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1 Introduction

Classical and quantum supersymmetric Yang-Mills (SYM) theories with 16 supercharges

in diverse dimensions play an important role in the modern field theory(see, e.g., [1]). The

main source of interest in them is the property that they describe low-energy limit of some

brane-like compactifications of type II string theory and thereby provide a bridge between

superstring theory and supersymmetric field theory. Most interesting and elaborated are

4D,N = 4, 5D, N = 2 and 6D, N = (1, 1) SYM theories. Some of these models admit

superfield formulations with half of the underlying supersymmetry being manifest and off-

shell, namely, with 4D, N = 2, 5D, N = 1 and 6D, N = (1, 0) off-shell supersymmetries.

These formulations were constructed within the relevant harmonic superspaces [2, 3].

In such formulations, the second half of the total supersymmetry is realized on the basic

superfields of the theory as a hidden (or implicit) supersymmetry which forms a closed Lie

bracket structure with the manifest supersymmetry only on shell. While inspecting the

superfield quantum effective actions, the role of this hidden half of supersymmetry turns

out to be very restrictive: requiring the effective action to enjoy such a supersymmetry

fixes, in most known cases, its structure up to an overall coefficient which should further be

explicitly calculated from the relevant superfield quantum perturbation theory. A review

of this approach is given in refs. [4–6].
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The basic example of applying such a strategy for constructing the quantum effective

action is provided by 4D, N = 4 SYM effective action which was constructed in [7] as

a hypermultiplet completion of the non-holomorphic N = 2 gauge superfield potential

found in [8]. Later on, the same effective action was reproduced in various harmonic

superspaces [5]. These works revealed a correspondence between the N = 4 SYM low-

energy effective action and the leading terms in the effective action of D3 brane on the

AdS5 × S5 background. One more example is 5D, N = 2 SYM theory. Its low-energy

effective action was constructed as a hypermultiplet completion of the 5D, N = 1 SYM

effective action [9].

In this parer we propose another way to determine the low-energy effective actions of

4D, N = 4 and 5D, N = 2 SYM theories in harmonic superspace. It is based upon ex-

ploiting a hidden bosonic R-symmetry of these theories instead of hidden supersymmetry.

To be more precise, we suggest a new possibility to construct the superspace functionals

depending on all fields of the corresponding supermultiplet, beginning with a functional

which involves only part of such fields. The point is that the supersymmetry algebra pos-

sesses the automorphism group which is called the R-symmetry group. We will show that

such R-symmetry can be realized directly on harmonic superfields. While some subgroups

of R-symmetry are realized linearly and manifestly, the rest of its transformations proves

to possess a highly non-trivial realization mixing all fields of the extended supermultiplet.

As a result, we gain a possibility to impose the condition of invariance under the total

R-symmetry on a superspace functional in order to specify its dependence on all fields of

such a supermultiplet.

In the harmonic superspace formulation, the full multiplets of 4D, N = 4 or 5D,

N = 2 SYM theories consist of the gauge vector multiplet and the hypermultiplet. Not

only half of 4D, N = 4 and 5D, N = 2 supersymmetries is realized in an implicit way, but

also that part of the total R-symmetries of these theories, viz., of SU(4) and SO(5), which

mixes the hidden and manifest supersymmetry transformations. It is also realized by some

implicit transformations. In this paper we find the precise form of the hidden R-symmetry

transformations which extend the manifest R-symmetry groups, namely U(2)× SU(2) and

SU(2)× SU(2), to SO(6) or SO(5), respectively.

Although the low-energy effective action might be found by direct quantum compu-

tations in harmonic superspace or by using the hidden supersymmetry transformations,

we determine it here in a different way. Namely, we construct the hypermultiplet com-

pletions of 4D, N = 2 and 5D, N = 1 leading terms by imposing the requirement of full

R-symmetry invariance. The effective action corresponds to the Coulomb branch, with

the gauge group being broken to some abelian subgroup. For simplicity we concentrate on

SU(2) gauge group broken to U(1) and consider, as usual in the Coulomb phase, only that

part of the effective action which depends on the fields of massless U(1) N = 2 gauge mul-

tiplet and its neutral hypermultiplet partner forming together 4D, N = 4 or 5D, N = 2

abelian U(1) gauge multiplets.

In addition, we explicitly show that the 4D, N = 4 SYM effective action respects

superconformal invariance.
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2 4D,N = 4 SYM theory

In this section we present the superfield realization of the hidden part of the R-symmetry

transformations for 4D, N = 4 SYM theory with the gauge group SU(2) and construct

the low-energy effective action. As an additional exercise, we show its superconformal

invariance.

2.1 A sketch of N = 2 harmonic superspace

In our presentation we basically follow the notation and conventions of refs. [3, 5]. Some

important notions of the harmonic superspace approach are briefly outlined below.

The standard 4D, N = 2 superspace is parametrized by the coordinates

zM = (xm, θαi , θ̄
α̇i), (2.1)

where xm, m = 0, 1, 2, 3 , are the Minkowski space coordinates and θαi , θ̄α̇i, i = 1, 2,

α, α̇ = 1, 2, are the anticommuting Grassmann coordinates.

One can add, to this set of coordinates, the harmonics u±i (u−i = (u+i)∗, u+iu−i = 1)

which describe the “harmonic sphere” SU(2)R/U(1), where SU(2)R is the R-symmetry

group acting on the doublet indices i, k . The 4D, N = 2 harmonic superspace in the

central basis is defined as the enlarged coordinate set

Z = (z, u) = (xm, θαi , θ̄
α̇i, u±i). (2.2)

In the analytic basis it is parametrized by the coordinates

Z(an) = (xm(an), θ
±
α , θ̄

±
α̇ , u

±i), (2.3)

xman = xm − 2iθ(iσmθ̄j)u+
i u
−
j , θ±α = u±i θ

i
α, θ̄±α̇ = u±i θ̄

i
α̇. (2.4)

The most important feature of the analytic basis consists in that the set of coordinates

ζ = (xm(an), θ
+
α , θ̄

+
α̇ , u

±i), (2.5)

involving only half of the original Grassmann coordinates, forms a subspace closed under

the 4D, N = 2, supersymmetry transformations. The set (2.5) represents what is called

the “harmonic analytic superspace”.

The important ingredients of the harmonic superspace approach are the spinor and

harmonic derivatives. In the analytic basis, they are expressed as

D+
α =

∂

∂θ−α
, D̄+

α̇ =
∂

∂θ̄−α̇
,

D−α = − ∂

∂θ+α
+ 2iθ̄−α̇∂αα̇, D̄−α̇ = − ∂

∂θ+α̇
+ 2iθ−α∂αα̇,

D++ = u+i ∂

∂u−i
− 2iθ+αθ̄+α̇∂αα̇ + θ+α ∂

∂θ−α
+ θ̄+α̇ ∂

∂θ̄−α̇
,

D−− = u−i
∂

∂u+i
− 2iθ−αθ̄−α̇∂αα̇ + θ−α

∂

∂θ+α
+ θ̄−α̇

∂

∂θ̄+α̇
.

(2.6)
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The harmonic derivatives D±±, together with the harmonic U(1) charge operator

D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
+ θ+α ∂

∂θ+α
+ θ̄+α̇ ∂

∂θ̄+α̇
− θ−α ∂

∂θ−α
− θ̄−α̇ ∂

∂θ̄−α̇
,

form an SU(2) algebra,

[D++, D−−] = D0 , [D0, D±±] = ±2D±± . (2.7)

The harmonic superfields (as well as the harmonic projections of the spinor covari-

ant derivatives) carry a definite integer harmonic U(1) charge, D0Φq(Z) = qΦq(Z),

[D0, D±α,α̇] = ±D±α,α̇. This harmonic charge is assumed to be strictly preserved in any

superfield action defined on the superspaces (2.3) or (2.5).

