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Abstract—We review various superspace approaches to the description of the low-energy effective action in
 super Yang–Mills (SYM) theory. We consider the four-derivative part of the low-energy effective

action in the Coulomb branch. The typical components of this effective action are the gauge field  and
the scalar field Wess–Zumino terms. We construct  supersymmetric completions of these terms in the
framework of different harmonic superspaces supporting  supersymmetries. These approaches are
complementary to each other in the sense that they make manifest different subgroups of the total 
R-symmetry group. We show that the effective action acquires an extremely simple form in those superspaces
which manifest the non-anomalous maximal subgroups of . The common characteristic feature of our
construction is that we restore the superfield effective actions exclusively by employing the  supersym-
metry and/or superconformal  symmetry.
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1. INTRODUCTION

 SYM theory in four-dimensional Minkow-
ski space is an exceptional model of quantum field
theory. Originally, it was constructed by compactifica-
tion of the  super-Yang–Mills theory [1]. Shortly
after its discovery, this theory was found to exhibit
miraculous cancelations of ultraviolet divergences, so
that its beta-function is zero to all loops [2–4] and the

3=1

3=1

3=1

3=1

4 4F X

3=1

4 4F X

4=1

4=1

4=1

4 4F X

4=1

4=1

4=1

4 4F X

4=1

10D

model is UV finite and superconformal [5]. This result
triggered a high interest in studying other four-dimen-
sional conformal field theories, though  SYM
theory remains the key example of the UV finite field
theories.

Although  SYM theory has no phenomeno-
logical applications, it plays a crucial role for the study
of quantum aspects of string theory through the so-
called AdS/CFT (or “gauge/gravity”) correspondence
[6–8] (see also [9] for a review). In the original Mal-
dacena’s work [6] it was conjectured that quantum
observables in IIB superstring theory on the

 background can be determined by studying
the corresponding objects in  SYM theory.
Since 1998, Maldacena’s conjecture has been thor-
oughly verified and nowadays we have a good under-
standing of quantum properties on both sides of the
AdS/CFT correspondence.

In quantum field theory, there are several objects
exhibiting physical properties of a given model: scat-
tering amplitudes, correlation functions and Wilson
loops. All these quantities have been investigated in

 SYM theory and then have been matched with
the corresponding objects in string theory. The
detailed exposition of these results can be retrieved
from numerous review papers and textbooks, see, e.g.,
[10]. The short summary is that many of these quan-
tum quantities in  SYM theory can be found
exactly beyond the perturbation theory. These exact
results provide a strong ground for further studies of
string theory, as well as of many other superconformal
field theories—with different amounts of supersym-
metry and in diverse space-time dimensions.

An object of the crucial importance in quantum
field theory is the effective action. By definition, it is
the generating functional for 1PI (“one-particle-irre-
ducible”) Green’s functions, which encodes the full
information about quantum properties of given model.
It can also be viewed as a functional reproducing the
effective equations of motion which take into account
quantum corrections. Since the effective action is a
very complicated object, it makes sense to study first
its low-energy part, which describes the physics below
some energy scale and so serves a good approximation
in this domain.

The low-energy effective action of  SYM
theory plays an important role in checking the
AdS/CFT correspondence. According to [6], it can be
matched with the effective action of a D3-brane prop-
agating in the  background. This D3-brane
action can be understood as a Born–Infeld-type
action possessing  superconformal symmetry
(see, e.g., [11]). This conjecture has been checked per-
turbatively, by comparing the leading terms in the
power series expansions of both these actions. We
stress that the verification of this conjecture on the
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field theory side is a very non-trivial task, since it
involves the computation of the quantum loop correc-
tions to the low-energy effective action. To date, we
have a good understanding of this issue in the one-
loop approximation. Only limited results are available
beyond the one-loop order.

The significant progress in exploring quantum
aspects of  SYM theory has been achieved due
to the property that it possesses a reach set of symme-
tries which are preserved in the quantum perturbation
theory. Indeed, this model, being a non-trivial inter-
acting quantum field theory, respects the highest
amount of supersymmetries admissible in the four-
dimensional Minkowski space. The supersymmetry is
a part of the  superconformal group that
remains unbroken on the quantum level due to the
vanishing beta-function [2]. This symmetry imposes
very strong constraints on the quantum observables,
such that some of them can be found exactly. The
low-energy effective action is one of such objects. As
we will demonstrate in the present paper, its leading
part is completely fixed by the underlying
(super)symmetries.

Within the perturbation theory one computes the
effective action as a series expansion over some small
parameters, such as the coupling constants or Planck’s
length. It is advantageous to use the so-called deriva-
tive expansion, which assumes that the terms with the
lower number of derivatives on fields give the leading
contribution in the low-energy approximation, as
compared to the terms with a larger number of deriva-
tives. In the present paper, we restrict our consider-
ation only to the four-derivative terms in the low-
energy effective action of  SYM theory. We will
be interested in the effective action in the Coulomb
branch, which describes the effective dynamics of the
massless degrees of freedom. The remaining massive
degrees of freedom appearing as a result of sponta-
neous breaking of gauge symmetry are assumed to be
integrated out.

The studies of the four-derivative part of the
SYM effective action were initiated in the

papers [12, 13], where the so-called  term was
analyzed. In these papers, it was argued that the

 term in the  SYM effective action is one-
loop exact and does not receive the instanton correc-
tions. This term was also obtained by the direct quan-
tum computations using different superspace methods
[14–18].

Another interesting term in the four-derivative part
of the  SYM effective action is the Wess–
Zumino term for scalar fields [19]. Its presence is
compulsory in order to obey the anomaly-matching
condition for the  R-symmetry [20]. More-
over, it has a natural interpretation as the Chern–
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Simons term of the D3-brane action on the AdS5
background [19].

In the papers mentioned above only some selected
terms in the four-derivative part of the  SYM
effective action were found. Already in the first papers
[12, 13] it was conjectured that the full four-derivative
part of the effective action can be restored as a super-
symmetric completion of these particular terms. How-
ever, the proof of this statement turned out to be a very
non-trivial exercise, and it was accomplished only in
the paper [21], based on the  harmonic super-
space techniques [22, 23]. In the subsequent papers
[24–26], alternative descriptions of the four-derivative
part of the effective action were developed in the
framework of different  and  harmonic
superspace approaches.

The basic aim of the present paper is to give a sys-
tematic and self-consistent review of what has been
done in [21, 24–26]. In the course of this consider-
ation, we also give the appropriate account of the
related issues.

We point out that the four-derivative part of the
effective action constructed in [21, 24–26] is the exact
result which was obtained solely on the ground of sym-
metries of the theory, though the perturbative checks
were performed afterwards in [27–29] (see also [30]
for a review). This exposes the exceptional role of the
quantum  SYM theory among other models of
the quantum field theory. We also emphasize that in
the papers just mentioned not only a superfield gener-
alization of the old results [12, 13] was obtained, but
also many important properties of the  SYM
low-energy effective action were explained. In partic-
ular, the following questions were addressed: Why is
the coefficient in front of the -term one-loop
exact? What is the origin of the Wess–Zumino term in
the low-energy effective action? Why is the harmonic
superspace approach so efficient for studying the
effective action and which harmonic superspace is
most suitable for this purpose? All these issues are
thoroughly reviewed in the present paper.

