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1. Introduction

The study of maximally extended supersymmetric gauge theories in dimensions larger than four is basically motivated by the relation-
ships of such theories to the low-energy string/brane dynamics (see e.g. [1,2]). In the present paper we consider the quantum field aspects 
of N = 2 SYM theory in five dimensions. This theory bears an obvious interest because of its various connections with 6D , N = (2, 0)

superconformal field theory compactified on a circle [3–5] and also as a nice example of applications of the localization technique [6–10]. 
Quantum effective action can be thought of as a universal tool of analyzing connections between the low-energy effects in string theory 
and in quantum field theory.

The leading term of the low-energy effective action of 5D , N = 2 SYM theory depending on all fields of 5D , N = 2 vector gauge 
multiplet was constructed in ref. [11]. This was accomplished by the method similar to that employed in [12] for a similar calculation in 
4D , N = 4 SYM theory. The latter was formulated in N = 2 harmonic superspace as a theory of N = 2 vector gauge multiplet coupled 
to the hypermultiplet in adjoint representation. Such a theory, being manifestly N = 2 supersymmetric, possesses an additional hidden 
on-shell N = 2 supersymmetry. As a result, it proves to enjoy the total N = 4 supersymmetry. It was shown that the effective action 
depending on both the gauge multiplet and the hypermultiplet can be found in a closed form, starting from the known effective action 
in the N = 2 gauge multiplet sector and invoking the invariance under the hidden N = 2 supersymmetry. Such a purely symmetry-based 
analysis allowed to determine the effective action up to a numerical coefficient. To specify the coefficient, one should carry out the 
explicit quantum calculation. The latter was performed in [13], where the result of [12] was entirely confirmed and the unknown overall 
coefficient was fixed.

In ref. [11], 5D , N = 2 SYM theory was formulated in 5D, N = 1 harmonic superspace as a theory of interacting N = 1 gauge multiplet 
and hypermultiplet in the adjoint representation. The theory is manifestly N = 1 supersymmetric and, in addition, possesses an implicit 
on-shell N = 1 supersymmetry. Its effective action in the N = 1 gauge multiplet sector was calculated some time ago in [14]. Like in the 
4D, N = 4 case, the total N = 2 supersymmetric effective action of this theory was restored in [11] through the completion of the N = 1
gauge multiplet action by the proper hypermultiplet-dependent terms, such that the full expression for the effective action respect the 
additional implicit N = 1 supersymmetry. The resulting effective action can be written as an integral over the full 5D, N = 1 superspace 
[11],
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SN=2
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, (1.1)
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1 + √
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2
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3

1

1 + √
1 + 2Z
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3

√
1 + 2Z , Z = Q +a Q −

a

W 2
. (1.2)

Here c0 is an arbitrary real numerical coefficient, W is the N = 1 gauge superfield strength and Q +a, Q −
a are the hypermultiplet super-

fields in the harmonic superspace formulation.1 Let us point out once more that the result (1.1), (1.2) was obtained, based on the purely 
symmetry consideration.

The aim of the present paper is to evaluate the leading low-energy effective action of 5D , N = 2 SYM by the explicit calculation of 
the one-loop effective action in the quantum superfield perturbation theory. We perform the quantum superfield derivation of the action 
(1.1), (1.2) and specify the one-loop value of the coefficient c0. To preserve the classical symmetries in the quantum case, we make use 
of the background superfield method in 5D, N = 1 harmonic superspace. It is a 5D version of the method developed earlier in [14,15]
(see also [16]). Following the approach of [11], we formulate 5D, N = 2 gauge multiplet as a collection of N = 1 gauge multiplet and 
the hypermultiplet, both being in the adjoint representation of gauge group. In the process of calculation we assume that the background 
superfields align in the Cartan subalgebra of su(2) algebra and obey the classical equations of motion. Also we restrict our consideration 
to the background superfields slowly varying in space-time, as this approximation is sufficient for finding the low-energy effective action. 
The expression for the effective action is obtained as an integral over the analytic harmonic subspace. After passing to the full superspace, 
this expression reproduces the effective action of ref. [11], with c0 = 1

48π2 .
The paper is organized as follows. Section 2 sketches the formulation of 5D , N = 2 SYM theory in N = 1 harmonic superspace. 