The “shortness” of the spinor derivatives D+
α , D̄

+
α̇ in (2.6) reflects the existence of

the analytic harmonic subspace (2.5) in the general harmonic superspace (2.3): one can

define an analytic N = 2 superfield by imposing the proper covariant “Grassmann ana-

lyticity” constraints on a general harmonic superfield, viz., D+
αΦq(Z) = D̄+

α̇Φq(Z) = 0 ⇒
Φq(Z) = φq(ζ). The harmonic derivative D++ commutes with these spinor derivatives and

so preserves the Grassmann harmonic analyticity: D++Φq(Z) is an analytic superfield if

Φq(Z) is.

2.2 Classical action of N = 4 SYM

When formulated in N = 2 harmonic superspace, N = 4 vector gauge multiplet can be

viewed as a “direct sum” of the gauge N = 2 multiplet and the hypermultiplet described,

respectively, by the analytic superfields V ++(ζ) and q+
a (ζ) = (q+(ζ),−q̃+(ζ)), where “tilde”

means some generalized complex conjugation [3]. Both these multiplets belong to the same

adjoint representation of the gauge group. The N = 2 gauge multiplet V ++ is described

dy the classical action [10]

SN=2
SYM =

1

2

∞∑
n=2

tr
(−i)n

n

∫
d12zdu1 . . . dun

V ++(z, u1) . . . V ++(z, un)

(u+
1 u

+
2 ) . . . (u+

n u
+
1 )

, (2.8)

where integration goes over the total harmonic superspace and the harmonic distributions

1/(u+
1 u

+
2 ), · · · are defined in [3].

This action yields the following equations of motion

(D+)2W = 0, (D̄+)2W̄ = 0, (2.9)

where (D+)2 = D+αD+
α , (D̄+)2 = D̄+

α̇ D̄
+α̇ and D+

α , D̄
+
α̇ are the harmonic plus-projection of

the gauge-covariant spinor derivatives in the so called “λ” frame, in which these derivatives

require no gauge connection terms and coincide with their flat counterparts defined in (2.6),

W and W̄ are chiral and antichiral gauge superfield strengths. The latter can de expressed

in terms of the non-analytic harmonic gauge connection V −−,

W = −1

4
(D̄+)2V −−, W̄ = −1

4
(D+)2V −−, (2.10)
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where V −− is related to V ++ by the harmonic flatness condition

D−−V ++ −D++V −− + i[V ++, V −−] = 0. (2.11)

The classical action for the analytic hypermultiplet in the adjoint representation

reads [2]

Sq =
1

2
tr

∫
dζ−4q+

a ∇++q+a =
1

2
tr

∫
dζ−4q+

a

(
D++q+a + i[V ++, q+a]

)
, (2.12)

where dζ−4 is the measure of integration over the analytic harmonic superspace. This action

is invariant under an extra SU(2)PG symmetry transforming q+a as a doublet. Both ac-

tions (2.8) and (2.12) are invariant under the standard linear automorphism group SU(2)R
which rotates the doublet indices of the harmonic variables. In addition, both actions are

invariant under the separate R-symmetry U(1)R which transforms θ± and θ̄± by the con-

jugated phase factors. Correspondingly, W and W̄ defined in (2.10) are also transformed

by the appropriate mutually conjugated phase factors, q+a is the U(1)R singlet.

The action of N = 4 SYM theory in N = 2 harmonic superspace is the sum of the

actions (2.8) and (2.12),

SN=4
SYM = SN=2

SYM + Sq. (2.13)

The total action is invariant under the following hidden N = 2 supersymmetry trans-

formations which complement the manifest N = 2 supersymmetry to the full N = 4

supersymmetry

δV ++ =
[
εaαθ+

α −ε̄aα̇θ̄+α̇
]
q+
a , δq+

a =− 1

32
(D+)2(D̄+)2

[
εαaθ
−
α V
−−+ε̄aα̇θ̄

−α̇V −−
]
, (2.14)

with ε̄aα̇ and εαa as new anticommuting parameters. Though checking the invariance of the

action does not require the use of the classical equations of motion, the algebra of these

transformations is closed modulo terms proportional to the equations of motion. Therefore,

in this formulation only the manifest N = 2 supersymmetry is off-shell closed.

2.3 R-symmetry transformations

We define the additional R-symmetry transformations of the gauge and hypermultiplet

harmonic superfields as follows

δV ++ =
[
λ−a(θ+)2+λ̄−a(θ̄+)2

]
q+
a ,

δq+
a =

(D+)2(D̄+)2

64

[
λ+
a (θ−)2V −−−2λ−a θ

+αθ−α V
−−+λ̄+

a (θ̄−)2V −−−2λ̄−a θ̄
+
α̇ θ̄
−α̇V −−

]
,

(2.15)

where λ−a = λiau−i , λ̄−a = λ̄iau−i , λia = λ̄ia, λia are the commuting dimensionless complex

parameters. These transformations extend the R-symmetry group from SU(2)R×SU(2)PG

to SU(4). The direct check shows that the action (2.13) is off-shell invariant under the

transformations (2.15). The form of (2.15) is almost uniquely specified by the dimen-

sionality and analyticity reasonings, together with requiring both sides to have the same

– 5 –
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harmonic U(1) charges. To avoid a possible confusion, we point out that the superfields

in (2.15) are not subject to any on-shell conditions which should be taken into account

only when inspecting the closure properties of these transformations (see below).

Further in this section we consider the case of abelian gauge group, since the effective

action we will deal with depends only on the superfields of the abelian U(1) gauge multiplet.

The equations of motion implied by the action (2.13) read

D++q+
a = 0, (D+)2W = 0, (D̄+)2W̄ = 0. (2.16)

In addition, the hypermultiplet q+
a obeys the off-shell analyticity constraints

D+
α q

+
a = 0, D̄+

α̇ q
+
a = 0. (2.17)

The superfield strengths W , W̄ are chiral and antichiral

D̄±α̇W = 0 , D±α W̄ = 0 , (2.18)

and they satisfy the off-shell constraints

D±±W = 0 , D±±W̄ = 0 , (2.19)

which follow from the harmonic flatness condition (2.11) and the analyticity of V ++.

When superfields W , W̄ and q+
a obey the on-shell constraints (2.16), the transforma-

tions of hidden N = 2 supersymmetry (2.14) are simplified to

δW =
1

2
ε̄α̇aD̄−α̇ q

+
a , δW̄ =

1

2
εαaD−α q

+
a ,

δq+
a =

1

4

(
εαaD

+
αW + ε̄α̇a D̄

+
α̇ W̄

)
, δq−a =

1

4

(
εαaD

−
αW + ε̄α̇a D̄

−
α̇ W̄

)
,

(2.20)

where q−a = D−−q+a. In this case the R-symmetry transformations (2.15) are also

simplified:

δq+
a =

1

4

(
λ+
aW−λ+

a θ
−αD+

αW+λ−a θ
+αD+

αW+λ̄+
a W̄−λ̄+

a θ̄
−α̇D̄+

α̇ W̄+λ̄−a θ̄
+α̇D̄+

α̇ W̄
)
,

δW̄ =
1

2

(
λ−aq+

a −λ+aq−a −λ−aθ+αD+
α q
−
a +λ+aθ−αD+

α q
−
a

)
,

δW =
1

2

(
λ̄−aq+

a −λ̄+aq−a −λ̄−aθ̄+α̇D̄+
α̇ q
−
a +λ̄+aθ̄−α̇D̄+

α̇ q
−
a

)
.

