , (3.69)

where in (3.68) all derivatives act freely on the right.
The obtained gauge-invariant action (3.67) demonstrates a freedom in constructing

interactions in the s = 3 case: it contains an arbitrary parameter ξ. Note that the trans-
formation (3.69) formally coincides with the gauge transformation for s = 1 (3.11) with
the parameter ∂αα̇Ωαα̇. So the transformation (3.69) is the spin 1 gauge transformation
with the gauge parameter of special form. An analogous “ξ-freedom” takes place for all
odd spins. The presence of constant ξ in the Lagrangian (3.67) shows that off shell there
are 2 types of possible interactions of the N = 2 spin 3 with the hypermultiplet. The
coefficient ξ is a dimensionless coupling constant that measures the relative strength of
these interactions.

The action (3.67) is invariant only up to the leading order in the gauge fields. In
contrast to the cases of spin s = 1, where the action (3.15) was completely invariant, and
of spin s = 2, where the coupling (3.42) can be made invariant by adding extra terms to the
transformation law of gauge superfields, in the case of spin s = 3 some other mechanisms
(if exist) are needed.12 In the present paper we limit ourselves to the invariances only in
the leading order in gauge superfields.

Last but not least. As we saw, the consistent minimal coupling of the hypermultiplet to the
gauge N = 2 spin s = 3 superfields is possible only provided Jq+a = i(τ3)abq+b 6= 0, which
implies that this coupling necessarily breaks SU(2)PG down to U(1)PG, the generator of
which is further identified with J . In accord with (3.51), the hypermultiplet can still stay
massless [option (a), with ∂5q

+a = 0], or massive [option (b)], such that the operator J is
proportional to the central charge ∂5 which is not vanishing in the second case. These two
possibilities are essentially different because setting ∂5q

+a = 0 in the second case not only
makes the hypermultiplet massless but also eliminates all its couplings to N = 2 spin s = 3
superfields. As distinct from the simplest s = 1 case, in the s = 3 case it is impossible to
relate the massless and massive hypermultiplet Lagrangians by any redefinition of the gauge
N = 2 potentials. The same features are characteristic of all N = 2 odd spins (see below).
On the contrary, the hypermultiplet couplings to the higher spin N = 2 spin multiplets
with even s can be defined for both massive (∂5q

+a 6= 0) and massless (∂5q
+a = 0) cases

on equal footing, without insertions of the SU(2)PG generators in the transformation laws
and cubic superfield coupling. Note that the full symmetry of the odd spin s case is always
U(1)PG×SU(2)aut, as distinct from the maximal symmetry SU(2)PG×SU(2)aut of the even
spin case (which can be attained for ∂5q

+a = 0).
12Perhaps, the full invariance could be achieved after extending the standard 4D, N = 2 superspace by

some additional coordinates [8].
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3.6 Spin 4 coupling

Rigid symmetry. Similarly to other cases, the rigid symmetry to be gauged is given by the
maximal-degree differential operator:

δ
(4)
rig q

+a = −Λ̂(αβ)(α̇β̇)
rig ∂αα̇∂ββ̇q

+a , (3.70)

with

Λ̂(αβ)(α̇β̇)
rig =

[
λ(αβγ)(α̇β̇γ̇) − 2iλ(αβγ)(α̇β̇−θ̄+γ̇) − 2iθ+(αλβγ)(α̇β̇γ̇)+]∂γγ̇

+λ(αβγ)(α̇β̇)+∂−γ + λ(αβ)(α̇β̇γ̇)+∂−γ̇

+
[
λ(αβ)(α̇β̇) + 2iλ(αβγ)(α̇β̇)−θ+

γ + 2iλ(αβ)(α̇β̇γ̇)−θ̄+
γ̇

]
∂5

:= Λ(αβ)(α̇β̇)M
rig ∂M . (3.71)

Fermionic parameters have the form λ(αβγ)(α̇β̇)± = λ(αβγ)(α̇β̇)iu±i , λ(αβ)(α̇β̇γ̇)± =
λ(αβ)(α̇β̇γ̇)iu±i . The coefficient of the harmonic variables in these expressions, equally as
the rest of parameters in (3.71), are constants. So one has total of 16 + 6 = 22 bosonic
parameters and of 2 · 4 · 3 = 24 fermionic parameters. The dependence on analytic θ’s
in (3.71) is necessary for vanishing of the commutator

[D++, Λ̂(αβ)(α̇β̇)
rig ]∂αα̇∂ββ̇ = 0 , (3.72)

which in the present and other cases is just the condition of the rigidity of the relevant
transformation of q+a (eq. (3.70) in the present case, or eq. (3.46) in the spin s = 3 case).