In section 3 we describe the manifestly gauge covariant and N = 1 supersymmetry-preserving procedure for calculating the one-loop 
effective action. Section 4 is devoted to the evaluation of the leading low-energy contribution to the one-loop effective action. In the last 
section we give a brief summary of the results obtained and indicate possible future directions of the study.

2. The model

Throughout the paper we use the notations and conventions of [11] and [14]. We formulate N = 2 SYM theory in 5D, N = 1 harmonic 
superspace in terms of the gauge superfield V ++ and the hypermultiplet one q+

a ≡ (q+, −q̄+), a = 1, 2, both being analytic. The classical 
action of the theory is written as

S = 1

2g2

∞∑
n=2

(−i)n

n
tr

∫
d13zdu1 . . .dun

V ++(z, u1)V ++(z, u2) . . . V ++(z, un)

(u+
1 u+

2 )(u+
2 u+

3 ) . . . (u+
n u+

1 )

− 1

2g2
tr

∫
dζ (−4)q+aD++q+

a , (2.1)

where g is a coupling constant of mass-dimension −1/2. We denote the full superspace integration measure as d13 z = d5x(D−)4(D+)4

and the analytic subspace measure as dζ (−4) = d5x(D−)4du, where du stands for the integration over harmonics. The powers of the 
covariant derivatives are defined as (D±)4 = − 1

32 (D±)2(D±)2, where (D±)2 = D±α̂D±
α̂

α̂, β̂ = 1, 2. The covariant harmonic derivative 
D++ acts on the hypermultiplet according to the rule [17], D++q+

a = D++q+
a + i[V ++, q+

a ]. The action (2.1) is invariant under the gauge 
transformation

δV ++ = −D++�, δq+
a = −[q+

a ,�] , (2.2)

with an analytic superfield gauge parameter � = �(ζ, u).
The classical equation of motion associated with the action (2.1) read

(D+)2W + i[q+a,q+a] = 0 , D++q+
a = 0 , (2.3)

where W = i
8 (D+)2 V −− is the superfield strength of the gauge multiplet. Here we introduced the non-analytic superfield V −− as a 

solution of the harmonic zero-curvature condition [17]

D++V −− − D−−V ++ + i[V ++, V −−] = 0 . (2.4)

The action (2.1) is formulated in 5D, N = 1 harmonic superspace and hence respects the manifest off-shell N = 1 supersymmetry. 
Since the hypermultiplet is in the adjoint representation of gauge group, like V ++ , the action (2.1) also exhibits invariance under an 
additional implicit N = 1 supersymmetry. One can check that the transformations

δq+
a = −1

2
(D+)4[εaα̂θ−α̂ V −−] , δV ++ = εa

α̂θ+α̂q+
a , (2.5)

where εa
α̂

is the relevant anticommuting parameter, leave the action (2.1) invariant.

1 Actually, the superfield Lagrangian in (1.1) does not depend on the harmonic variables on shell.
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3. One-loop effective action

We construct the one-loop effective action for N = 2 SYM theory with the “microscopic” action (2.1) within the background superfield 
field formulation. The background superfield method in 5D, N = 1 harmonic superspace [14] is a direct generalization of the 4D, N =
2 one [18–21] and it is based on the background-quantum splitting of the initial superfields into the ‘background’ V++, Q+

a and the 
‘quantum’ v+, q+

a parts:

V ++ → V++ + gv++ , q+
a → Q+

a + gq+
a . (3.1)

While quantizing the gauge theory with the action (2.1) by the background superfield technique, we as usual impose the gauge-fixing 
conditions on the quantum gauge superfield v++ only. Then we introduce the gauge-fixing action and the corresponding ghost action. 
One of the main features of the background superfield method is that the original infinitesimal gauge symmetry (2.2) is separated into 
the ‘background’ and ‘quantum’ transformations:

δV++ = −D++� − i[V++,�], δv++ = i[λ, v++],
δQ+

a = −[Q +
a ,�], δq+

a = 0 . (3.2)

By construction, the effective action calculated loop by loop depends only on the background superfields and hence is invariant under the 
background gauge transformations.