(2.21)

One may verify that the commutators of the R-symmetry transformations (2.21) with

the manifest and hidden supersymmetry transformations give the consistent results. The

variation of general superfield under the manifest supersymmetry reads

δ̂Φ = −ε+α ∂Φ

∂θ+α
− ε−α ∂Φ

∂θ−α
− ε̄+α̇

∂Φ

∂θ̄+
α̇

− ε̄−α̇
∂Φ

∂θ̄−α̇
+ 2i(ε−αθ̄+α̇ + θ+αε̄−α̇)∂αα̇Φ. (2.22)

– 6 –
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Let us first consider the commutators of the hidden supersymmetry transformations

(2.20) with the R-symmetry transformations (2.21). One can show, by a direct computa-

tion, that

(δλδε − δεδλ)q+a =
1

8

[
− λ̄+

c ε
αc ∂q

+a

∂θ+α
− λ+

c ε̄
α̇c ∂q

+a

∂θ̄+α̇

+ 2i(λ̄−c ε
αcθ̄+β̇ + θ+αλ−c ε̄

β̇c)∂αβ̇q
+a

]
=

1

8
δ̂λ̄+c εαcq

+a,

(δλδε − δεδλ)W =
1

8

[
− λ̄+

c ε
αc ∂W

∂θ+α
− λ̄−c εαc

∂W

∂θ−α
− λ−c ε̄α̇c

∂W

∂θ̄−α̇

+ 2i(λ̄−c ε
αcθ̄+β̇ + θ+αλ−c ε̄

β̇c)∂αβ̇W

]
=

1

8
δ̂λ̄+c εαcW,

(δλδε − δεδλ)W̄ =
1

8

[
− λ̄−c εαc

∂W̄

∂θ−α
− λ−c ε̄α̇c

∂W̄

∂θ̄−α̇
− λ+

c ε̄
α̇c ∂W̄

∂θ̄+α̇

+ 2i(λ̄−c ε
αcθ̄+β̇ + θ+αλ−c ε̄

β̇c)∂αβ̇W̄

]
=

1

8
δ̂λ̄+c εαcW̄ .

(2.23)

Hence, the on-shell commutator of the hidden supersymmetry transformations (2.20) with

the R-symmetry ones (2.21) gives the manifest supersymmetry (2.22), with the bracket

parameter λ̄+
c ε

αc, in agreement with N = 4 supersymmetry algebra.

Let us now evaluate the commutators of the R-symmetry transformations (2.21) with

the manifest supersymmetry transformations (2.22). We obtain

(δλδ̂ε − δ̂εδλ)q+
a = −1

4

(
εαiλiaD

+
αW + ε̄α̇iλ̄iaD̄

+
α̇ W̄

)
= −δλiaεαiq

+
a ,

(δλδ̂ε − δ̂εδλ)W = −1

2
ε̄α̇iλ̄ai D̄

−
α̇ q

+
a = −δλiaεαiW,

(δλδ̂ε − δ̂εδλ)W̄ = −1

2
εαiλaiD

−
α q

+
a = −δλiaεαiW̄ .

(2.24)

So the on-shell commutator of the R-symmetry transformations (2.21) with the manifest

supersymmetry transformations (2.22) yields those of hidden supersymmetry (2.20), with

the bracket parameter (εαa ))br = λiaε
αi.

Finally, we consider the commutator of the R-symmetry transformations with itself.

We have

(δλ1δλ2−δλ2δλ1)q+
a =

1

8

[
λb(PG)aq

+
b +

1

2
λθ̄+α̇ ∂

∂θ̄+α̇
q+
a +

1

2
λ̄θ+α ∂

∂θ+α
q+
a

]
− 1

8
λij

(
u+
i

∂

∂u+j
+u−i

∂

∂u−j

)
q+
a ,

(δλ1δλ2−δλ2δλ1)W̄ =−1

8
λij

(
u+
i

∂

∂u+j
+u−i

∂

∂u−j

)
W̄

+
1

8

[
1

2
λθ̄−α̇

∂

∂θ̄−α̇
W̄+

1

2
λθ̄+α̇ ∂

∂θ̄+α̇
W̄+

1

2
λ̄θ+α ∂

∂θ+α
W̄−λW̄

]
,

(2.25)
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where

λij = λ
(ia
2 λ̄

j)
1a − λ

(ia
1 λ̄

j)
2a, λ = λia2 λ̄1ia − λia1 λ̄2ia, λab(PG) = λ

i(a
2 λ̄

b)
1i − λ

i(a
1 λ̄

b)
2i. (2.26)

Here, the parameters λij correspond to SU(2)R transformations, the parameter λ (λ̄ = −λ)

corresponds to the additional U(1)R symmetry and λab(PG) are associated with the SU(2)PG

symmetry commuting with both N = 2 supersymmetry and U(2)R symmetry.

Thus the on-shell closure of the implicit R-symmetry transformations yields the linear

U(2)R and SU(2)PG transformations, once again in agreement with the action of the coset

SU(4)R/[U(2)R × SU(2)PG] part of the full automorphism symmetry SU(4)R on N = 4

supersymmetry algebra.

Note that the calculation of the brackets (2.25) is not as straightforward as that of the

previous Lie brackets. Some details of it are collected in appendices A and B.

2.4 Effective action

The leading low-energy term in the effective action of N = 2 SYM theory in N = 2

superspace has the form (see, e.g., the reviews [4, 5])

Γ0 =

∫
d12zduH(W, W̄ ), H(W, W̄ ) = c ln

(
W

Λ

)
ln

(
W̄

Λ

)
, (2.27)

where Λ is an arbitrary scale.1

The complete N = 4 SYM effective action is an extension of the effective action (2.27)

by hypermultiplet-dependent terms. It was first found in [7]:

Γ =

∫
d12zdu

[
c ln

(
W

Λ

)
ln

(
W̄

Λ

)
+ L

(
−2

q+aq−a
WW̄

)]
, (2.28)

where

L(Z) = c
∞∑
n=1

Zn

n2(n+ 1)
= c

[
(Z − 1)

ln(1− Z)

Z
+ Li2(Z)− 1

]
(2.29)

and Li2(Z) is the Euler dilogarithm function. The part containing q+a is fixed by the

requirement that the effective action Γ be invariant under both manifest off-shell N = 2

supersymmetry and hidden on-shell N = 2 supersymmetry. As a result, the effective

action (2.28) is an invariant of N = 4 supersymmetry and depends on all fields of N = 4

gauge multiplet.

Now we will show that the effective action (2.28) can be alternatively derived

from (2.27) by imposing the requirement of R-symmetry instead of invariance under the

hidden N = 2 supersymmetry. To this end, let us consider the variation of (2.27) under

the transformations (2.21). Based on the reality reasonings, it is enough to concentrate

only on that part of the transformations which involves the parameter λia, neglecting the

1In fact, the action does not depend on Λ in virtue of the (anti)chirality of (W̄ )W .

– 8 –



J
H
E
P
0
4
(
2
0
2
0
)
1
2
6

part containing λ̄ia,

δ

∫
d12zdu c ln

(
W

Λ

)
ln

(
W̄

Λ

)
=
c

2

∫
d12zdu ln

(
W

Λ

)
2λ−aq+

a + λ−aθ+αD−α q
+
a − λ+aθ−αD−α q

+
a

W̄

=
c

2

∫
d12zdu

−λ−aθ+αD−αWq+
a + λ+aθ−αD−αWq+

a

WW̄
.

(2.30)

Due to the property that
∫
d12zdu q

+aλ−a
W̄

= 0, the variation (2.30) can be canceled by adding

the new term to H:

L1 = −c q
+aq−a
WW̄

. (2.31)

Evaluating the variation of the sum H+ L1, we obtain

δ

∫
d12zdu

[
H(W, W̄ ) + L1

]
=
c

2

∫
d12zdu

q+bq−b
WW̄ 2

[
λ−aq+

a − λ+aq−a

+
(
λ−aθ+α − λ+aθ−α

)
D+
α q
−
a

]
=
c

2

∫
d12zdu

q+bq−b
WW̄ 2

[
2λ−aq+

a + (λ−aθ+α − λ+aθ−α)D−α q
+
a

]
.

(2.32)

Consider the last term in some detail

c

2

∫
d12zdu

q+bq−b
WW̄ 2

(λ−aθ+α − λ+aθ−α)D−α q
+
a

=
c

2

∫
d12zdu

[
−2λ−aW + (λ−aθ+α − λ+aθ−α)D−αW

(WW̄ )2
q+
a (q+bq−b )

− (λ−aθ+α − λ+aθ−α)
q+bD−α q

−
b q

+
a

WW̄ 2

]
=
c

2

∫
d12zdu

[
−2λ−aW + (λ−aθ+α − λ+aθ−α)D−αW

(WW̄ )2
q+
a (q+bq−b )

− (λ−aθ+α − λ+aθ−α)
q+bq−b D

−
α q

+
a

2WW̄ 2

]
.