The variation of the action L+4
free under the transformation (3.70) is easily checked to

vanish (modulo total derivatives),

δ
(4)
rigL

+4
free = 1

2(Λ̂αβα̇β̇rig ∂αα̇∂ββ̇q
+a)D++q+

a + 1
2q

+aD++(Λ̂αβα̇β̇rig ∂αα̇∂ββ̇q
+
a )

= 1
2q

+a[D++, Λ̂αβα̇β̇rig ]∂αα̇∂ββ̇q
+
a = 0 , (3.73)

where we made use of the condition (3.72) and, at the intermediate steps, of the evident
properties ∂M Λ̂αβα̇β̇Mrig = ∂αα̇Λ̂αβα̇β̇Mrig = 0 .

So we have picked up the appropriate symmetry of the free hypermultiplet action. Now
we will gauge it.

Gauging. As before, we promote the constant parameters to arbitrary analytic super-
fields. One can construct six independent transformation laws with the parameters λM
and derivatives thereof. It will be convenient to choose as a basis the following gauge
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variations:

δ1q
+a = −∂αα̇∂ββ̇Λ̂αβα̇β̇q+a , (3.74)

δ2q
+a = −∂αα̇Λ̂αβα̇β̇∂ββ̇q

+a , (3.75)

δ3q
+a = −Λ̂αβα̇β̇∂αα̇∂ββ̇q

+a , (3.76)

δ4q
+a = −∂αα̇∂ββ̇Ωαβα̇β̇q+a , (3.77)

δ5q
+a = −∂αα̇Ωαβα̇β̇∂ββ̇q

+a , (3.78)

δ6q
+a = −Ωαβα̇β̇∂αα̇∂ββ̇q

+a . (3.79)

Here we used the general definition (2.33) for Λ̂αβα̇β̇ and (2.40) for Ωαβα̇β̇ . The derivatives
act freely on all objects to the right, in accord with our previous conventions. The crucial
difference from the spin s = 3 case is the absence of the derivative ∂5 (or the generator J) in
these transformation laws. As a result, they are non-trivial for both the ∂5q

+a = 0 and the
∂5q

+a 6= 0 cases. In fact, they are a generalization of the spin s = 2 gauge transformations.
The gauge variations of L+4

free are performed straightforwardly, integrating by parts at
the intermediate steps. We present only the final answers

δ1L+4
free = 1

2
[(
∂αα̇∂ββ̇Λ̂αβα̇β̇ − Λ̂αβα̇β̇∂αα̇∂ββ̇ − Ωαβα̇β̇∂αα̇∂ββ̇

)
q+a]D++q+

a

+ 1
2q

+a[D++, Λ̂αβα̇β̇ ]∂αα̇∂ββ̇q
+
a + 1

2
(
D++Ωαβα̇β̇

)
q+a∂αα̇∂ββ̇q

+
a , (3.80)

δ2L+4
free = −1

2
(
∂αα̇Ωαβα̇β̇∂ββ̇q

+a)D++q+
a

+ 1
2q

+a∂αα̇[D++, Λ̂αβα̇β̇ ]∂ββ̇q
+
a , (3.81)

δ3L+4
free = −1

2
[ (
∂αα̇∂ββ̇Λ̂αβα̇β̇ − Λ̂αβα̇β̇∂αα̇∂ββ̇ + ∂αα̇∂ββ̇Ωαβα̇β̇

)
q+a

]
D++q+

a

+ 1
2q

+a[D++, Λ̂αβα̇β̇ ]∂αα̇∂ββ̇q
+
a , (3.82)

δ4L+4
free = 1

2
[ (
∂αα̇∂ββ̇Ωαβα̇β̇ + Ωαβα̇β̇∂αα̇∂ββ̇

)
q+a

]
D++q+

a

− 1
2
(
D++Ωαβα̇β̇

)
q+a∂αα̇∂ββ̇q

+
a , (3.83)

δ5L+4
free =

(
∂αα̇Ωαβα̇β̇∂ββ̇q

+a)D++q+
a , (3.84)