As was said, in the framework of the background (super)field method, we should fix the gauge with respect to the quantum gauge 
transformations. We choose the gauge-fixing function as in 4D case [18,20]

F (+4) = D++v++. (3.3)

Under the quantum gauge group it transforms as follows

δF (+4) = (D++(D++λ + i[v++, λ])). (3.4)

Then the action of the corresponding Faddeev-Popov ghosts b, c is written as [19]

S F P = tr
∫

dζ (−4) b(D++)2c. (3.5)

The harmonic superfield effective action for 5D gauge theories is constructed in the same way as in 4D , N = 2 [20] and 6D , N = (1, 0)

[22] cases. For 5D supersymmetric gauge theories the background superfield method was developed in refs. [15] and [14]. The one-loop 
quantum correction to the effective action �(1)[V++, Q+] is defined by the functional integral over quantum fields v++, q+

a and ghosts 
fields as

ei�(1) = Det1/2
(4,0)

��
∫

Dv++Dq+DbDcDϕ eiS(2)
quant[v++,q+

a ,b,c,ϕ,V++,Q+]
, (3.6)

where the bilinear in quantum superfields part of the quantum action is

S(2)
quant = S(2)

0 + Sgf + S F P + SN K , (3.7)

and we introduced the background-dependent operator 
�� = 1

2 (D+)4(D−−)2. The definition of the functional determinant Det(4,0)

�� is 
given in ref. [20]. On a space of analytical superfields the operator 

�� is reduced to [15]

�� = DâDâ + (D+α̂W)D−
α̂

− 1

4
(D+α̂ D+

α̂
W)D−− + 1

4
(D+α̂D−

α̂
W) − W2 . (3.8)

Here, all ‘bold’ symbols involve only the background gauge multiplet. For instance, the covariant space-time derivative is written through 
the background gauge connection as Dâ = ∂â − iAâ, â = 0, .., 4.

The quadratic action (3.7) includes the Faddeev-Popov ghost action (3.5), in which the harmonic covariant derivative depends on the 
background superfield V++ , and the action for Nielsen-Kallosh ghost ϕ

SN K = 1

2
tr

∫
dζ (−4)ϕ(D++)2ϕ . (3.9)

The action (3.7) also contains the sum of the quadratic part of the classical action S0 and the gauge-fixing action Sgf

S(2)
0 + Sgf = −1

2
tr

∫
dζ (−4) v++��v++ − 1

2
tr

∫
dζ (−4) q+aD++q+

a

− i

2
tr

∫
dζ (−4)

{
Q+a[v++,q+

a ] + q+a[v++,Q+
a ]

}
. (3.10)

The action (3.10) involves terms which mix the quantum gauge multiplet v++ and the quantum hypermultiplet q+
a . These terms can be 

eliminated in Rξ gauge (see, e.g., [23] for an example of application of the Rξ gauge in 6D, N = (1, 1) SYM theory). In this case the action 
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for the Faddeev-Popov ghosts would depend on both the background gauge multiplet and hypermultiplet and involve inverse powers of 
the operator 

�� . Instead of imposing Rξ gauge, we use a special change of quantum hypermultiplet [22] in the functional integral (3.6)

q+
a (1) = h+

a (1) − i

∫
dζ

(−4)
2 G(1,1)(1|2)a

b[v++(2),Q+
b (2)] , (3.11)

with h+
a being a set of new independent quantum superfields. The change (3.11) leads to the cancellation of mixed terms in the action 

(3.10). The Jacobian of the change (3.11) equals one and so it does not affect the integration measure in (3.6). After changing the variables 
as in (3.11), the action (3.10) acquires the form

S(2)
0 + Sgf = 1

2
tr

∫
dζ

(−4)
1 dζ

(−4)
2 v++

1

{
��δ

(3,1)
A (1|2) − 2 Q+a(1)G(1,1)(1|2)Q+

a (2)
}

v++
2

−1

2
tr

∫
dζ (−4) h+aD++h+

a . (3.12)