(2.33)

Here we have used various properties of the involved superfields (chirality, analyticity), as

well as the integration by parts with respect to the spinor derivative in the second line and

cyclic identities for the SU(2) doublet indices in the third line. Observe that the last term

in the third line equals, modulo the minus sign, the variation we started with. Hence,

c

2

∫
d12zdu

q+bq−b
WW̄ 2

(λ−aθ+α − λ+aθ−α)D−α q
+
a

=
c

3

∫
d12zdu

[
−2λ−aW + (λ−aθ+α − λ+aθ−α)D−αW

(WW̄ )2
q+
a (q+bq−b )

]
.

(2.34)
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Plugging (2.34) into (2.32), we obtain

δ

∫
d12zdu

[
H(W, W̄ ) + L1

]
=
c

3

∫
d12zdu

q+bq−b
(WW̄ )2

[
λ−aq+

aW +
(
λ−aθ+α − λ+aθ−α

)
D−αWq+

a

]
.

(2.35)

This variation is canceled by adding the new proper term to (2.27),

L2 =
c

3

(q+aq−a )2

(WW̄ )2
. (2.36)

Continuing the iterative process, one can find that

Ln =
c

n2(n+ 1)

(−2q+aq−a )n

(WW̄ )n
. (2.37)

Summing up all Ln, one recovers the effective action (2.28).

One can directly verify that (2.28) is invariant under the R-symmetry transforma-

tions (2.21). Once again, we limit our attention to terms with the parameter λia:

δΓ = c

∫
d12zdu

[
(λ+aθ−α − λ−aθ+α)D−αWq+

a

2WW̄

− L′(Z)
q+a [λ−aW + (λ−a θ

+α − λ+
a θ
−α)D−αW ]

WW̄

− ZL′(Z)
[2λ−aq+

a + (λ−aθ+α − λ+aθ−α)D−α q
+
a ]

2W̄

]
.

(2.38)

This expression can be simplified, using the identity∫
d12zdu

ZL′(Z)

W̄

[
2λ−aq+

a + (λ−aθ+α − λ+aθ−α)D−α q
+
a

]
=

∫
d12zdu [2L′(Z)− 1]

[
λ−aq+

a

W̄
+ (λ−aθ+α − λ+aθ−α)

q+
a D
−
αW

WW̄

]
,

(2.39)

which is deduced by integrating by parts with respect to the spinor derivative and applying

to the definition of the function L(Z) (2.28).

Thus we obtain

δΓ = c

∫
d12zdu

[
(λ+aθ−α − λ−aθ+α)D−αWq+

a

2WW̄

− L′(Z)
q+a [λ−aW + (λ−a θ

+α − λ+
a θ
−α)D−αW ]

WW̄

]
− 1

2

∫
d12zdu [2L′(Z)− 1]

[
λ−aq+

a

W̄
+ (λ−aθ+α − λ+aθ−α)

q+
a D
−
αW

WW̄

]
= 0.

(2.40)

To summarize, the requirement of invariance under the R-symmetry transformations

allowed us to completely restore the hypermultiplet dependence of N = 4 supersymmetric

effective action.

– 10 –



J
H
E
P
0
4
(
2
0
2
0
)
1
2
6

2.5 Superconformal invariance of the effective action

The effective action (2.28) is evidently scale-invariant. In this section we prove that it is

actually invariant under the total 4D, N = 4 superconformal group SU(2, 2|4).

Due to the structure of 4D, N = 4 superconformal algebra and the R-symmetry in-

variance of the effective action it suffices to show only its 4D, N = 2 superconformal

invariance. Moreover, it is enough to check just invariance under conformal boosts.

Indeed, the commutator of conformal boosts with the manifest N = 2 Poincaré su-

persymmetry yields the special conformal N = 2 supersymmetry. The N = 4 completion

of the latter is contained in the commutator of conformal boosts with the hidden N = 2

supersymmetry which, as we saw, is obtained by commuting the hidden R-symmetry with

N = 2 Poincaré supersymmetry.

To prove the superconformal invariance we should use the transformation rules of the

harmonic superspace coordinate, as well as those of the harmonic and spinor derivatives.

The harmonic superspace coordinate transformations under conformal boosts in the ana-

lytic basis read [3]

δxαα̇ = xβα̇kββ̇x
αβ̇ ,

δθ+α = θ+βkββ̇x
αβ̇ , δθ−α = θ−βkββ̇x

αβ̇ − 2i(θ−)2θ̄+

β̇
kαβ̇ ,

δθ̄+α̇ = θ̄+β̇kββ̇x
βα̇, δθ̄−α̇ = θ̄−β̇kββ̇x

βα̇ − 2i(θ̄−)2θ+
β k

βα̇,

(2.41)

where kαα̇ is the corresponding 4-vector parameter. The transformation law of the har-

monics is [3]

δu+k = Λ++u−k , δu−k = 0, Λ++ = 4iθ+αkαα̇θ̄
+α̇,

D−−Λ++ = 4iθ−αkαα̇θ̄
+α̇ + 4iθ+αkαα̇θ̄

−α̇.
(2.42)

Next, let us write the superconformal transformations of the harmonic and spinor

derivatives

δD++ = −Λ++D0, δD−− = −(D−−Λ++)D−−, δD+
α = −D+

α (δθ−β)D+
β . (2.43)

Using these transformation rules it is easy to establish the transformation of the superspace

integration measure dZ = d12zdu = d4xd4θ+d4θ−du,

δdZ =
(
∂αα̇x

αα̇ + ∂−−Λ++ − ∂+αθ
+α − ∂−αθ−α − ∂̄+α̇θ̄

+α̇ − ∂̄+α̇θ̄
+α
)
dZ = ΛdZ,

Λ = 4i(θ−α θ̄
+
α̇ − θ̄

−
α̇ θ

+
α )kαα̇.

(2.44)

Let us now consider the transformations of the gauge potentials V ±±. Taking into

account the relations (2.41), (2.42), (2.43) one deduces

δV ++ = 0, δV −− = −(D−−Λ++)V −−. (2.45)

Using the transformation rules (2.43) and (2.45), it is easy to obtain the transformation

law of the superfield strengths W , W̄

δW = −kαα̇(xαα̇ + 4iθ−αθ̄+α̇)W, δW̄ = −kαα̇(xαα̇ + 4iθ+αθ̄−α̇)W̄ . (2.46)
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The transformation of the hypermultiplet q±a under the conformal boosts reads [3]

δq+a = −kαα̇xαα̇q+a, δq−a = δ(D−−q+a) = −kαα̇xαα̇q−a − 4i(θ−α θ̄
+
α̇ − θ̄

−
α̇ θ

+
α )kαα̇q−a.

(2.47)

Now we are prepared to show the conformal invariance of the effective action (2.28).

Let us first show invariance of the logarithmic term

δ

∫
d12zduc ln

(
W

Λ

)
ln

(
W̄

Λ

)
= c

∫
d12zdu

[
4i(θ−α θ̄

+
α̇ − θ̄

−
α̇ θ

+
α )kαα̇ln

(
W

Λ

)
ln

(
W̄

Λ

)
− kαα̇(xαα̇ + 4iθ−αθ̄+α̇)ln

(
W̄

Λ

)
− kαα̇(xαα̇ + 4iθ+αθ̄−α̇)ln

(
W

Λ

)]
= c

∫
d12zdu

[
− 4i(θ+

α θ̄
−
α̇ + θ̄−α̇ θ

+
α )kαα̇ln

(
W

Λ

)
ln

(
W̄

Λ

)]
= 0,

(2.48)

where we made use of some properties of W and W̄ , eqs. (2.18), (2.19). Then we check

invariance of the generic term in the power expansion of the function L(z)

δ

∫
d12zdu

(
q+aq−a
WW̄

)n
= n

∫
d12zdu

(
q+aq−a
WW̄

)n [
4i

n
(θ−α θ̄

+
α̇ − θ̄

−
α̇ θ

+
α )kαα̇

− kαα̇xαα̇ − kαα̇xαα̇ − 4i(θ−α θ̄
+
α̇ − θ̄

−
α̇ θ

+
α )kαα̇

+ kαα̇(xαα̇ + 4iθ−αθ̄+α̇) + kαα̇(xαα̇ + 4iθ+αθ̄−α̇)

]
= 0.