δ6L+4
free = 1

2
[ (
∂αα̇∂ββ̇Ωαβα̇β̇ + Ωαβα̇β̇∂αα̇∂ββ̇

)
q+a

]
D++q+

a

+ 1
2
(
D++Ωαβα̇β̇

)
q+a∂αα̇∂ββ̇q

+
a . (3.85)

These variations still admit, through integration by parts, some other forms sometimes
more convenient for calculations, e.g.,

δ3L+4
free = 1

2q
+a[D++, Λ̂αβα̇β̇ ]∂αα̇∂ββ̇q

+
a −

1
2Ω(4)(q+aD++q+

a )

+ 1
2(∂αα̇λ(αβ)(α̇β̇)M )

[
(∂ββ̇q

+a)∂MD++q+
a + (∂Mq+a)∂ββ̇D

++q+
a

]
+ 1

2Ωαβα̇β̇(∂αα̇q+a)∂ββ̇D
++q+

a (3.86)

– 24 –



J
H
E
P
0
5
(
2
0
2
2
)
1
0
4

(the variation (3.82) is reproduced by taking off all derivatives from D++q+
a in (3.86),

except for the first term).

Invariant Lagrangian. Using the formulas for variations and summing them with undeter-
mined coefficients, one can single out their unique combination

δλq
+a := 1

2 (δ1 + δ3 + δ4) q+a , (3.87)

which can be canceled by the gauge transformation of N = 2 invariant analytic differential
operator Ĥ++(αβ)(α̇β̇), constructed out of the analytic gauge prepotentials:

δλL+4
free = 1

2 (δ1 + δ3 + δ4)L+4
free = 1

2q
+a[D++, Λ̂αβα̇β̇ ]∂αα̇∂ββ̇q

+
a

= 1
2 q

+aδĤαβα̇β̇∂αα̇∂ββ̇q
+
a .

(3.88)

The factor 1
2 was introduced for ensuring that δλq+a is reduced to (3.70) in the rigid limit.

Thus the Lagrangian describing the coupling of spin 4 gauge supermultiplet to the
hypermultiplet, in the leading order in the former, reads:

L+4(s=4)
gauge = −1

2 q
+a
(
D++ + Ĥ++

(4)

)
q+
a . (3.89)

The Lagrangian L+4
gauge is gauge invariant (in the leading order) and completely N = 2

supersymmetric. In contrast to the spin s = 3 case, the option of adding terms with Γ++
(4)

is absent in the s = 4 theory.
For further generalizations, it is useful to rewrite δλq+a as:

δλq
+a = −1

2
{

Λ̂(αβ)(α̇β̇), ∂αα̇∂ββ̇

}
q+a − 1

2∂αα̇∂ββ̇Ω(αβ)(α̇β̇)q+a , (3.90)

or, in a more explicit form,

δλq
+a = −

[
λ(αβ)(α̇β̇)M∂αα̇∂ββ̇ + (∂αα̇λ(αβ)(α̇β̇)M )∂ββ̇ + 1

2(∂ββ̇∂αα̇λ
(αβ)(α̇β̇)M )

]
∂Mq

+a

−
[
(∂αα̇Ω(αβ)(α̇β̇))∂ββ̇ + 1

2Ω(αβ)(α̇β̇)∂ββ̇∂αα̇ + Ω(4)

]
q+a . (3.91)

We stress once more that the Lagrangian (3.89), like its spin 3 counterpart (3.67), is
invariant under gauge transformation only in the leading order in the gauge prepotentials.
As distinct from the spin 2 case, no clear way is seen how to modify the linearized transfor-
mation laws (2.13) so as to restore the full spin s = 4 gauge invariance of the hypermultiplet
coupling (if exists).

4 Generalization to arbitrary N = 2 spins

4.1 General odd spins

In this section, we will assume that s is odd integer. As before, we start with rigid trans-
formations:

δ
(s)
rig q

+a =− Λ̂α(s−2)α̇(s−2)
rig ∂

(s−2)
α(s−2)α̇(s−2)Jq

+a

=− i(τ3)abΛ̂
α(s−2)α̇(s−2)
rig ∂

(s−2)
α(s−2)α̇(s−2)q

+b ,
(4.1)
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where
Λ̂α(s−2)α̇(s−2)

rig := Λα(s−2)α̇(s−2)M∂M , (4.2)

and

Λα(s−2)α̇(s−2)αα̇ = λα(s−1)α̇(s−1) − 2iλα(s−1)(α̇(s−2)−θ̄+α̇) − 2iθ+(αλα(s−2))α̇(s−1)− , (4.3a)