The Green function appearing in (3.11) and (3.12), G(1,1)(ζ1, u1|ζ2, u2)a
b = i〈0|Tq+

a (ζ1, u1)q+ b(ζ2, u2)|0〉, is the background-dependent 
superfield hypermultiplet Green function in the τ -frame. It is analytic with respect to its both arguments and satisfies the equation

D++
1 G(1,1)(1|2)a

b = δa
bδ

(3,1)
A (1|2) . (3.13)

In the τ -frame the Green function can be written as G(1,1)(1|2)a
b = δa

bG(1,1)(1|2), where

G(1,1)(1|2) = (D+
1 )4(D+

2 )4

��1

δ14(z1 − z2)

(u+
1 u+

2 )3
, (3.14)

and δ(3,1)
A (1|2) is a covariantly-analytic delta-function [17].

In the effective action (3.6) the background superfields V++ and Q+
a are analytic but unconstrained otherwise. The gauge group of the 

theory (2.1) is assumed to be SU (2). For further consideration, we will also assume that the background fields V++ and Q+
a align in the 

Cartan subalgebra of su(2)

V++ = V ++(ζ, u)H , Q+
a = Q +

a (ζ, u) H , (3.15)

where H = 1
2 σ3 and σ3 is Pauli matrix. The components of the background superfields associated with the E± generators ([E+, E−] = 2H

and [H, E±] = ±E±) are assumed to vanish. Our choice of the background corresponds to the spontaneous symmetry breaking SU (2) →
U (1). We denote the non-zero components of background superfield V++ in (3.15) by the same letter V ++ as in the classical action (2.1), 
with the hope that this will not result in a confusion. The same remark refers to the abelian superfield strength W constructed out of 
V ++ .

We assume that the background superfields V++ and Q+
a satisfy the classical equations of motion (2.3). The conditions (3.15) then 

imply free equations of motion for the superfields V ++ and Q +
a ,

D+α̂ D+
α̂

W = 0 D++ Q +
a = 0 . (3.16)

We also consider the case of the slowly varying background gauge superfield strength and hypermultiplet

∂â W 	 0 ∂â Q +
a 	 0 . (3.17)

With our choice of the background superfields as described above, it is convenient to rewrite the implicit supersymmetry transformations 
(2.5) in terms of the gauge superfield strength [11]. They are

δQ +
a = i

2
εα̂

a (D+
α̂

W ) , δW = − i

4
εa
α̂ D−α̂ Q +

a . (3.18)

The further strategy is as follows. We substitute (3.15) in the action (3.12) and in the actions for the ghosts superfields S F P and SN K . 
As the next step, we integrate over quantum superfields v++ and h+

a in the functional integral (3.6). As in 4D [20] and 6D [22] cases the 
contributions of the ghost superfields exactly cancel the contribution of the quantum hypermultiplet. Thus we are left with the difference 
between the contribution from the quantum gauge multiplet v++ and the contribution from the additional determinant Det1/2

(4,0)

�� in (3.6). 
The presence of this determinant is necessary for eliminating the contributions from the longitudinal component of the superfield v++ , 
in full analogy with 4D and 6D cases (see [13], [21] and [24]). Finally, for the one-loop contribution �(1) to the effective action we obtain 
the expression

�(1) = iTrT ln
(
DâDâ + (D+α̂W )D−

α̂
− W 2 − 2 Q +aG(1,1) Q +

a

)
, (3.19)

where we executed the trace over matrix indices. The functional trace in (3.19) is defined as a trace over the transversal component of 
the superfield v++

�(1) = i

∫
dζ (−4) ln

(
DâDâ + (D+α̂W )D−

α̂
− W 2 − 2 Q +aG(1,1) Q +

a

)
�

(2,2)
T (1|2)

∣∣∣
2→1

, (3.20)

where the projector �(2,2)
(1|2) is analytic in both arguments and is defined as [21]
T
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�
(2,2)
T (1|2) = δ

(2,2)
A (1|2) −D++

1 D++
2

(D+
1 )4(D+

2 )4

��1

δ13(z1 − z2)
(u−

1 u−
2 )

(u+
1 u+

2 )3
, (3.21)

with δ(2,2)