The rest of the paper is organized as follows. In sec-
tion 2 we give a brief summary of basic features of the
low-energy effective action in  SYM theory. A
part of this effective action which is represented by the
Wess–Zumino term for scalar fields is discussed in
detail in section 3. In particular, we explain the origin
of the Wess–Zumino term as the necessary conse-
quence of the ‘t Hooft anomaly-matching condition
for the R-symmetry group . In section 4 we
review the  harmonic superspace description of

 SYM theory and construct its low-energy
effective action possessing the full  supersym-
metry. Section 5 is devoted to  SYM theory in
the  harmonic superspace. This theory is known
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to be equivalent to  SYM on shell and so pro-
vides the maximally supersymmetric off-shell formu-
lation of the latter. For this  SYM theory we
construct the  superconformal low-energy
effective action and consider its component field
structure in the sector of bosonic fields. In sections 6
and 7 we elaborate on two different  harmonic
superspaces which appear very suitable for description
of the  SYM low-energy effective action. We
demonstrate that the latter acquires especially simple
form in these superspaces. In the last section we dis-
cuss some issues and open problems related to the
study of the low-energy effective action in  SYM
theory beyond the leading low-energy approximation.

2. LOW-ENERGY EFFECTIVE ACTION 
IN THE COULOMB BRANCH

2.1. Classical Action and the Spontaneous Gauge 
Symmetry Breaking

The  gauge supermultiplet consists of one
vector gauge field , four spinor fields  and

six scalar fields , where  is the
quartet index of the R-symmetry  group. The
spinor fields are in the conjugated non-equivalent fun-
damental representations  and  of , while the
scalar fields are in the real representation , since they
obey the reality condition

(2.1)

with  being the totally antisymmetric  ten-
sor, . In the non-abelian case, all these fields
transform in the adjoint representation of some gauge
group . They can be viewed as the matrices taking
values in the Lie algebra  of the group .

The scalars  can be equivalently represented as a
real vector in the fundamental representation of

(2.2)

where  are six-dimensional gamma-
matrices which provide the equivalence of the repre-
sentations of  and  groups.2 In the present
paper we will employ both forms for the scalar fields,

 and .

2 The defining properties of these matrices are: 
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The classical action of  SYM theory reads

(2.3)

Here  is the gauge-covariant derivative
which acts on the fields by the generic rule

(2.4)

 is a dimensionless gauge coupling constant and ,
 are the spinorial components of the Yang–Mills

field strength3

(2.5)

The action (2.3) is invariant under the 
supersymmetry transformations

(2.6)

with anticommuting parameters . These transfor-
mations, together with the space-time translations and
Lorentz transformations, form the  Poincaré
superalgebra. The algebra of these transformations
closes on shell, i.e., up to terms proportional to the
classical equations of motion.

3 In this paper we employ the following basic conventions. The
Minkowski space metric is . For conver-
sion of the vector and spinor indices we use the rules

, . The basic properties of the

sigma-matrices are , 

. The convention for raising and lowering the spinorial

indices is , , , and the
same for dotted spinorial indices. Finally, the antisymmetric
tensor  is converted into its spinorial components as
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The classical  SYM action (2.3) involves the
non-negative potential of scalar fields,

(2.7)

This potential reaches its minimum  for the
fields valued in the Cartan subalgebra  of the Lie
algebra g of the gauge group

(2.8)

Hence, at non-trivial vacuum expectation values
(vevs) of these fields,

(2.9)

the spontaneous breaking of gauge symmetry becomes
possible. The details of gauge symmetry breaking in

 SYM theory are presented in [31]. Assuming
that the gauge group in  SYM is 4

the pattern of spontaneous symmetry breaking can be
summarized as follows:

• In general, the gauge group  is bro-
ken down to , which is the maximal abe-
lian subgroup of . However, a larger subgroup
of the gauge group may remain unbroken, when not all
of the scalars from  acquire non-vanishing vevs. To
simplify the issue, in what follows we will basically
assume that  and, even more, that the
gauge group  is  which can be broken down
only to .

• After the spontaneous gauge symmetry breaking,
the fields  from the Cartan subalge-
bra  remain massless, while the fields corresponding
to the coset space  acquire masses specified by the

vacuum values . These  fields realize the mas-
sive representation of  superalgebra with the
central charges which are identified with some 
generators from the subalgebra , times the parame-
ters . Since such central charges are vanishing on
the massless fields , the latter form a
supermultiplet of the standard  supersymmetry.

• The  supersymmetry itself remains unbro-
ken whatever  and  are, while its R-symmetry

 proves spontaneously broken down to
some subgroup of . In the case of

, this subgroup is
. The full-fledged  superalgebra

with central charges, because of the presence of 
breaking constants  in the right-hand sides of the
basic anticommutators, possesses the reduced R-sym-

4 Other gauge groups can be considered as well.
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metry group . With respect to this
, the  massive vector multiplet comprises

five complex scalars in the representation 5, one com-
plex singlet massive vector and four Dirac spinors in
the representation 4 of .5

• The R-symmetry  is sponta-
neously broken down to  also in the
sector of massless fields, though in this case no central
charges in the  superalgebra are present, and so
no reduction of the R-symmetry group comes about.
The effect of spontaneous breaking consists in that the
vacuum expectation values  of the scalar fields are
invariant only under the group . This means that
the  transformations of the physical scalars

 acquire inhomogeneous terms (shifts),
so five fields out of these massless scalars can be inter-
preted as the  Goldstone fields. It is
worth pointing out that the model is still invariant
under the full R-symmetry group , but the latter
is now realized on the scalar fields by the inhomoge-
neous transformations.

• The original classical action (2.3) is known to be
invariant under the superconformal group 
involving  as a subgroup. This extended symme-
try is also spontaneously broken and is realized by
inhomogeneous transformations of the fields

. In particular, one field out of six
massless scalars is a dilaton (apart from the remaining
five  Goldstone fields). Also, the confor-
mal  supersymmetry is spontaneously broken,
with  as the corresponding goldstini. To
avoid a possible confusion, we note that  is
in fact the symmetry group of the whole effective
action, including its part spanned by the massive 
fields, and this is preserved at the quantum level due to
the vanishing beta-function. However, the realization
of the superconformal symmetry on the  fields is
rather complicated since the corresponding transfor-
mations are accompanied by some field-dependent
gauge transformations and their Lie brackets contain
operator central charges. The correct closure of

5 For the simplest case of gauge group  broken to  there
is only one central charge proportional to the  generator and

only one set of the  breaking parameters , giving rise just
to  as the reduced R-symmetry. In the more gen-

eral case of  and , more central charges
can appear, with different sets of  breaking constants. If
these constant  vectors are collinear, the reduced R-symme-
try is still  and the relevant massive supermultiplets have the

same  contents, while their number is . If the
breaking constant vectors are arbitrary, the further reduction of the
original  R-symmetry occurs.
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 symmetry, like that of the  super-
symmetry, is achieved only on shell.