(2.49)

Here we used, once again, the conditions (2.18) and (2.19), as well as the equations of

motion (2.16).

So we have proved that the effective action (2.28) is superconformally invariant on

shell. Note that the original “microscopic” action is invariant under the conformal boosts

and hence under the whole N = 4 superconformal group off shell, without any use of the

equations of motion. The latter, like in the case of hidden N = 4 supersymmetry and R-

symmetry, are of need only when checking the correct closure of all these transformations.

On the other hand, the effective action reveals the invariance under the hidden N = 4

supersymmetry and R-symmetry only on shell, so it is quite natural that the same is also

valid for N = 4 superconformal symmetry.

3 5D, N = 2 SYM theory

In this section, we introduce the R-symmetry transformations for 5D, N = 2 SYM theory

with the gauge group SU(2) and construct the complete low-energy effective action by

requiring invariance under these R-symmetry transformations. We use the notations and

conventions of refs. [3, 11]. The relevant harmonic superspace formalism to large extent is

similar to its 4D, N = 2 prototype.
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3.1 Classical action

The N = 2 gauge multiplet in 5D, N = 1 harmonic superspace consists of N = 1 gauge

multiplet represented by the analytic superfield V ++ and the hypermultiplet q+a. The

N = 1 gauge multiplet classical action reads [10]

SN=1
SYM =

1

2g2

∞∑
n=2

tr
(−i)n

n

∫
d13zdu1 . . . dun

V ++(z, u1) . . . V ++(z, un)

(u+
1 u

+
2 ) . . . (u+

n u
+
1 )

, (3.1)

where g is a coupling constant of mass-dimension −1/2. The superfield strength is defined

in the analytic λ-frame as

W =
i

8
(D+)2V −−, (3.2)

where (D+)2 = D+α̂D+
α̂ = Ωα̂β̂D+

β̂
D+
α̂ , Ωα̂β̂ is the USp(4) invariant skew-symmetric con-

stant “metric” and V −− is a non-analytic gauge potential related to V ++ by the harmonic

flatness condition

D++V −− −D−−V ++ + i[V ++, V −−] = 0. (3.3)

The classical action of the hypermultiplet q+a = (q+,−q̃+) in the adjoint representation

of the gauge group is written as [2]

Sq =
1

2g2
tr

∫
dζ−4q+

a ∇++q+a =
1

2g2
tr

∫
dζ−4q+

a

(
D++q+a + i[V ++, q+a]

)
, (3.4)

where dζ−4 is the analytic superspace integration measure. In addition, this action is

invariant under SU(2)PG symmetry which transforms q+a as a doublet.

The action of N = 2 gauge multiplet in 5D,N = 1 harmonic superspace is just the

sum of (3.1) and (3.4),

SN=2 = SN=1
SYM + Sq. (3.5)

The action is invariant under the implicit N = 1 supersymmetry completing the manifest

N = 1 supersymmetry to the total N = 2 supersymmetry

δq+
a = −1

2
(D+)4

[
εaα̂θ

−α̂V −−
]
, δV ++ = εaα̂θ

+α̂q+
a , (3.6)

where εaaα̂ is the relevant anticommuting parameter and

(D+)4 = − 1

32
(D+)2(D+)2. (3.7)

3.2 R-symmetry transformations

We define the R-symmetry transformations in 5D, N = 1 harmonic superspace as

δq+a = − i
4

(D+)4
[
λ+a(θ−)2V −− − 2λ−aθ+α̂θ−α̂ V

−−
]
, δV ++ = −iλ−a(θ+)2q+

a , (3.8)

where λia is the relevant commuting parameter (λia = λia, λ
+a = λiau+

i ). These trans-

formations extend the R-symmetry group from SU(2)R × SU(2)PG to SO(5). The direct

check shows that the action (3.5) is invariant off shell under the transformations (3.8).
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Further in this section we consider the case of abelian gauge group. The action (3.5)

yields the equations of motion

(D+)2W = 0, D++q+
a = 0. (3.9)

In addition, the superfield strength W satisfies the off-shell constraints

D++W = 0, D−−W = 0 , (3.10)

which follow from the harmonic flatness condition (3.3) and the analyticity of V ++.

On the shell of the equations of motion (3.9) the transformations of the hidden super-

symmetry (3.6) are reduced to

δq±a =
i

2
εα̂a (D±α̂W ), δW = − i

8
εaα̂D

−α̂q+
a +

i

8
εaα̂D

+α̂q−a , (3.11)

where q−a = D−−q+a. The R-symmetry transformations (3.8) take the form

δq+
a = −1

2

(
λ+
aW − λ+

a θ
−α̂D+

α̂W + λ−a θ
+α̂D+

α̂W
)
,

δW =
1

4

(
2λ+aq−a − 2λ−aq+

a + λ−aθ+α̂D+
α̂ q
−
a − λ+aθ−α̂D+

α̂ q
−
a

)
.

(3.12)

Now we can consider the commutator of supersymmetry transformations with those of

R-symmetry. The variation of general superfield under the manifest supersymmetry reads

δ̂Φ = −ε+α̂ ∂Φ

∂θ+α̂
− ε−̂α̂ ∂Φ

∂θ−α̂
− 2iε−α̂θ+β̂∂α̂β̂Φ, (3.13)

where ε±α̂ = εaα̂u
±
a are the relevant anticommuting parameters.

Let us first consider the commutators of the hidden supersymmetry transformations

(3.11) with the R-symmetry transformations (3.12). One can show that

(δλδε − δεδλ)q+a =
i

8

(
−λ−c εα̂c

∂q+a

∂θ−α̂
− 2iλ−c ε

α̂cθ+β̂∂α̂β̂q
+a

)
=
i

8
δ̂λicεα̂cq

+a,

(δλδε − δεδλ)W =
i

8

(
−λ+

c ε
α̂c ∂W

∂θ+α̂
− λ−c εα̂c

∂W

∂θ−α̂
− 2iλ−c ε

α̂cθ+β̂∂α̂β̂W

)
=
i

8
δ̂λicεα̂cW.

(3.14)

Hence, the on-shell commutator of the hidden supersymmetry transformations with the R-

symmetry transformations gives the manifest supersymmetry with the bracket parameter

λicε
α̂c, as expected.

Let us now consider the commutators of the R-symmetry transformations (3.12) with

the manifest supersymmetry transformations (3.17). They are given by

(δλδ̂ε − δ̂εδλ)q+a = −1

2
εα̂i λ

iaD+
α̂W = iδ̂λiaεα̂i

q+a,

(δλδ̂ε − δ̂εδλ)W = −1

4
εα̂i λ

iaD+
α̂ q
−
a = iδ̂λiaεα̂i

W.

(3.15)
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Thus the on-shell commutator of R-symmetry with the manifest supersymmetry yields the

hidden supersymmetry with the bracket parameter λiaεα̂i .

At last, one can consider the commutator of R-symmetry transformations (3.12) with

themselves:

(δλ1δλ2−δλ2δλ1)q+
a =

1

8
(λi2aλ

b
1i−λi1aλb2i)q+

b −
1

8
(λia2 λ1aj−λia1 λ2aj)

(
u+
i

∂

∂u+
j

+u−i
∂

∂u−j

)
q+
a ,

(δλ1δλ2−δλ2δλ1)W =−1

8
(λia2 λ1ja−λia1 λ2ja)

(
u+
i

∂

∂u+
j

+u−i
∂

∂u−j

)
W. (3.16)

The details of the derivation are given in appendices A and B. We observe that the on-shell

commutator of two hidden R-symmetry transformations yields manifest linear SU(2)R and

SU(2)PG transformations, as should be.