Λα(s−2)α̇(s−2)5 = λα(s−2)α̇(s−2)5 + 2iλ(α(s−2)β)α̇(s−2)−θ+
β + 2iλα(s−2)(α̇(s−2)β̇)−θ̄+

β̇
, (4.3b)

Λα(s−1)α̇(s−2)+ = λα(s−1)α̇(s−2)+ , λα(s−1)α̇(s−2)± = λα(s−1)α̇(s−2)iu±i (4.3c)
Λα(s−2)α̇(s−1)+ = λα(s−2)α̇(s−1)+ , λα(s−2)α̇(s−1)± = λα(s−2)α̇(s−1)iu±i . (4.3d)

Here all the parameters λα(s−1)α̇(s−1) , λα(s−2)α̇(s−2)5 , λα(s−1)α̇(s−2)i, λα(s−2)α̇(s−1)i in
Λ̂α(s−2)α̇(s−2)

rig are coordinate-independent. We have s2 + (s − 1)2 bosonic parameters and
2s(s− 1) fermionic ones. There is valid the property:

[D++, Λ̂α(s−2)α̇(s−2)
rig ]∂s−2

α(s−2)α̇(s−2) = 0 . (4.4)

The variation of the free hypermultiplet Lagrangian (modulo total derivatives) is zero due
to the symmetry of (τ3)ab:

δ
(s)
rigL

+4
free =− i12(τ3)abΛ̂α(s−2)α̇(s−2)

gl ∂
(s−2)
α(s−2)α̇(s−2)q

+aD++q+b

+ i
1
2(τ3)abq+aD++Λ̂α(s−2)α̇(s−2)

gl ∂
(s−2)
α(s−2)α̇(s−2)q

+b = 0.
(4.5)

To check this, one needs to integrate s− 1 times by parts in the second term.

Gauging. Like in the spin 3 case, one could start with the most general combination of
gauge transformation and then follow the strategy of section 3.2. But due to the strong
constraints (3.9) on the form of interaction, it will be sufficient to guess, from the very
beginning, the gauge transformations of hypermultiplet which lead to the gauge-invariant
coupling with higher spins. The interactions obtained in this way will be unique. Fortu-
nately, the sought gauge transformations prove to be a direct generalization of those we
met while considered the spin 3 and spin 4 examples.

In the generic case of the odd spin supermultiplet, the proper generalization of the
spin 3 gauge transformations (3.68) is as follows

δ
(s)
λ,1q

+a = −i12(τ3)ab
{
∂

(s−2)
α(s−2)α̇(s−2), Λ̂

α(s−2)α̇(s−2)
}
q+b . (4.6)

The variation of the hypermultiplet Lagrangian can be calculated in full analogy
with (3.81):

δ
(s)
λ,1L

+4
free =− i14(τ3)ab

{
∂

(s−2)
α(s−2)α̇(s−2),Ω

α(s−2)α̇(s−2)
}
q+aD++q+b

+ i
1
2(τ3)abq+a

[
D++, Λ̂α(s−2)α̇(s−2)

]
∂

(s−2)
α(s−2)α̇(s−2)q

+b

− i14(τ3)ab
(
D++Ωα(s−2)α̇(s−2)

)
∂

(s−2)
α(s−2)α̇(s−2)q

+aq+b.

(4.7)
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Now we are led to find a transformation that would cancel the first term in (4.7). It is
a direct generalization of the second term in (3.68):

δ
(s)
λ,2q

+a = i
1
2(τ3)ab∂

(s−2)
α(s−2)α̇(s−2)Ω

α(s−2)α̇(s−2)q+b . (4.8)

The relevant variation of the free hypermultiplet action, in full analogy with the spin 3
case, is

δ
(s)
λ,2L

+4
free = i

1
4(τ3)ab{∂(s−2)

α(s−2)α̇(s−2),Ω
α(s−2)α̇(s−2)}q+aD++q+b

+ i
1
4(τ3)ab

(
D++Ωα(s−2)α̇(s−2)

)
∂

(s−2)
α(s−2)α̇(s−2)q

+aq+b .
(4.9)

Using (4.9), one can cancel the first and last terms in (4.7). Collecting all terms, we
obtain for the full variation:(

δ
(s)
λ,1 + δ

(s)
λ,2

)
L+4

free = i
1
2(τ3)abq+a

[
D++, Λ̂α(s−2)α̇(s−2)

]
∂

(s−2)
α(s−2)α̇(s−2)q

+b

= i
1
2(τ3)abq+aδĤ++

(s) q
+b .