As a brief resume, the crucial feature of the sponta-
neous gauge symmetry breaking in  SYM theory
is the appearance of massive multiplets which corre-
spond to broken directions  in the gauge group ,
while the degrees of freedom corresponding to 
remain massless. At low energies, we can observe only
these massless fields, with the dynamics described by
some low-energy effective action. In quantum field the-
ory, in order to obtain this low-energy effective action,
one has to integrate out the massive fields in the func-
tional integral which defines the full effective action.
In the present paper we do not engage with technical
details of this functional integration, but rather discuss
the general structure of the resulting expression for the
low-energy effective action of  SYM theory.
Needless to say, this low-energy effective action
describes  SYM in the Coulomb branch. In the
present paper we denote it by .

2.2. Low-Energy Effective Action: 
Derivative Expansion

The computation of low-energy effective action in
quantum field theory is, in general, a complicated
problem which is usually approached by perturbative
methods, assuming the series expansion of the effec-
tive action with respect to some small parameters like
the Planck length or coupling constants. The deriva-
tive expansion of the effective action can also be con-
sidered as one of the perturbative methods, which
relies upon the common observation that the fields
with long wavelengths at low energies dominate over
the fields with short wavelengths. It is frequently a
good approximation to discard the fields with short
wavelengths which are represented in the effective
action by terms with higher number of space-time
derivatives, as compared to the terms with lower num-
ber of derivatives. The latter terms involve the fields
with longer wavelengths.

To illustrate these ideas, let us consider the effec-
tive action for one scalar field . The derivative expan-
sion of the effective action can be schematically repre-
sented as

(2.10)

where  is a functional which involves just  space-
time derivatives of . In particular,  contains no
derivatives of  and so corresponds to the (effective)
potential for the scalar field, . The

functional  has two space-time derivatives of the
scalar field and corresponds to a finite (or infinite)
renormalization of the wavefunction, if the latter
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receives perturbative quantum corrections. The next
term is  which involves four derivatives of the scalar
and represents the leading non-trivial quantum cor-
rection to the effective action. The remaining terms,
starting with , must be considered as the higher-
order corrections to the low-energy approximation.

The derivative expansion of the effective action
straightforwardly applies to  SYM theory. We
will count the derivative degree of different terms in
the effective action just with respect to the scalar
fields. This means that, after turning off the vector and
spinor fields, the term  in the effective action con-
tains as the remainder exactly  space-time deriva-
tives of scalars . It is important to note that the
omitted terms with vector and spinor fields can be
uniquely restored from the terms with scalar fields
only. Indeed, it is obvious that  supersymmetry
does not mix those terms in the effective action which
contain different numbers of derivatives.

It is well known that in  SYM theory there
are no quantum corrections to the classical scalar
potential (2.7), i.e. . Since the effective action
in  SYM theory is UV finite [2–4],6 no wave-
function renormalization is needed and so ,
where  is that part of the  SYM
action (2.3) which contains the kinetic terms of the

 multiplet. The first non-trivial quantum cor-
rection in the effective action starts with , which will
be the basic object of study in the present paper. The
higher-order terms, starting with , will fall beyond
our consideration.

To summarize, in the present paper we will study
the low-energy effective action of  SYM theory
in the Coulomb branch. More precisely, we will be
interested only in that part of this low-energy effective
action, which contains, in its component field expan-
sion, no more than four space-time derivatives of sca-
lar fields (together with other appropriate terms which
involve vector and spinor fields and are needed for
completing the scalar field terms to the invariants of

 supersymmetry).

2.3. Wess–Zumino vs.  Term 
in the Low-Energy Effective Action

In this section we will consider the gauge group
 spontaneously broken down to .

In this case the low-energy effective action is domi-
nated by one massless  vector multiplet which
consists of six scalar fields , four spinors  and

6 The proof of the non-renormalization theorem in the 
harmonic superspace was given in [32, 33].
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one abelian vector field Am with the field strength
.

The leading four-derivative quantum correction to
the  SYM low-energy effective action is known
to contain, among its components, the so-called

 term [12, 13]

(2.11)

It was argued that this part of the effective action is
one-loop exact [12, 32] and does not receive non-per-
turbative corrections [34]. This  term appears
as one of the terms in the component field expansion
of the so-called non-holomorphic effective potential
of the  superfield strength  and its conjugate

 [35]

(2.12)

Here,  is some parameter of dimension one the
dependence on which completely disappears after
passing to the component form of the effective action.
The details of the construction of the  SYM
low-energy effective action in  superspace will
be discussed in sect. 4. It is important to mention that
the non-holomorphic effective potential (2.12) was
derived perturbatively in [14, 15], using the 
superfield methods and, later, in [16] and [17, 18] with
the use of  projective and harmonic superspace
techniques, respectively.

Another interesting term in the  SYM low-
energy effective action is the so-called Wess–Zumino
term which involves the scalar fields only [19, 20]:

(2.13)

where . Here it is presented in the form of
the integral over a five-dimensional space-time, but it
can always be rewritten as a functional in the conven-
tional four-dimensional Minkowski space, since the
integrand in (2.13) is a closed five-form. We will show
in sect. 3 that there are various four-dimensional rep-
resentations of the same Wess–Zumino term (2.13).
They prove to be good starting points for construction
of the superfield low-energy effective actions in vari-
ous harmonic superspaces. Here it is important to

note that the coefficient  in front of this action

is exact and, for topological reasons, can only be a
multiple of an integer (see, e.g., [36, 37]).
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It will be demonstrated in sect. 3 that the four-
dimensional form of the Wess–Zumino term (2.13)
contains four space-time derivatives of scalar fields.
Thus it is one of the terms in the four-derivative part of
the full low-energy  SYM effective action .
Recall that the term (2.11) also belongs to , since
each Maxwell field strength in it involves one space-
time derivative. Thus, these two terms should be
related to each other by the abelian version of the

 supersymmetry transformations (2.6).
In practice, to check this suggestion, i.e. to prove

that (2.11) and (2.13) are indeed related to each other
by the abelian version of the  supersymmetry
(2.6), is a rather difficult task since, apart from (2.11)
and (2.13),  contains a lot of other terms depending
on the bosonic ,  and the fermionic 
fields of the  vector multiplet. Recovering all
these terms in the effective action is an extremely
involved routine, unless one uses the superspace tech-
niques. One of the aims of the present paper is to
demonstrate that the solution to this problem indeed
becomes trivial in the appropriate superfield
approaches based on extended superspaces. We will
show that the two terms (2.11) and (2.13) originate
from the same  superfield expressions, for which
reason the coefficients in front of them prove to be
firmly related.

This property has an important consequence: The
whole four-derivative part  of the low-energy effec-
tive action in the  SYM action can be found
without performing any perturbative computation. All
what we need to know is that this part contains the
Wess–Zumino term (2.13) the form of which is unique
and, moreover, the coefficient in front of it is fixed by
topological reasons. Then, all other component terms
in  can be found by applying the  supersym-
metry transformations. Just in this sense, the four-
derivative part of the  SYM effective action is
exact.