3.3 Effective action

The part of the superfield N = 1 SYM effective action containing the component four-

derivative term of the gauge field reads [11]

S0 = c0

∫
d13zduW ln

W

Λ
, (3.17)

where W is the abelian gauge superfield strength, Λ is a scale parameter and c0 is a

dimensionless constant.

The variation of action (3.17) under the transformation (3.12) is as follows

δS0 = c0

∫
d13zdu lnWδW

=
c0

4

∫
d13zdu lnW

(
2λ+aq−a − 2λ−aq+

a + λ−aθ+α̂D+
α̂ q
−
a − λ+aθ−α̂D+

α̂ q
−
a

)
= −c0

4

∫
d13zdu

λ−aθ+α̂D+
α̂Wq−a − λ+aθ−α̂D+

α̂Wq−a
W

.

(3.18)

It can be partially canceled by variation of the extra term

S1 = c1

∫
d13zdu

q+aq−a
W

. (3.19)

The variation of (3.19) reads

δS1 = c1δ

∫
d13zdu

q+aq−a
W

=−c1

∫
d13zdu

(
λ+aW−λ+aθ−α̂D+

α̂W+λ−aθ+α̂D+
α̂W

)
q−a

W

− c1

4

∫
d13zdu

q+bq−b
W 2

(
2λ+aq−a −2λ−aq+

a +λ−aθ+α̂D+
α̂ q
−
a −λ+aθ−α̂D+

α̂ q
−
a

)
.

(3.20)

Due to the property
∫
d13zdu λ+aq−a = 0, the first term in (3.20) exactly cancels (3.18),

provided that c1 = −c0/4.
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Hence,

δ(S0+S1) =−c1

4

∫
d13zdu

q+bq−b
W 2

[
2λ+aq−a −2λ−aq+

a +
(
λ−aθ+α̂−λ+aθ−α̂

)
D+
α̂ q
−
a

]
=−c1

4

∫
d13zdu

q+bq−b
W 2

[
4λ+aq−a +(λ−aθ+α̂−λ+aθ−α̂)D+

α̂ q
−
a

]
.

(3.21)

Consider the last term here in more detail:

− c1

4

∫
d13zdu

q+bq−b
W 2

(λ−aθ+α̂ − λ+aθ−α̂)D+
α̂ q
−
a

= −c1

4

∫
d13zdu

[
−4λ+aW + 2(λ−aθ+α̂ − λ+aθ−α̂)D+

α̂W

W 3
q−a (q+bq−b )

− (λ−aθ+α̂ − λ+aθ−α̂)
q+bD+

α̂ q
−
b q
−
a

W 2

]
= −c1

4

∫
d13zdu

[
−4λ+aW + 2(λ−aθ+α̂ − λ+aθ−α̂)D+

α̂W

W 3
q−a (q+bq−b )

− (λ−aθ+α̂ − λ+aθ−α̂)
q+bq−b D

+
α̂ q
−
a

2W 2

]
.

(3.22)

We used the integration by parts with respect to the spinor derivative in the second line

and cyclic identities for SU(2) indices in the third line. We observe that the last term in

the third line equals the expression we started with, but with he minus sign. Hence,

− c1

4

∫
d13zdu

q+bq−b
W 2

(λ−aθ+α̂ − λ+aθ−α̂)D+
α̂ q
−
a

= −c1

3

∫
d13zdu

[−2λ+aW + (λ−aθ+α̂ − λ+aθ−α̂)D+
α̂W ]q−a (q+bq−b )

W 3
.

(3.23)

Substituting (3.23) into (3.21), we obtain

δ(S0 + S1) = −c1

3

∫
d13zdu

(
λ+
aW − λ+

a θ
−α̂D+

α̂W + λ−a θ
+α̂D+

α̂W
)
q−a (q+bq−b )

W 3
. (3.24)

Once again, the variation of (3.24) can be partially canceled by the variation of the

additional term

S2 = c2

∫
d13zdu

(q+aq−a )2

W 3
, c2 = −c1

6
. (3.25)

Finally, we consider the general expression

S =

∫
d13zdu

[
W ln

W

Λ
+
∞∑
n=1

cn
(q+aq−a )n

W 2n−1

]
. (3.26)

One can show that this expression is invariant under the transformation (3.12), if

− (n+ 1)cn+1 =
n(2n− 1)

n+ 2
cn. (3.27)
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Therefore, the action (3.26) is equal to

S = c0

∫
d13zduW

[
ln
W

Λ
+

1

2
H(Z)

]
, (3.28)

where

Z =
q+aq−a
W 2

, (3.29)

and

H(Z) = 1 + 2 ln
1 +
√

1 + 2Z

2
+

2

3

1

1 +
√

1 + 2Z
− 4

3

√
1 + 2Z. (3.30)

This expression coincides with the one obtained in [9] by resorting to hidden supersymmetry

instead of R-symmetry.2

One can also directly verify that (3.28) in invariant under the R-symmetry transfor-

mations

δS = c0

∫
d13zdu

[
(λ+aθ−α̂ − λ−aθ+α̂)D+

α̂Wq−a
4W

−
H ′(Z)

[
λ+aW − (λ+aθ−α̂ − λ−aθ+α̂)D+

α̂W
]
q−a

2W

+
1

8
[H(Z)− 2ZH ′(Z)]

[
4λ+aq−a + (λ−aθ+α̂ − λ+aθ−α̂)D+

α̂ q
−
a

] ]
.

(3.31)

This expression can be simplified with the help of the identity∫
dz13du [H(Z)− 2ZH ′(Z)]

[
4λ+aq−a + (λ−aθ+α̂ − λ+aθ−α̂)D+

α̂ q
−
a

]
=

∫
dz13du 2[1 + 2H ′(Z)]

[
(λ−aθ+α̂ − λ+aθ−α̂)

q−a D
+
α̂W

W
+ λ+aq−a

]
,

(3.32)

which is derived by employing the integration by parts with respect to the spinor derivative

and using the definition of the function H(Z) (3.30).

Thus we obtain

δS = c0

∫
d13zdu

[
(λ+aθ−α̂ − λ−aθ+α̂)D+

α̂Wq−a
4W

−
H ′(Z)

[
λ+aW − (λ+aθ−α̂ − λ−aθ+α̂)D+

α̂W
]
q−a

2W

]
+ c0

∫
dz13du

2

8
[1 + 2H ′(Z)]

[
(λ−aθ+α̂ − λ+aθ−α̂)

q−a D
+
α̂W

W
+ λ+aq−a

]
= 0 .

(3.33)

We conclude that the condition of invariance under R-symmetry can be employed in-

stead of the demand of hidden supersymmetry in order to construct the complete 5D, N =

2 invariant superspace functional, starting from the functional which is invariant under the

manifest N = 1 supersymmetry only.

2Recently, the expression (3.30) has been derived by the direct quantum calculation [12].
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4 Summary

In this paper we have found the realization of R-symmetry for 4D, N = 4 and 5D, N = 2

supersymmetric gauge theories as the superfield transformations in the relevant harmonic

superspaces. The R-symmetry transformations were defined in the explicit form, and they

mix the gauge multiplet and hypermultiplet harmonic superfields with each other. It was

proved that the microscopic actions of 4D, N = 4 and 5D, N = 2 SYM theories are

invariant under these transformations without any on-shell conditions on the superfields

involved. Thus, the above transformations constitute an additional invariance of 4D, N = 4

and 5D, N = 2 supersymmetric gauge theories.

The algebraic structure of the harmonic superfield R-symmetry transformations was

studied. First, these transformations form the closed algebra only on shell. Second, the

R-symmetry transformations are consistent with both manifest and hidden supersymmetry

transformations, which are a necessary element of the harmonic superspace formulations of

the maximally extended SYM theories. To be more precise, the R-symmetry transforma-

tions form a closed algebra with the manifest and hidden supersymmetry transformations.