A (1|2) being an analytic delta-function [17]. For our calculation, we do not need to know the explicit form of the projector �(2,2)
T , 

which for the 5D case was found in [14]. All what we need is the expression in the limit of coincident harmonic arguments, u2 → u1, in 
the case of slowly varying on-shell background superfields. The latter condition implies the simplest form for the projector �(2,2)

T ,

�
(2,2)
T (1|2)

∣∣
u2→u1

= (D+
1 )4δ13(z1 − z2). (3.22)

Thus we finally arrive at the following expression for the one-loop contribution �(1) (3.19):

�(1) = i

∫
dζ (−4) ln

(
DâDâ + (D+α̂W )D−

α̂
− W 2 − 2 Q +aG(1,1) Q +

a

)
(D+

1 )4δ13(z1 − z2)

∣∣∣
2→1

. (3.23)

It is the starting point for the evaluation of the leading low-energy contribution to the effective action in the model under consideration.

4. Leading low-energy contribution

Here we demonstrate how the exact expression for the leading low-energy contribution to effective action derived in [11] can be 
recovered from the one-loop effective action (3.23).

First of all we have to note that the effective action (3.23) contains the non-local contribution Q +a(1)G(1,1)(1|2)Q +
a (2) and so one 

should extract the local part from it. One can use the following identity [14]

(D+
1 )4(D+

2 )4 1

(u+
1 u+

2 )3
= (D+

1 )4
{
(D−

1 )4(u+
1 u+

2 ) − 1

4
(u−

1 u+
2 )�−−

1 − (u−
1 u+

2 )2

(u+
1 u+

2 )

��1

}
, (4.1)

where �−− = iDα̂β̂D−
α̂
D−

β̂
+ W (D−)2 + 4(D−α̂ W )D−

α̂
. An analog of this identity for 4D, N = 2 supersymmetric gauge theory was orig-

inally derived in [21]. Then we use the decomposition Q +
a (2) = (u+

1 u+
2 )Q −

a (1) − (u−
1 u+

2 )Q +
a (1) and eq. (4.1) to properly transform the 

Green function G(1,1)(1|2) (3.14).2 We have

Q +a(1)G(1,1)(1|2)Q +
a (2) = Q +a Q −

a (u−
1 u+

2 )2δ13(z1 − z2) + . . . , (4.2)

where dots stand for terms proportional to (u+
1 u+

2 ) and so vanishing in the u2 → u1 limit.
Thus we obtain for the one-loop contribution (3.23)

�(1) = i

∫
dζ (−4) ln

(
DâDâ + (D+α̂W )D−

α̂
− W 2 − 2Q +a Q −

a

)
(D+

1 )4δ13(z1 − z2)

∣∣∣
2→1

. (4.3)

In order to evaluate the leading low-energy contribution to the effective action we need to calculate the functional trace in (4.3) in 
the coincident-point limit. First we calculate the θ±

2 → θ±
1 limit using the presence of Grassmann delta-functions in (4.3). In the full 

superspace delta-function

δ13(z1 − z2) = δ5(x1 − x2)δ
4(θ+

1 − θ+
2 )δ4(θ−

1 − θ−
2 ) (4.4)

the operator (D+)4 annihilate one of the Grassmann delta-functions according to the rule

(D+)4δ4(θ−
1 − θ−

1 ) = −2 . (4.5)

In order to remove the remaining delta-function δ4(θ−
1 − θ−

2 ), we need to collect the fourth power of the derivative D−
α̂

. To this end, we 
expand the logarithm in (4.3) in the power series, up to the fourth power of (D+α̂ W )D−

α̂
:

�(1) = i

2

∫
dζ (−4)

(D+α̂W D+
α̂

W )2

(∂ â∂â − W 2 − 2Q +a Q −
a )4

δ5(x1 − x2) + . . . , (4.6)

where dots mean all contribution with the derivatives of hypermultiplet, D−
α̂

Q +a , which can in principle be evaluated explicitly. In what 
follows we omit all such contributions, assuming that they can be reconstructed by using the analyticity condition for the integrand in 
(4.6) and the implicit N = 1 supersymmetry (3.18).