(4.10)

Using the transformation law (2.34), one can cancel these terms by passing to the
gauge superfield-modified Lagrangian:

L+4(odd s)
gauge = −1

2q
+a
(
D++ + Ĥ++

(s) J
)
q+
a . (4.11)

The relevant action is a direct generalization of the corresponding action for s = 3
defined by the Lagrangian (3.67). The Lagrangian (4.11) is also invariant only up to the
leading order in gauge prepotentials.

Let us now turn to the ξ-transformations (3.69). A direct generalization of the latter is

δ
(s)
ξ q+a = −ξ

(
∂s−2
α(s−2)α̇(s−2)Ω

α(s−2)α̇(s−2)
)
Jq+a . (4.12)

The relevant variation of the free Lagrangian has the form:

δ
(s)
ξ L

+4
free = i

1
2ξ

(
D++∂s−2

α(s−2)α̇(s−2)Ω
α(s−2)α̇(s−2)

)
(τ3)abq+aq+b (4.13)

and it can be easily canceled by adding Γ++
(s) (2.37), so the most general Lagrangian reads:

L+4(odd s)
gauge = −1

2q
+a
(
D++ + Ĥ++

(s) J + ξΓ++
(s) J

)
q+
a . (4.14)

Here ξ is an arbitrary real parameter.
To summarize, for an arbitrary odd N = 2 spin s the gauge transformations of the

hypermultiplet are given by δ(s)
λ qa = δ

(s)
λ,1q

+a + δ
(s)
λ,2q

+a and δ(s)
ξ , with the variations being

defined in (4.6), (4.8) and (4.12). The action which is gauge invariant up to the first
order in gauge superfields is given by eq. (4.14). The hypermultiplet can be massless
(∂5q

+a = 0 , Jq+a 6= 0) or massive (∂5q
+a 6= 0 , Jq+a 6= 0 , ∂5q

+a = mJq+a).
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4.2 General even spins

In this section, we will generalize the spin 4 transformation laws (3.90) to an arbitrary
integer even spin s.

Let us start with the definition of rigid symmetry of the free hypermultplet for even
higher spins:

δ
(s)
rig q

+a = −Λ̂α(s−2)α̇(s−2)
rig ∂s−2

α(s−2)α̇(s−2)q
+a . (4.15)

The group-parameter structure of

Λ̂α(s−2)α̇(s−2)
rig = Λα(s−2)α̇(s−2)M∂M (4.16)

coincides with that already given in (4.3), the crucial difference being the absence of the
generator J (and, respectively, of the matrix (τ3)ab ) in the transformation law (4.15). It is a
direct generalization of the rigid symmetry (3.70) pertinent to the spin s = 4. Here we face
s2 +(s−1)2 constant bosonic parameters and 2s(s−1) constant fermionic parameters. One
can check that this transformation, in the complete analogy with (3.73), indeed provides a
symmetry of the free hypermultiplet action. Now we will gauge this symmetry, using the
even higher-spin s gauge supermultiplet.

Gauging. Like in the previous cases, one can define many local generalizations of the
rigid transformation (4.15), with the proper analytic superfield parameters and derivatives
thereof. However, as a consequence of the strong restrictions (3.9) on the possible structure
of the interaction, it is enough to explicitly guess some kind of implementation of the gauge
group, such that it meets the restrictions just mentioned. The interaction constructed
in this way will be most general. The option leading to the desired result is a direct
generalization of the spin 4 gauge transformations (3.90):

δ
(s)
λ q+a = −1

2
{

Λ̂α(s−2)α̇(s−2), ∂s−2
α(s−2)α̇(s−2)

}
q+a − 1

2∂
s−2
α(s−2)α̇(s−2)Ω

α(s−2)α̇(s−2)q+a . (4.17)

To explicitly check that the transformation (4.17) is the needed one, we divide it into
two terms. The first part of the variation,

δ
(s)
λ,1q

+a = −1
2
{

Λ̂α(s−2)α̇(s−2), ∂s−2
α(s−2)α̇(s−2)