This means, in particular, that the R-symmetry transformations and the hidden supersym-

metry transformations are in a sense interchangeable. If a manifestly invariant superfield

functional is invariant under the R-symmetry transformations, then it will be automatically

invariant under the hidden supersymmetry transformations and vise versa.

The R-symmetry transformations were applied to the problem of the hypermultiplet

completion of the low-energy effective action of 4D, N = 4 and 5D, N = 2 SYM theo-

ries, proceeding from the low-energy effective actions in the gauge multiplet sector. Using

these transformations, we constructed the leading low-energy complete effective actions

for the theories just mentioned, beginning with the terms containing only the gauge mul-

tiplet contributions. We have shown that the hypermultiplet dependence of the effective

actions under consideration is completely specified by the requirement of invariance under

the R-symmetry transformations. We focused on the case of SU(2) gauge group sponta-

neously broken to U(1). A generalization to other gauge groups is straightforward. An

interesting property is that the effective action is not only invariant under the R-symmetry

transformations but can be fixed by them up to an overall constant.

It would be tempting to reveal other possible implications of hidden R-symmetry in

extended superfield gauge theories in diverse dimensions. The maximally supersymmetric

gauge theory in six-dimension is N = (1, 1) SYM theory. It has only manifest linear

SU(2)R × SU(2)PG R-symmetry and for this reason the methods of the present paper

seem not to be appropriate for analysis of the structure of the quantum effective action of

this theory in the N = (1, 0) harmonic superspace formulation. Only the considerations

based on the hidden N = (0, 1) supersymmetry prove to be adequate [13, 14]. On the

other hand, the hidden R-symmetry method could be useful in the harmonic superspace

formulations of 6D,N = (2, 0) tensor multiplet (see, e.g., [15]). Indeed, only SU(2)R R-

symmetry is manifest there, while the rest of the full USp(4) R-symmetry of 6D, N = (2, 0)

supersymmetry should be realized as a hidden symmetry. We plan to consider this and

some other additional examples of exploiting superfield hidden R-symmetries elsewhere.
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A Commutators of R-symmetry transformations in 4D,N = 4 SYM

theory

In this section we directly calculate the commutator of R-symmetry with itself for 4D,

N = 4 SYM theory (2.21).

Let us start with the transformation of W̄

(δλ1δλ2−δλ2δλ1)W̄ =
1

2
δλ1
[
λ−a2 q+

a −λ+a
2 q−a −

(
λ−a2 θ+α−λ+a

2 θ−α
)
D+
α q
−
a

]
−(λ1↔λ2). (A.1)

The right-hand side of this relation can further be worked out as

1

8

[
λ−a2

[
λ+

1aW +
(
λ−1aθ

+α − λ+
1aθ
−α)D+

αW + λ̄+
1aW̄ +

(
λ̄−1aθ̄

+α̇ − λ̄+
1aθ̄
−α̇) D̄+

α̇ W̄
]

− λ+a
2

[
λ−1aW +

(
λ−1aθ

+α − λ+
1aθ
−α)D−αW + λ̄−1aW̄ +

(
λ̄−1aθ̄

+α̇ − λ̄+
1aθ̄
−α̇) D̄−α̇ W̄ ]

+ (λ−a2 θ+α − λ+a
2 θ−α)

[
λ−1aD

+
αW − λ+

1aD
−
αW −

(
λ−1aθ

+β − λ+
1aθ
−β
)
D+
αD
−
βW

−
(
λ̄−1aθ̄

+α̇ − λ̄+
1aθ̄
−α̇)D+

α D̄
−
α̇ W̄

]]
− (λ1 ↔ λ2).

(A.2)

To properly transform this expression, we note first that the full coefficient before D+
αD
−
βW

in the next-to-last line in (A.2) is proportional to εαβ , while D+αD−αW = 0, as follows from

the equation of motion (2.16) for W and the constraints (2.19). Analogously, using the

relations (2.18), we can replace D+
α D̄
−
α̇ W̄ in the last line with −2i∂αα̇W̄ . In addition, we

introduce the notations

λij = λ
(ia
2 λ̄

j)
1a − λ

(ia
1 λ̄

j)
2a, λ = λia2 λ̄1ia − λia1 λ̄2ia, (A.3)

where λij refer to SU(2)R transformations and λ (λ̄ = −λ) to U(1)R transformations. As

a result we obtain

(δλ1δλ2−δλ2δλ1)W̄ =
1

8

[
−λW̄+

1

2
λθ̄−α̇D̄+

α̇ W̄−
1

2
λθ̄+α̇D̄−α̇ W̄−

1

2
λθ+α̇D−α W̄

−2iλ
(
θ+αθ̄−α̇−θ−αθ̄+α̇

)
∂αα̇W̄

+(λ−−θ̄+α̇−λ−+θ̄−α̇)D̄+
α̇ W̄−(λ+−θ̄+α̇−λ++θ̄−α̇)D̄−α̇ W̄

−(λ+−θ+α−λ++θ−α)D−α W̄

−2i
(
λ−−θ+αθ̄+α̇−λ−+θ+αθ̄−α̇−λ+−θ−αθ̄+α̇+λ++θ−αθ̄−α̇

)
∂αα̇W̄

]
=

1

8

[
1

2
λθ̄−α̇

∂

∂θ̄−α̇
W̄+

1

2
λθ̄+α̇ ∂

∂θ̄+α̇
W̄− 1

2
λθ+α ∂

∂θ+α
W̄

+(λ−−θ̄+α̇−λ−+θ̄−α̇)
∂

∂θ̄−α̇
W̄+(λ+−θ̄+α̇−λ++θ̄−α̇)

∂

∂θ̄+α̇
W̄

+(λ+−θ+α−λ++θ−α)
∂

∂θ+α
W̄

−2i
(
λ−−θ+αθ̄+α̇−λ−+θ+αθ̄−α̇+λ+−θ+αθ̄−α̇−λ++θ−αθ̄−α̇

)
∂αα̇W̄

]
.

(A.4)
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Due to the relations (2.19), this expression can be cast in the form

(δλ1δλ2−δλ2δλ1)W̄ =−1

8
λij

(
u+
i

∂

∂u+j
+u−i

∂

∂u−j

)
W̄

+
1

8

[
1

2
λθ̄−α̇

∂

∂θ̄−α̇
W̄+

1

2
λθ̄+α̇ ∂

∂θ̄+α̇
W̄+

1

2
λ̄θ+α ∂

∂θ+α
W̄−λW̄

]
.

(A.5)

The transformation law of W can be obtained through the complex conjugation.

Next, we pass to the transformation of q+
a

(δλ1δλ2−δλ2δλ1)q+
a =

1

2
δλ1

[
λ+

2aW+
(
λ−2aθ

+α−λ+
2aθ
−α)D+

αW

+λ̄+
2aW̄+

(
λ̄−2aθ̄

+α̇−λ̄+
2aθ̄
−α̇)D̄+

α̇ W̄

]
−(λ1↔λ2)

=
1

8

[
λ+

2a

[
λ̄−b1 q+

b −λ̄
+b
1 q−b −

(
λ̄−b1 θ̄+α̇−λ̄+b

1 θ̄−α̇
)
D̄+
α̇ q
−
b

]
+λ̄+

2a

[
λ−b1 q+

b −λ
+b
1 q−b −

(
λ−b1 θ+α−λ+b

1 θ−α
)
D+
α q
−
b

]
+
(
λ−2aθ

+α−λ+
2aθ
−α)[−λ̄+b

1 D+
α q
−
b +
(
λ̄−b1 θ̄+α̇−λ̄+b

1 θ̄−α̇
)
D+
α D̄

+
α̇ q
−
b

]
+
(
λ̄−2aθ̄

+α̇−λ̄+
2aθ̄
−α̇)[−λ+b

1 D̄+
α̇ q
−
b +
(
λ−b1 θ+α−λ+b

1 θ−α
)
D̄+
α̇D

+
α q
−
b

]]
−(λ1↔λ2). (A.6)

Thanks to the analyticity of q+
a and the equation of motion (2.16), one can replace D̄+

α̇D
+
α q
−
b

in the last line of (A.6) with −2i∂αα̇q
+
b , and similarly for D+

α D̄
+
α̇ q
−
b . The Lie bracket

parameter

λab(PG) = λ
i(a
2 λ̄

b)
1i − λ

i(a
1 λ̄

b)
2i (A.7)

is just associated with the SU(2)PG symmetry transformations. Therefore,

(δλ1δλ2 − δλ2δλ1)q+
a

=
1

8

[
λb(PG)aq

+
b − λ

+−q+
a + λ++q−a +

1

2
λθ̄+α̇ ∂

∂θ̄+α̇
q+
a −

1

2
λθ+α ∂

∂θ+α
q+
a

+
(
λ+−θ̄+α̇ − λ++θ̄−α̇

) ∂

∂θ̄+α̇
q+
a +

(
λ−+θ+α − λ++θ−α

) ∂

∂θ+α
q+
a

+ 2i
(
−λ−−θ+αθ̄+α̇ + λ+−θ−αθ̄+α̇ + λ−+θ+αθ̄−α̇ − λ++θ−αθ̄−α̇

)
∂αα̇q

+
a

]
.