2.4. Low-Energy Effective Action: 
Why Harmonic Superspace?

Finding the totally  supersymmetric comple-
tion of the terms (2.11) and (2.13) is a non-trivial prob-
lem which has never been solved in the standard com-
ponent field formulation of  SYM theory. It is
natural to expect that the superfield approaches can be
useful for solving this problem, since they display the
manifest supersymmetry. In principle, it is possible to
use different superspaces with  supersym-
metries. Each of them has some specific useful fea-
tures which we will discuss in this section.

The simplest and the most developed approach is
based on the standard  superspace, which is

4=1 4Γ
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described in details, e.g., in the books [38, 39]. In
terms of  superfields, the  gauge multiplet
is represented by a triplet of chiral superfields ,

 and a real gauge superfield  with the chiral
superfield strength . The general  superspace
action (including various pieces of the effective action)
has the following form

(2.14)

Here, the Lagrangian  is given on the full 
superspace, while  and  are, respectively, the
chiral superspace Lagrangian and its complex conju-
gate. The superfield action can be rewritten in the
component form, using the identities

(2.15)

where , , and ,  are
covariant spinor derivatives which obey the anticom-
mutation relations

(2.16)

The relations (2.15) and (2.16) imply that the full
superspace integration measure ensures two space-
time derivatives in the component field action.

When using the  superspace to describe the
four-derivative part  of the effective action, one has
to deal with a superfield Lagrangian  which depends
on three chiral superfields  and  superfield
strength  (and their conjugates). One of the terms
in  has the form

(2.17)

The terms with pure (anti)chiral superfields, which
complement (2.17) by  supersymmetry, involve
four covariant spinor derivatives  and  that gen-
erate, after passing to the component fields, two more
space-time derivatives besides the two already brought
by the full superspace integration measure. There is
plenty of such terms, and it appears difficult to find the
fully  supersymmetric completion of (2.17). This
problem does not seem to be simpler than the previ-
ously discussed purely component construction in the
standard Minkowski space. Note that the solution of
this problem in the  superspace has never been
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presented in the fully  supersymmetric and
 invariant form.

Let us now consider the  superspace with
Grassmann coordinates  and , . The
superspace integration measure in the full 
superspace effectively contains eight covariant spinor
derivatives,

(2.18)

which gives rise to four space-time derivatives in the
component field Lagrangian owing to the anticom-
mutation relations

(2.19)

Thus the  superspace is more appropriate for the
description of the four-derivative part of the effective
action , because the corresponding superfield
Lagrangian  must be a function of just  super-
fields without any derivatives on them. This enor-
mously simplifies the problem of construction of the
low-energy effective action  in  SYM theory.
The fully  supersymmetric expression for  in
the  superspace was presented in [21]. We will
review the details of this action in sect. 4.

When  SYM theory is formulated in the
 superspace,  supersymmetry is realized

manifestly and off the mass shell, while the extra (hid-
den)  supersymmetry is realized by transforma-
tions which mix different  superfields and pos-
sess the correct closure only on the mass shell. It is
important to note that the off-shell realizations of
matter hypermultiplets and gauge multiplets in the

 superspace require special techniques such as
the harmonic superspace [22, 23, 40] or the projective
superspace [41–43]. These two approaches provide
elegant and natural descriptions of field theories with
extended supersymmetry. In fact, they have much in
common and are related to each other [44]. Neverthe-
less, as regards the quantum calculations, the har-
monic superspace approach is much more elaborated
(see, e.g., [45]). Just for this reason we prefer to
employ it while studying the low-energy effective
action in  SYM theory. As we will show in sub-
sequent sections, there are in fact a few  har-
monic superspaces which provide very simple and nice
expressions for .

It is known that the  and  SYM models
are equivalent on the mass shell [45]. This is also true
for their low-energy effective actions. The amazing
feature of  SYM theory is that it admits an off-
shell  superfield formulation [46, 47]. This for-
mulation is based on  harmonic superspace with

 harmonic variables. Thus, it is natural to fulfill
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the study of the  SYM low-energy effective
action, employing the techniques of the  har-
monic superspace. The expression for  in the 
harmonic superspace was found in [26]. This con-
struction will be reviewed in sect. 5.

3. VARIOUS FORMS 
OF THE WESS–ZUMINO TERM 

FOR SCALAR FIELDS
The Wess–Zumino term for scalar fields in the

 SYM action (2.13) is represented by the five-
dimensional integral of the exact five-form with
explicit  symmetry. Using the Stokes theorem
this expression can always be represented in the form
of four-dimensional integral which is implicitly invari-
ant under . As we will show, there are several
four-dimensional representations of this term which
differ in the manifestly realized subgroups of the full
R-symmetry group . All these forms naturally
appear in different superfield formulations of the low-
energy  SYM effective action.

We will start with a -dimensional generalization
of (2.13) and further present the results for the partic-
ular  case. The material of this section is essen-
tially based on the papers [24–26].

3.1. -Invariant Wess–Zumino Term

Let us consider  scalar fields ,
 in the -dimensional Minkowski

space. For  we can introduce the normal-
ized scalars 

(3.1)

Since

(3.2)
these normalized scalars parametrize the sphere

. The volume form on this
sphere reads

(3.3)

In terms of this form the  dimensional generaliza-
tion of (13) is given by

(3.4)

Here  is a hemisphere in  whose boundary,
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For any integer , choosing another hemisphere
shifts  by   an integer.

Let us now split the index  into  and
, where we defined .

With the normalization , we can
rewrite (3.3) in the more unfolded form

(3.5)

where
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Introducing , we find the follow-
ing useful identities
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where we used the identity  =

 . Also, in various
manipulations with forms the cyclic identity

 is useful. Express-

ing  and  from (3.7) and substituting these
expressions into (3.3), we obtain the convenient repre-
sentation for the volume form
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Next, we take the ansatz7
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and also bring it to the form (3.8), using the identi-
ties (3.7). We then immediately find that  must
satisfy the following differential equation
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Its general solution is given by8
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where  is a constant of integration. The solution is regular
at  if  and regular at  if . Choosing

 that is non-singular in  and using Stokes’ theo-
rem, we obtain the -dimensional form of the Wess–
Zumino term with manifest  invariance,

(3.12)

(recall that  ). The residual transformations
from  vary the integrand in this expression into
an exact -form, which is consistent with the fact that

 is  invariant. The proof is based on the
use of (3.10) and the cyclic identity mentioned earlier.

3.2.  Wess–Zumino Term with Manifest 

Now we consider the case  which corre-
sponds to the four-dimensional Minkowski space. In
this case the Wess–Zumino term (3.4) has manifest

 symmetry
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This expression is reduced to (2.13) for . Using
(3.12) with  and , we then obtain the four-
dimensional form of this Wess–Zumino term with
manifest  invariance,
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3.4.  Wess–Zumino Term with Manifest 
Using (3.12) with  and , we obtain the form of the Wess–Zumino term (3.13) with manifest

 invariance,

(3.22)

where  and the function  is
given by (3.11).