}
q+a , (4.18)

transforms the free hypermultiplet Lagrangian (up to a total derivative) as

δ
(s)
λ,1L

+4
free =− 1

4
{

Ωα(s−2)α̇(s−2), ∂s−2
α(s−2)α̇(s−2)

}
q+aD++q+

a

+ 1
2q

+a[D++, Λ̂α(s−2)α̇(s−2)]∂s−2
α(s−2)α̇(s−2)q

+
a

+ 1
4
(
D++Ωα(s−2)α̇(s−2)

)
q+a∂s−2

α(s−2)α̇(s−2)q
+
a . (4.19)

The second part of the transformation (4.17),

δ
(s)
λ,2q

+a = −1
2∂

s−2
α(s−2)α̇(s−2)Ω

α(s−2)α̇(s−2)q+a , (4.20)
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gives rise to the following transformation of the free hypermultiplet Lagrangian:

δ
(s)
λ,2L

+4
free = 1

4
{

Ωα(s−2)α̇(s−2), ∂s−2
α(s−2)α̇(s−2)

}
q+aD++q+

a

− 1
4
(
D++Ωα(s−2)α̇(s−2)

)
q+a∂s−2

α(s−2)α̇(s−2)q
+
a .

(4.21)

So the full variation of the Lagrangian under (4.17) allows one to determine the possible
interaction terms:

δ
(s)
λ L

+4
free = 1

2q
+a[D++, Λ̂α(s−2)α̇(s−2)]∂s−2

α(s−2)α̇(s−2)q
+
a = 1

2q
+aδĤ++

(s) q
+
a . (4.22)

As a consequence, the gauge invariant Lagrangian has the form:

L+4(even s)
gauge = −1

2q
+a
(
D++ + Ĥ++

(s)

)
q+
a . (4.23)

Like in all previous cases, it is the covariantization of the free hypermultiplet action un-
der (4.17) through extending the harmonic derivative D++ by the differential operator
Ĥ++

(s) (2.35). The highest derivative term in this operator have the degree (s − 1). Once
again, the action corresponding to (4.23) is invariant only to the first-order in gauge su-
perfields. For the time being, we do not know how to achieve the complete invariance of
such an action.

5 Summary and outlook

Here we briefly summarize and discuss the results obtained.

1. First of all, we have identified the infinite dimensional rigid symmetry of hypermul-
tiplet realized by higher-derivative transformations. These can be written in the
universal form, at once for the odd and even spins:

δ
(s)
rig q

+a = −Λ̂α(s−2)α̇(s−2)
rig ∂s−2

α(s−2)α̇(s−2)(J)P (s)q+a , P (s) = 1 + (−1)s+1

2 , (5.1)

[D++, Λ̂α(s−2)α̇(s−2)
rig ]∂s−2

α(s−2)α̇(s−2) = 0 . (5.2)

The parameters Λ̂α(s−2)α̇(s−2)
rig were defined in (4.2) and (4.3). The transformation δ(s)

rig
contains (s − 1) pure vector derivatives ∂s−1

α(s−1)α̇(s−1) and (s − 2) vector derivatives
times the spinor derivative ∂−µ̂ . It involves s2 + (s − 1)2 bosonic parameters and
2s(s− 1) fermionic parameters, total of (2s− 1)2 parameters.
It is worth noting that the group of rigid symmetries of the free hypermultiplet is
much wider than (5.1). For any spin there are also transformations of the form:

δ
(s)
general(1) q

+a = −Λ̂a α(s−2)α̇(s−2)
b ∂s−2

α(s−2)α̇(s−2)q
+b , (5.3)

involving the matrix parameter Λ̂a α(s−2)α̇(s−2)
b which is determined by the same for-

mulas (4.2) and (4.3), with extra doublet SU(2)PG indices a and b. This parameter
is symmetric(antisymmetric) depending on whether s is odd(even):

Λ̂α(s−2)α̇(s−2)
ab = (−1)s+1Λ̂α(s−2)α̇(s−2)

ba . (5.4)
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To be convinced of this, consider a variation of the free hypermultiplet action of the
hypermultiplet with respect to (5.3):

δ
(s)
general(1)L

+4
free =− 1

2
(
Λ̂ α(s−2)α̇(s−2)
ab ∂s−2

α(s−2)α̇(s−2)q
+b
)
D++q+a

+ 1
2q

+bD++
(
Λ̂ α(s−2)α̇(s−2)
ba ∂s−2

α(s−2)α̇(s−2)q
+a
)
.