Then we pass to the momentum representation for the space-time delta-function and calculate the momentum integral∫
d5 p

(2π)5

1

(p2 + M2)4
= i

6(8π)2

1

M3
. (4.7)

After that we obtain for the �(1) (4.6) the following expression

2 See the detailed analysis of the similar contribution in 6D , N = (1, 1) SYM theory in ref. [24].
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�(1) = − 1

12(8π)2

∫
dζ (−4)

(D+α̂W D+
α̂

W )2

(W 2 + 2Q +a Q −
a )3/2

+ . . . , (4.8)

where dots as in (4.6) mean terms with derivatives of the hypermultiplet. The expression (4.8) is the leading low-energy contribution to 
the effective action of 5D, N = 5 SYM theory. It is written as an integral over the analytic subspace. In the paper [11] the effective action 
of N = 2 SYM theory was obtained as a hypermultiplet completion of the leading W ln W -term in the N = 1 SYM low-energy effective 
action and it was written as an integral over the whole superspace. This effective action was evaluated in the form (1.1), up to an overall 
constant c0.

Let us demonstrate that, passing to the full superspace in (4.8), one can reproduce the expression (1.1). To this end, we first expand 
the function H(Z) in the expression (1.1) in the power series

SN=2
eff = c0

∫
d13z

[
W ln W +

∞∑
n=1

(−1)n(2n − 2)!
n!(n + 1)!2n

(Q +a Q −
a )n

W 2n−1

]
. (4.9)

Then we decompose the factor (W 2 + 2Q +a Q −
a )−3/2 in (4.8) as

�(1) = − 1

12(8π)2

∫
dζ (−4)(D+α̂W D+

α̂
W )2

( 1

W 3
+

∞∑
n=1

(−1)n2n�[n + 3
2 ]

�[ 3
2 ]�[n + 1]

(Q +a Q −
a )n

W 2n+3

)
. (4.10)

After this we pass to the full superspace by restoring (D+)4 in all terms of the series by the rules

(D+)4W ln W = − 1

16

(D+α̂W D+
α̂

W )2

W 3
,

(D+)4 1

W 2n−1
= −1

8
n(n + 1)(2n + 1)(2n − 1)

(D+α̂W D+
α̂

W )2

W 2n+3
, (4.11)

keeping in mind the on-shell condition for the background gauge field strength W and omitting all terms with derivatives of the hyper-
multiplet. One can show that, after using (4.11) in (4.10) and employing the property,

�[n + 1
2 ] = 2n!√π

4nn! ,

the second term in (4.10) immediately takes the same form as in (4.9). Indeed, it is straightforward to check that

(D+)4
(

W ln W + 1
2 W H

( Q +a Q −
a

W 2

)) = − 1

16

(D+α̂W D+
α̂

W )2

(W 2 + 2Q +a Q −
a )3/2

+ . . . , (4.12)

where dots denote terms with spinor derivatives of the hypermultiplet. Thus for the leading term in the low-energy effective action we 
obtain the expression

�(1) = 1

48π2

∫
d13zW

[
ln W + 1

2
H

(
Q +a Q −

a
W 2

)]
, (4.13)

where the function H(Z) was defined in (1.2).
We observe the complete agreement of the method based on the symmetry considerations with the direct quantum computations. The 

latter also yield the precise value for the coefficient c0.

5. Summary

We have studied the problem of computing the leading contribution to the one-loop low-energy effective action of 5D , N = 2 SYM 
theory in the 5D, N = 1 harmonic superspace formulation. The effective action was constructed in the framework of the background field 
method which allow to preserve the manifest gauge invariance and 5D, N = 1 supersymmetry at all stages of calculations. The effective 
action derived in this way depends on all fields of 5D , N = 2 gauge multiplet and is completely 5D , N = 2 supersymmetric. We have 
shown that the superfield quantum considerations yield the same leading contribution to one-loop low-energy effective action as the 
analysis carried out in ref. [11] on the purely symmetric grounds.

The results obtained here can be further generalized at least in two directions. First, it would be interesting to find out the explicit 
forms of the next-to-leading corrections to the effective action (1.1). Second, it is tempting to study the quantum aspects of the twisted 
5D, N = 2 SYM theory [25–27], using similar techniques.
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