Let us introduce the function

(3.23)

where
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As a corollary of Eq. (3.10), this function obeys

(3.25)

The solution of this equation which is regular at ,

with , is given by
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This function defines the Wess–Zumino term (3.22)
in the form

(3.27)

Note that the group  is locally iso-
morphic to . Therefore, as we will see in
sect. 7.4.2, the Wess–Zumino term in the form (3.22)
appears as a component in the  SYM low-
energy effective action in the bi-harmonic 
superspace.

3.5. Wess–Zumino Term and  Symmetry
The Lie group  has the following

maximal subgroups:9 , ,
 and . In the previous sec-

tions we considered three different forms of the Wess–
Zumino term which correspond to the first three sub-
groups: ,  and . It
remains to consider the last possibility related to

. As we will show here, in contrast to the
former cases this symmetry group does not admit a
manifest realization in the four-dimensional form of
the Wess–Zumino term.

We start with the  covariant Wess–Zumino
term (2.13) and rewrite it in the form with the explicit

 symmetry. To this end, using six real scalars ,
we construct three complex  triplet scalars ,

, as

(3.28)

Like , the scalars  take values on the five-sphere
with the unit radius

(3.29)
In terms of these complex scalars the Wess–Zumino
action (2.13) exhibits manifest  symmetry:

(3.30)

Let us introduce the following 2-forms

(3.31)
In terms of these forms the action (3.30) acquires the
concise form
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It is easy to check that this action is real.
The equation (3.29) has the obvious corollary
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As a consequence, the differential forms (3.31) obey
the important constraint

(3.34)
or

(3.35)
Using this relation, the action (3.32) can be cast in
the form

(3.36)

Let us define some complex constant triplet  with
the non-vanishing norm, . With the help of
this triplet we can construct the scalar objects

(3.37)

which obey the identities

(3.38)

Owing to these identities, the action (3.32) admits
the form

(3.39)

Equivalently, it can be rewritten in the self-conju-
gated form

(3.40)

The identity (3.35) allows us to apply the Stokes
theorem to rewrite the action (3.40) as an integral over
the boundary of 

(3.41)

Here,  is an arbitrary closed 4-form, . For
simplicity in what follows we choose this form to be
vanishing, . The boundary  can be identified
with the four-dimensional Minkowski space.

Let us express the action (3.41) in terms of the sca-
lars (3.28)
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Recall that the scalars f i have unit norm [Eq. (3.29)].
They are expressed through the unconstraint scalars

as

(3.43)

Being written through  and , the Wess–Zumino
action (3.42) reads

(3.44)

It is important to note that the constants  break
the manifest  symmetry. Nevertheless, it is pos-
sible to show that under the  transformations of
the scalars the Lagrangian in (3.44) is shifted by a
total space-time derivative, so that the action enjoys
a non-manifest  invariance (and in fact 
invariance as well, since we started from the covari-
ant action (2.13)). This is a specific feature of the sub-
group  of  as compared to the other max-
imal subgroups ,  and

.

3.6. The Origin of the Wess–Zumino Term
One can wonder why the case of the group

 is so different from the cases of other
maximal subgroups of  considered in this sec-
tion. To answer this question, we have to recall the ori-
gin of the Wess–Zumino terms in the low-energy
effective actions.

The appearance of Wess–Zumino terms in low-
energy quantum effective actions is related to chiral
anomalies of the global (“flavor”) symmetries
[48, 50]. In a four-dimensional gauge theory, with the
gauge group  and the global symmetry group ,
the anomaly with respect to  can be generated in a
“global-gauge-gauge” or a “global-global-global” tri-
angle diagram. In the former case, the global symme-
try is broken at the quantum level: The Noether cur-
rent of  is not conserved and the quantum effective
action has a non-zero variation under . However, if
only the “global-global-global” diagram is anoma-
lous,  is not broken at the quantum level: The 
current is conserved and the effective action is invari-
ant. Yet, the anomaly manifests itself in the presence
of the Wess–Zumino term in the quantum effective
action, and the necessity of such a term can be under-
stood on the basis of the ’t Hooft anomaly-matching
condition [51, 52].

It is pertinent to recall what the ’t Hooft anomaly-
matching argument is. Consider a model which
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involves chiral fermions interacting with the gauge
fields corresponding to a gauge symmetry  sponta-
neously broken down to  by means of the
Higgs mechanism. Assume that there is a quantum
anomaly of this gauge symmetry. If we integrate out, in
the functional integral, some number of fields (includ-
ing chiral fermions) which have become massive due
to the Higgs mechanism, we obtain an effective theory
for the remaining light fields. One may think that the
contribution to the anomaly in the effective theory
changes due to a fewer number of the remaining chiral
fermions. However, the anomaly is known to be exact
and so should have the same strength in the effective
theory, when part of chiral fields has been integrated
out. It cannot depend on any scalar field vacuum val-
ues which trigger spontaneous breaking of gauge sym-
metry and/or masses of the heavy fields and so must
preserve its form in any branch of the theory. Respec-
tively, the missing contribution to the anomaly in the
effective theory is accounted for just by the Wess–
Zumino terms for Goldstone bosons which appear in
the process of spontaneous gauge symmetry breaking,
and this is the essence of the ’t Hooft anomaly-match-
ing condition. If the chiral fermions belong to the
adjoint representation of the anomalous gauge group,
like the gauge fields, the coefficients in front of the
directly calculated anomalies in the original and effec-
tive theories are  and , respectively (up to
the same overall numerical coefficient). Then the
coefficient in the Wess–Zumino term should be pro-
portional to . This coefficient coin-
cides with the number of chiral fermions which
acquired mass due to the Higgs mechanism and do not
show up in the effective theory. The  variation of
such a Wess–Zumino term makes the precisely same
contribution to the anomalous current as the missed
fermions [48, 53].

To summarize, the quantum effective action of the
light fields in the theories with the heavy fields inte-
grated out should necessarily involve the Wess–
Zumino term with a fixed coefficient, and it can be
directly found by the explicit quantum calculations
(see, e.g., [19]). The real virtue of the ’t Hooft anom-
aly-matching argument is that in fact there is no need to
make such calculations in order to uncover this Wess–
Zumino term.

It is important to realize that the ’t Hooft anomaly-
matching argument can be also successfully applied to
find the Wess–Zumino term in the effective theory,
when the global symmetries are anomalous, rather
than the local gauge symmetry. Indeed, if we have
some global symmetry with the group  we can for-
mally make it local by introducing external gauge
fields which couple to the corresponding Noether cur-
rents. Then, if  is potentially anomalous, i.e. there
are chiral fermions in the theory, after the gauging just
mentioned there will explicitly appear the anomaly

gG

g gH G⊂

dimG dimH

g g(dim dim )G H−

gG

glG

glG

proportional to the number of these chiral fermions. If
 is spontaneously broken, the above arguments are

applicable and we find out the Wess–Zumino term in
the effective theory, such that it remains non-vanish-
ing even after switching off the background gauge
field and coming back to the original case with 
acting as the global symmetry. Thus it should be
present in the effective action of the corresponding
light fields prior to any gauging. The coefficient in
front of such Wess–Zumino term should be propor-
tional to the number of chiral fermions which are
missing in the effective theory.