(5.5)

After integration by parts, one can rewrite this variation as:

δ
(s)
general(1)L

+4
free =−1

2
([

Λ̂ α(s−2)α̇(s−2)
ab +(−1)sΛ̂ α(s−2)α̇(s−2)

ba

]
∂s−2
α(s−2)α̇(s−2)q

+b
)
D++q+a.

(5.6)
Then the requirement of invariance of the action amounts to the condition (5.4).
For even spins s ≥ 2, this does not provide new possibilities as compared to (5.1),
while for odd spins s ≥ 3 new rigid symmetries come out. These extra rigid sym-
metries generalize to the case of the hypermultiplet the symmetries suggested in
ref. [37]. Perhaps, it would be of interest to explore their gauging. Leaving aside
the detailed treatment of this interesting problem, note that such a gauging would
imply the introduction of new gauge superfield prepotentials with a nontrivial index
structure. This should also lead to a change in the structure of the action of higher
spins and to the appearance of new indices for the component fields. So gauging of
such symmetries could yield some “non-abelian higher spin theory”. To the best of
our knowledge, even for the bosonic higher spins, the interactions of this kind had
never been seriously explored. The only relevant remark is contained in ref. [37],
where it is claimed that the gauging of such symmetries “run into difficulties”.
A similar (though different) kind of “non-abelian” higher spin invariances of the free
hypermultiplet action (3.1), also existing for odd spins s = 1, 3, . . ., and generalizing
those of ref. [37], is provided by the transformations

δ
(s)
general(2) q

+
a = Λα(s−1)α̇(s−1)

(ab) ∂s−1
α(s−1)α̇(s−1)q

+b , (5.7)

where the parameters are c-numbers and for s = 1 yield just rigid SU(2)PG transfor-
mations. So gauging of such symmetries should result in some higher-spin general-
izations of Yang-Mills theory associated with the group SU(2)PG. So much for these
new opportunities which we hope to study elsewhere.

2. As the next crucial step after defining the global symmetries (5.1), we gauged them
and explicitly presented the gauge transformations of 4D, N = 2 analytic hyper-
multiplet superfield. They constitute a family of transformations which differ by
the highest degree s of the involved derivatives. These transformations are consistent
with the analyticity and include the same differential operators as the gauge transfor-
mations of the higher-superspin analytic prepotentials (2.34). These transformations
have the universal form:

δ
(s)
λ q+a =− 1

2
{

Λ̂α(s−2)α̇(s−2), ∂s−2
α(s−2)α̇(s−2)

}
(J)P (s)q+a

− 1
2∂

s−2
α(s−2)α̇(s−2)Ω

α(s−2)α̇(s−2)(J)P (s)q+a .
(5.8)
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When the parameters in (5.8) are independent of the coordinates, these transfor-
mations reproduce the global symmetry group (5.1) of the free hypermultiplet ac-
tion (3.1).

3. As the final result, in section 3 we presented N = 2 gauge invariant cubic couplings
1
2 −

1
2 − s of the hypermultiplet to higher-spin s N = 2 gauge supermultiplets, which

we described in section 2. These couplings can be brought in the universal form for
all spins:

S(s)
gauge = −1

2

∫
dζ(−4) q+a

(
D++ + Ĥ++

(s) (J)P (s) + ξΓ++
(s) (J)P (s)

)
q+
a . (5.9)

The actions (5.9) are gauge-invariant under (2.13) and (5.8) only in the leading order
in the gauge superfields, except the cases of N = 2 Maxwell supermultiplet (s = 1)
and N = 2 supergravity Einstein multiplet (s = 2). Note that for even s the ξ term
in (5.9) disappears. For odd spins the ξ term can be included and one is led to add,
to the transformations (5.8), some extra gauge transformation:

δ
(s)
ξ q+a = −P (s)ξ

(
∂s−2
α(s−2)α̇(s−2)Ω

α(s−2)α̇(s−2)
)
Jq+a . (5.10)

Thus, the interactions for even and odd spins differ by the presence, in the odd spin
case, of an additional interaction with the dimensionless coupling constant ξ. At the
superfield off-shell level, this second interaction has the form clearly distinct from the
basic interaction. The most important difference between these two interactions is
that the ξ-terms contain no derivatives on the hypermultiplet superfield. The inter-
play of these two terms at the on-shell component level will be discussed elsewhere.
Note that after passing to the gauge superfields of the canonical dimension, the con-
stants κs defined in (2.22) appear in (5.9) in front of the interaction terms, and so
the interactions with hypermultiplets vanish in the limit κs → 0 .