(A.8)

Using the equation of motions (2.16), this expression can be brought to the form

(δλ1δλ2 − δλ2δλ1)q+
a =

1

8

[
λb(RG)aq

+
b +

1

2
λθ̄+α̇ ∂

∂θ̄+α̇
q+
a +

1

2
λ̄θ+α ∂

∂θ+α
q+
a

]
− 1

8
λij

(
u+
i

∂

∂u+j
+ u−i

∂

∂u−j

)
q+
a ,

(A.9)

where λ is the bracket parameter for U(1)R transformations.
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B Commutators of R-symmetry transformations in 5D,N = 2 SYM

theory

In this section we calculate the commutator of R-symmetry with itself for 5D, N = 2 SYM

theory (3.12).

We start with the transformation of W

(δλ1δλ2 − δλ2δλ1)W =
1

4
δλ1

[
2(λ+a

2 q−a − λ−a2 q+
a ) +

(
λ−a2 θ+α̂ − λ+a

2 θ−α̂
)
D+
α̂ q
−
a

]
− (λ1 ↔ λ2).

(B.1)

Its right-hand side is evaluated to be

− 1

8

[
− (λ+a

2 λ+
1a − λ

+a
1 λ+

2a)θ
−α̂D−α̂W + (λ+a

2 λ−1a − λ
+a
1 λ−2a)θ

+α̂D−α̂W

+ (λ−a2 λ+
1a − λ

−a
1 λ+

2a)θ
−α̂D+

α̂W − (λ−a2 λ−1a − λ
−a
1 λ−2a)θ

+α̂D+
α̂W

+
[
(λ−a2 θ+α̂ − λ+a

2 θ−α̂)(λ+
1aθ
−β̂ − λ−1aθ

+β̂)

− (λ−a1 θ+α̂ − λ+a
1 θ−α̂)(λ+

2aθ
−β̂ − λ−2aθ

+β̂)
]
D+
α̂D
−
β̂
W

]
.

(B.2)

To bring this expression to a simpler form, we make use of the relation(
D+
α̂D
−
β̂

+D−α̂D
+

β̂

)
W = 0 (B.3)

which follows from the equation of motion (3.9) for W , the constraint (3.10) and the

definition (3.2) of W .3 Using this relation, we can replace D+
α̂D
−
β̂

with i∂α̂β̂ in the last line

of (B.2) due to the antisymmetry of the full factor in front of it with respect to the indices

α̂ and β̂. We also introduced the notation

λij = λia2 λ
j
1a − λ

ia
1 λ

j
2a . (B.4)

Rewriting eq. (B.2) and substituting the explicit expressions for D−α̂ and D+
α̂ , we obtain

(δλ1δλ2 − δλ2δλ1)W

= −1

8

[(
λ++θ−α̂ − λ+−θ+α̂

) ∂W

∂θ+α̂
+ 2i

(
λ++θ−α̂ − λ+−θ+α̂

)
θ−γ̂∂α̂γ̂W

+
(
λ−+θ−α̂ − λ−−θ+α̂

) ∂W

∂θ−α̂

+
(
iλ−+θ+α̂θ−β̂ + iλ+−θ−α̂θ+β̂ − iλ−−θ+α̂θ+β̂ − iλ++θ−α̂θ−β̂

)
∂α̂β̂W

]
= −1

8

[(
λ++θ−α̂ − λ+−θ+α̂

) ∂W

∂θ+α̂
+
(
λ−+θ−α̂ − λ−−θ+α̂

) ∂W

∂θ−α̂

+ i(λ−+θ−α̂ − λ−−θ+α̂)θ+β̂∂α̂β̂W + i(λ++θ−α̂ − λ+−θ+α̂)θ−β̂∂α̂β̂W

]
= −1

8
λij

(
u+
i

∂

∂u+
j

+ u−i
∂

∂u−j

)
W.

(B.5)

When passing to the last line, we exploited the relations (3.10).

3One also needs to use the identity Ωα̂β̂ = 1
2
εα̂β̂γ̂ν̂Ωγ̂ν̂ .
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Now we proceed to the transformations of q+
a ,

(δλ1δλ2−δλ2δλ1)q+
a =−1

2
δλ1

[
λ+

2aW−λ
+
2aθ
−α̂D+

α̂W+λ−a θ
+α̂D+

α̂W

]
−(λ1↔λ2)

=−1

8

[
λ+

2a

(
2λ+b

1 q−b −2λ−b1 q+
b +λ−b1 θ+α̂D+

α̂ q
−
b −λ

+b
1 θ−α̂D+

α̂ q
−
b

)
−
(
λ+

2aθ
−α̂−λ−2aθ

+α̂
)
D+
α̂

(
2λ+b

1 q−b +(λ−b1 θ+β̂−λ+b
1 θ−β̂)D+

β̂
q−b

)]
−(λ1↔λ2)

=−1

8

[
−
(
λi2aλ

b
1i−λi1aλb2i

)
q+
b −
(
λ+b

2 λ+
1b−λ

+b
1 λ+

2b

)
q−a +

(
λ+b

2 λ−1b−λ
+b
1 λ−2b

)
q+
a

−λ+b
2

(
λ+

1bθ
−α̂−λ−1bθ

+α̂
)
D−α̂ q

+
a +λ+b

1

(
λ+

2bθ
−α̂−λ−2bθ

+α̂
)
D−α̂ q

+
a

−2i
(
λ+b

2 θ−α̂+λ−b2 θ+α̂
)(

λ+
1bθ
−β̂−λ−1bθ

+β̂
)
∂α̂β̂q

+
a

]
,

(B.6)

where the relations D−α̂ q
+a = −D+

α̂ q
−a and D+

α̂D
+

β̂
q−a = −2i∂α̂β̂q

+a were used.

Substituting the explicit expressions for D−α̂ , we finally obtain

(δλ1δλ2 − δλ2δλ1)q+
a

= −1

8

[
−
(
λi2aλ

b
1i − λi1aλb2i

)
q+
b −

(
λ+b

2 λ+
1b − λ

+b
1 λ+

2b

)
q−a +

(
λ+b

2 λ−1b − λ
+b
1 λ−2b

)
q+
a

+ λ+b
2

(
λ+

1bθ
−α̂ − λ−1bθ

+α̂
) ∂q+

a

∂θ+α̂
− λ+b

1

(
λ+

2bθ
−α̂ − λ−2bθ

+α̂
) ∂q+

a

∂θ+α̂

− 2iλ+b
1 λ+

2bθ
−α̂θ−β̂∂α̂β̂q

+
a − 2iλ−b1 λ−2bθ

+α̂θ+β̂∂α̂β̂q
+
a

]
= −1

8

(
λia2 λ1aj − λia1 λ2aj

)(
u+
i

∂

∂u+
j

+ u−i
∂

∂u−j

)
q+
a +

1

8

(
λi2aλ

b
1i − λi1aλb2i

)
q+
b .

(B.7)

When passing to the last line, we used the equation of motion (3.9).
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