This is precisely what happens in  SYM the-
ory which has the global  R-symmetry with
anomalous “global-global-global” diagram [54]. With
respect to this R-symmetry,  SYM is a chiral
theory, because the left and right gauginos  and 
belong to the representations  and  which are not
equivalent to each other.10 When the gauge group  is
spontaneously broken down to a subgroup , and the

 massive gauginos are integrated
out, the Wess–Zumino term [19] appears in the effec-
tive action, with the coefficient proportional to

, so that the ’t Hooft anomaly
matching condition is satisfied [20, 52]. Since the sca-
lar fields which receive the vacuum expectation values
are in the adjoint of , the unbroken group  neces-
sarily includes an  subgroup, and, as a result, the
theory “sits” on the Coulomb branch.

At this point it is important to note that, though the
 SYM theory in f lat Minkowski space is finite

and free of anomalies, this ceases to be true when it
couples to  conformal supergravity [55, 56]. In
the latter case there is one-loop quantum anomaly of
the local superconformal symmetry 
which contains  as a subgroup. The 
conformal supergravity multiplet involves vector fields
which couple to the  Noether currents of

 SYM theory. These vector fields give the origin
of the Wess–Zumino term in the  SYM effective
action, according to the ’t Hooft anomaly-matching
argument. The Wess–Zumino term survives upon
switching off the supergravity fields and plays an
important role in securing the rigid  supersym-
metry (and conformal supersymmetry) of the 
SYM effective action in the f lat Minkowski space.

As we have shown in this section, in order to write
the Wess–Zumino term (2.13) as a four-dimensional
integral one is forced to sacrifice part of the manifest

 R-symmetry. The ’t Hooft anomaly-matching

10This has to be contrasted with the gauge group, with respect to
which both gauginos belong to the same adjoint representation
and so cannot produce any anomaly.
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argument [51, 52] tells us that all anomalous R-sym-
metry generators must transform the four-dimen-
sional Wess–Zumino term into a total divergence, and
therefore anomalous R-symmetry subgroups cannot be
made manifest. On the other hand, with respect to the
non-anomalous subgroups of  (for which left
and right fermions are transformed by the same repre-

sentation) the density of the Wess–Zumino term
should reveal a manifest invariance.

Recall that the spinor fields of the  SYM super-
multiplet carry the representation  of . This
representation splits into the following representations of
the four maximal subgroups of  (we write
this splitting only for the 4 part):

(3.45)

The first subgroup is anomalous, whereas the other
three are non-anomalous. The anomaly is absent for
the  and  subgroups because the
multiplets of  and of  are equivalent to
the conjugated ones. The potential  anomaly for
the  subgroup cancels due to
the symmetric  charge assignments of

. Thus only symmetries under
these non-anomalous subgroups can be made mani-
fest in the four-dimensional representation of the
Wess–Zumino term. The  group, being anoma-
lous, cannot be made manifest. This is exactly what we
see in the action (3.44), which involves the constant

triplet  which explicitly breaks the manifest 
symmetry.

In the next sections we will show that the Wess–
Zumino terms with  and  manifest
symmetry naturally appear from formulations of the

 SYM effective action in the  harmonic
superspaces with  and  har-
monic variables. The  form of the
Wess–Zumino term is inherent to the  har-
monic superspace formulation of  SYM theory.
The Wess–Zumino term in the form (3.44) originates
from the  SYM low-energy effective action in
the  harmonic superspace. It is worth pointing
out in advance that all these Wess–Zumino terms are
generated by the superfield expressions for 
SYM effective action which are almost uniquely, up to
an overall constant, determined by the requirements of

 supersymmetry and/or superconformal
 symmetry, without any need in the

explicit perturbative calculations. The overall coeffi-
cient is further fixed by the purely topological reason-
ing, since it multiplies the component Wess–
Zumino term.

4. LOW-ENERGY EFFECTIVE ACTION 
IN  HARMONIC SUPERSPACE

In this section we construct the low-energy effec-
tive action in  SYM theory in terms of super-
fields given on the  harmonic superspace. The
exposition in this section is essentially based on the
results of the paper [21]. To make the consideration
more pedagogical we start with a brief review of the
basic concepts of the  harmonic superspace
which was originally introduced in [23]. The detailed
description of the principles of the harmonic super-
space is given in the book [45].

4.1. Brief Review of  Harmonic Superspace

The -extended Minkowski superspace is
parametrized by the coordinates

(4.1)

where , , are the Minkowski space

coordinates, while  and their conjugate ,
, , are the anticommuting

Grassmann coordinates. In this superspace,
-extended Poincaré supersymmetry is realized by

the following infinitesimal coordinate transformations
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The generators of these transformations as differential
operators on the superspace can be chosen in the form
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The corresponding covariant spinor derivatives which
anticommute with the supercharges are defined as

(4.4)

(4.5)

The above formulas are valid for any . In the rest
of this section we will consider the particular case

, with the indices  corresponding to the
automorphism  group.

By definition, the harmonic superspace, besides
the familiar coordinates (4.1), contains additional
bosonic coordinates  which parametrize the 
group manifold. These extra bosonic coordinates
(harmonics) can be viewed as the unitary matrices
which obey the following defining property
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The rule of complex conjugation for them is
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 charges. We allow the superfields to be functions

on the  group, . In what follows we
will consider only those superfields which are repre-
sented by the harmonic series with the definite 
charges
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The coefficients of this harmonic expansion,
, are the conventional  superfields

which carry the external  spin , such that
. This means that the superfields 

are functions on the two-sphere 
rather than on the full . The series (4.8) is noth-
ing else than the expansion over spherical harmonics
on .

One can define three independent covariant deriv-
atives,
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which obey the commutation relations of the Lie alge-
bra 

(4.10)

It is easy to see that the derivative  counts the 
charge of superfields
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Using the harmonic variables, we can define the
 projections of the Grassmann variables and

covariant spinor derivatives
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 on the harmonics, we observe that the deriva-
tives  and  form the mutually anticommuting set
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These anticommutation relations are completely
equivalent to the  case of the algebra (4.5).