4. The presence of the U(1)PG generator J of the internal SU(2)PG symmetry in the
transformations (5.8) and couplings (5.9) results in an essential difference in the
treatment of the odd and even spin s cases. For odd s the relevant higher-spin
transformations of the hypermultiplet and its couplings to the gauge fields exist only
provided SU(2)PG is broken, with ∂5q

+a = 0 , Jq+a 6= 0 in the case of massless
hypermultiplet and ∂5q

+a 6= 0 , Jq+a 6= 0 , ∂5q
+a ∼ mJ in the case of massive

hypermultiplet. The unbroken SU(2)PG symmetry implies ∂5q
+a = Jq+a = 0, so

the gauge transformations of the hypermultiplet and the relevant gauge invariant
couplings in this case can be defined only for the even spins s, the hypermultiplet
being massless.
It is the appropriate place here to discuss how our consideration can be extended to
the case of few hypermultiplets. The free Lagrangian of n hypermultiplets can be
written in the manifestly USp(2n) invariant form as

L+4
free,n = 1

2q
+AD++q+

A , q̃+
A = ΩABq+

B , A = 1, 2, . . . , 2n , (5.11)
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where ΩAB = −ΩBA is USp(2n) invariant constant 2n × 2n symplectic metric. Up
to a numerical factor, this Lagrangian can be rewritten in an equivalent complex
form as

L+4
free,n ∼ q̃

+aD++q+
a −D++q̃+aq+

a , a = 1, 2, . . . , n , q+
A = (q+

a ,−q̃+a) . (5.12)

In this form it is manifestly invariant under the group U(n) = SU(n) × U(1) ⊂
USp(2n), with respect to which q+

a and q̃+a transform in the fundamental and co-
fundamental representations, while the transformations completing U(n) to USp(2n)
are realized as δq̃+a = Cabq+

b (and c.c.), with Cab = Cba . In this general case it is
natural to identify J with the common phase U(1) ⊂ U(n) ,

Jq+
a = iq+

a , J q̃+a = −iq̃+a . (5.13)

It breaks USp(2n) down to U(n) ⊂ USp(2n).13 So in this case the residual group
acting on the bosonic fields f ia is U(n)×SU(2)aut . All the higher-spin gauge transfor-
mations derived earlier for a single hypermultiplet and the relevant cubic couplings
to the gauge superfields can be directly transferred to this general case. Note that
for generic n > 1 there are much more possibilities to choose a pair of mutually
commuting internal symmetry generators to be identified with J and, by the Scherk-
Schwarz mechanism, with ∂5.

5. The results on the cubic N = 2 supersymmetric couplings of hypermultiplet to higher
spins obtained in the present paper could be further extended along several directions
(besides those already mentioned in the item 1):

• The natural next step is the construction and investigation of 4D,N = 2 higher-
spin supercurrents of the hypermultiplet;
• Of primary interest is also the study of the component structure of the inter-
actions constructed. The bosonic physical fields fAi of n hypermultiplets (4n
independent fields) are transformed according to the bi-fundamental representa-
tion of USp(n)×SU(2)aut in the massless case or U(n)×SU(2)aut in the massive
one, and it is tempting to examine how the bosonic subsector of the N = 2
higher spin gauge group acts on these fields;
• An interesting task is to explore the relationship of the N = 2 couplings pre-
sented here with the known N = 1 cubic interactions. To accomplish this, it is
necessary to reduce our N = 2 harmonic superspace to N = 1 superfields;
• The approach under consideration can be applied to interactions of N = 2
higher spin theory with the hypermultiplet defined on AdS and more general
superconformally-flat superbackgrounds. The hypermultiplet action in 5D AdS
harmonic superspace was constructed in [81, 82] and can be directly dimension-
ally reduced to 4D. It is still unknown how to extend the harmonic superspace

13This is maximally symmetric choice. In principle, one could identify J with a combination U(1)Cart of
the Cartan generators of SU(n), thus breaking USp(2n) to U(1)Cart ×U(1) ⊂ U(n).
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construction of the higher spin theories given in [8] to 4D AdS framework. The
linearized action for N = 2 supergravity on the AdS background was built
in [83]. However, this formulation was never generalized to higher spins.
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