The rules of (complex) conjugation in the har-
monic superspace deserve some comments. First of
all, it should be noted that the standard complex con-
jugation is not suitable since it maps the superfield of
the charge q into the superfield of the charge 
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Thus it seems impossible to define a real superfield in
the harmonic superspace, unless . It turns out,
however, that in the harmonic superspace there exists
a generalized conjugation “ ” which does not change
the harmonic  charge and allows to define the
appropriate reality conditions. By definition [23], its
action on the harmonic-independent superfields
coincides with the conventional complex conjugation
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(the same is true for the  conjugation of the harmonic
variables and the harmonic projections of the Grass-
mann coordinates). Hence, for the superfields with
the even  charge  it becomes possible to
impose the reality condition

(4.21)

The basic advantage of dealing with the 
superspace extended by the harmonic variables is that
it contains invariant subspaces with the fewer number
of Grassmann coordinates, which are different from
the standard chiral subspaces and are closed under the
generalized -conjugation. One of such subspaces,
which is usually referred to as the analytic subspace, is
spanned by the coordinates

(4.22)

Indeed,  are real under the -conjugation,

, and the set of Grassmann variables 
is also closed under this conjugation, as follows from
(4.19). The  supersymmetry is realized on the
coordinates (4.22) by the transformations
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nates, see (4.24), the analyticity constraints (4.26) are
just the Grassmann Cauchy–Riemann conditions
[57] which imply that the superfield  is indepen-
dent of  and  in the analytic basis:

(4.27)
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For completeness, in this subsection we also give the
analytic basis form of the harmonic derivatives (4.9):

(4.28a)

(4.28b)

(4.28c)

The commutation relations between these derivatives
form of course the same algebra as (4.10):

(4.29)

4.2. Classical Action of  SYM 
in  Harmonic Superspace

The  vector multiplet consists of the hyper-
multiplet (  matter multiplet) and the 
vector multiplet. In this section we give an overview of
these multiplets in the  harmonic superspace
and then present the  SYM classical action in
terms of these superfields.

4.2.1. q-Hypermultiplet. The Fayet–Sohnius
hypermultiplet [58] in harmonic superspace is
described by a charged superfield  and its conjugate

 subject to the analyticity constraints

(4.30)
Their free classical action reads [23]

(4.31)

Here  is the harmonic derivative in the analytic
basis given by (4.28a) and the integration measure on
the analytic superspace is defined in such a way that
the following properties hold

(4.32a)
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Note that the analytic measure  is charged, so any
Lagrangian given on the analytic superspace should
carry the harmonic  charge . The rule of inte-
gration over the harmonic variables (4.32b) implies
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that the integral of any monomial of harmonics in a
non-singlet irreducible representation of 
vanishes.

The classical action (4.31) yields the equation of
motion for the superfield 

(4.33)
It is possible to show that in the central basis with coordi-
nates  this equation has the simple solution

(4.34)

that is  is linear in harmonics. The analyticity con-
straints (4.30) acquire the form of the following con-
straints on  [58]

(4.35)
It is known that these constraints eliminate all auxil-
iary fields in  and put the physical scalar and spinor
fields on the mass shell.

In some cases it is convenient to combine the
superfield  and its conjugate  into a doublet 

(4.36)

In terms of these superfields the classical action (33)
reads

(4.37)

This action is manifestly invariant under the so-called
Pauli–Gürsey  symmetry which transforms 
as a doublet.

4.2.2.  SYM theory in harmonic superspace.
Let us consider now the vector gauge multiplet in the

 superspace. The geometric approach to the
gauge theory in the  superspace is based on
extending the  superspace derivatives

 by the gauge superfield connec-
tions

(4.38)
and imposing the following constraints [59]
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(4.39c)

Here  and  are the superfield strengths which
obey the Bianchi identities
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The equations (4.40a) show that the superfield W is
chiral and  is antichiral. Therefore, the  SYM
action is given as an integral over the chiral or antichi-
ral subspaces of the  superspace

(4.41)

Here we assume that the integrals over the Grassmann
coordinates are normalized so that the following prop-
erties are valid

(4.42)

where

(4.43)

The gauge connections introduced in (4.38) and
their superfield strengths appearing in (4.39a) and
(4.39b) are defined up to the gauge transformations

(4.44)

where  is a real  superfield gauge param-
eter. The action (4.41) is obviously invariant under
these transformations. The  gauge theory intro-
duced through the gauge connections defined in the
standard  superspace as above is usually referred
to as the -frame gauge theory.

The  SYM Lagrangian (4.41) is expressed in
terms of the constrained chiral (antichiral) superfield
strengths  or . For many applications it is neces-
sary to have an expression for the Lagrangian in terms
of unconstrained gauge prepotentials of these super-
field strengths. The harmonic superspace approach
naturally provides such a formulation, as is explained
below.

The algebra of covariant spinor derivatives (4.39)
entails the corollaries

(4.45)

where

(4.46)

The relations (4.45) are just the integrability condi-
tions for the existence of the covariantly analytic
superfields:

(4.47)

The solution to these constraints can be found with
the help of the so-called bridge superfield .
The integrability conditions (4.45) imply the following
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representation for the  projections of the gauge-
covariant spinor derivatives

(4.48)

Without loss of generality the bridge superfield can be
chosen real, . As follows from (55), this
superfield is defined modulo gauge transformations,

(4.49)

where  is an arbitrary real harmonic-indepen-
dent superfield parameter (it coincides with that
appearing in (4.44)), while  is an arbitrary
real analytic superfield, , . Now,
the general solution to (4.47) in the analytic basis is
given by

(4.50)

where  is the analytic superfield (4.26). Thus,
with the help of the bridge superfield we can bring all
the differential operators and the superfields into the
so-called -frame, which, being combined with the
choice of the analytic coordinate basis, yields what is
called “ -representation”. In the -representation,
the covariantly analytic superfields become manifestly
analytic and the covariant spinor derivatives  and 
acquire the “short” form without gauge connections. At
the same time, the harmonic derivatives (4.28a) and
(4.29b) acquire non-trivial gauge connections

(4.51)

Since the bridge superfield is real with respect to the
conjugation, these new gauge connections are also real

(4.52)

Moreover, the superfield  is analytic

(4.53)

as a consequence of the commutation relations
.

It is important to point out that the superfields 
and  introduced in (4.51) are not independent.
They are related to each other by the “harmonic f lat-
ness condition”

(4.54)

which is a corollary of one of the commutation rela-
tions of the algebra (4.29) rewritten in the -frame,

. It was demonstrated in [60, 61] that
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the equation (4.54) can be uniquely solved for V–– in
terms of  as the series

(4.55)

This expression involves the harmonic distributions
introduced in [40] and described in detail in [45].

The superfields  and  are defined by (4.51)
up to the gauge transformations

(4.56)

which follow from (4.49). Since the superfield  is
analytic and otherwise unconstrained, while  is
expressed through , just  is the fundamental
gauge prepotential of  SYM theory. The super-
field strengths ,  and the classical action (4.41)
can be expressed through this prepotential.

Since the covariant spinor derivatives in the
-frame (4.46) are linear in harmonics, the following

simple commutation relations hold in this frame

(4.57)

Let us rewrite these commutators in the -frame using
the rules (4.48) and (4.51),

(4.58)

and take into account the fact that in the -frame the
covariant spinor derivatives  and  are short,

 and . Then, the commutation
relations (4.58) amount to the following expressions
for the spinor connections

(4.59)
Contracting the anticommutators (4.39a) and

(4.39b) with the harmonics , we find the expres-
sions for the superfield strengths,

(4.60)

Using the expressions (4.59), we represent these
superfield strengths in terms of the non-analytic har-
monic gauge connection 

(4.61)

Owing to (4.55), the superfield strengths are functions
of the analytic gauge prepotential . This makes it pos-
sible to express the  SYM classical action (4.41)
via  [61]
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(4.62)

The derivation of this action from (4.41) requires some
algebra, the details of which can be found, e.g., in [45].
As was demonstrated in [62], the  SYM classical
action in the form (4.62) is most suitable for quantiza-
tion and studying quantum aspects of  gauge
theories in superspace.

Using the unconstrained analytic prepotential ,
it is rather trivial to promote the free hypermultiplet 
action (4.31) to the gauge invariant one; this is accom-
plished just through the replacement :

(4.63)

Here we assume that the -hypermultiplet transforms
in some representation of the gauge group

(4.64)

and  takes values in the matrix algebra of the gen-
erators of this representation. The classical action is
invariant under the gauge transformations (4.64) sup-

plemented by the corresponding variation (4.56) of the
gauge superfield .

If the -hypermultiplet transforms in the adjoint
representation of the gauge group, the action (4.63)
possesses the Pauli–Gürsey  symmetry. Using
the notations (4.36), it can be rewritten as

(4.65)

where the covariant harmonic derivative acts on the
hypermultiplet according to the rule

(4.66)

4.2.3.  SYM classical action. In the 
harmonic superspace, the  vector gauge multi-
plet is represented by the  gauge multiplet 
and the hypermultiplet . Both these multiplets
should belong to the same adjoint representation of
the gauge group. The  SYM action is given by
the sum of the actions (4.62) and (4.65) for these mul-
tiplets,

(4.67a)

(4.67b)

(4.67c)

The total action is invariant under the following hid-
den  supersymmetry transformations

(4.68a)

(4.68b)

where  and  are new anticommuting parameters
and ,  are defined in (4.61). It is possible to show
that the algebra of these transformations is closed
modulo terms proportional to the classical equations

of motion. Therefore, in this formulation only 
supersymmetry is closed off shell.

In conclusion of this section we present the har-
monic superspace formulation of the abelian 
SYM theory. In this case the action (4.67) acquires the
simple form

(4.69)

Recall that the hypermultiplet obeys the off-shell ana-
lyticity constraint
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while the  gauge superfield strengths  and 
are chiral and anti-chiral
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and also obey the Bianchi identity

(4.71b)
The relations (4.71a) and (4.71b) follow from (4.40a)
and (4.40b), respectively. The equations of motion for
these superfields implied by the action (4.69) read

(4.72a)

(4.72b)

They are obtained by varying (4.69) with respect to the
analytic unconstrained prepotential . In what fol-
lows, the equations (4.72) will be referred to as the
on-shell constraints.

Note that the hypermultiplet equation of motion
(4.72a) in the central basis implies that  is linear in
harmonics, . Thus, we can define the super-
field
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which obeys

(4.74)

as a consequence of (4.72a) and (4.70). In the analytic
basis,  is defined in the same way, but with the
appropriate analytic-basis covariant derivatives.

When the superfields ,  and  obey both off-
and on-shell constraints (4.70)–(4.74), the transfor-
mations of hidden  supersymmetry (4.68) are
simplified to

(4.75a)

(4.75b)

This form of hidden supersymmetry is useful for
checking the invariance of the action functionals
modulo terms vanishing on the equations of motion.
We will employ these transformations in the next sub-
section for constructing the  SYM low-energy
effective action in the  harmonic superspace.

4.3. Derivation of the Effective Action
Our goal is to find the four-derivative part of the

 SYM low-energy effective action . In the
component formulation, this action should include
both the term  (2.11) and the Wess–Zumino
term (2.13), as well as all their  supersymmetric
completions.
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Recall that the  term in the  superspace
is described by the non-holomorphic potential (2.13)
[12, 13]:

(4.76)

where  is an arbitrary scale. The value of the constant
c was calculated in [14–16, 18] (see also the review
[63]). In particular, for the case of the gauge group

 spontaneously broken down to  the value of
this coefficient is

(4.77)

The  SYM low-energy effective action
should be an  supersymmetric completion of the

 non-holomorphic potential (4.76):
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(4.78b)

The part of the effective Lagrangian 
should be fixed from the requirement that the effective
action  is invariant under  supersymmetry.
Since we are interested in the on-shell low-energy
effective action, it will be sufficient to impose the con-
dition that  is invariant under the hidden 
supersymmetry transformations in the on-shell
form (4.75).

To begin with, we compute the variation of the
 non-holomorphic effective action under the
 supersymmetry transformations (4.75)
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Then, in the expression

(4.82)

the variation of the non-holomorphic potential (4.79)
is canceled by the variation of , but the contribu-
tions from the second term in (4.81) remain non-can-
celed.

The variation of (4.82) can be brought to the form

(4.83)

where we have integrated by parts and used the
equations (4.70)–(4.74), as well as cyclic identities for
the  doublet indices. Now let us consider the
quantity

(4.84)

where  is given by (4.82). The coefficient in the
new term  has been fixed so that the variation of the
numerator of this term cancels (4.83). The rest of the
full variation of  once again survives, and in order
to cancel it, one is led to add the term

(4.85)

to , and so on.
The above consideration suggests that the hypermul-

tiplet-dependent part of the effective Lagrangian (4.78b)
has the form of the power series

(4.86)

where  are some coefficients. We have already found

that , , . Now we are prepared to

determine the form of the generic coefficient .
Consider two adjacent terms in the series (4.86)

(4.87)

and assume that the variation of the numerator of the
first term has already been used to cancel the remain-
ing part of the variation of preceding term under the
full superspace integral. Then we rewrite the rest of the
full variation of the first term using the same manipu-
lations as in (4.83) and require that this part should be
canceled by the variation of the numerator of the sec-
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ond term in (4.87). This gives rise to the following
recursive relation between the coefficients  and :

(4.88)

Taking into account that , we find the value of
the generic coefficient

(4.89)

As a result, we find the full hypermultiplet comple-
tion of the non-holomorphic potential in the form

(4.90)

where

(4.91)

Here Li2(Z) is the Euler dilogarithm which is repre-
sented by the power series expansion

.

It is worth to note that the expression (4.91) is har-
monic-independent for the on-shell hypermultiplets
which are linear in harmonics, . Indeed,
(4.91) can be identically rewritten as

(4.92)

As a consequence, the effective Lagrangian (4.90) is
harmonic-independent and one can omit the integra-
tion over the harmonics in (4.78a). Taking this into
account, we rewrite the final answer for the four-
derivative part of the  SYM low-energy effective
action in the  superspace as

(4.93)

The  SYM low-energy effective action in this
form was first obtained in the paper [21], using the
procedure described in this section. In the subsequent
papers [27–29], the expression (4.93) was reproduced
by direct calculations within the quantum perturbative
theory in  harmonic superspace.

It should be noted that the low-energy effective
action (4.93) is scale invariant. It is possible to show
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 supersymmetry is just the superconformal
 symmetry. To avoid a possible confusion,

we would like also to point out that the expression
(4.93) with  (4.91) as the argument in  (and with an
integral over harmonics restored) is an off-shell invari-
ant of the manifest  supersymmetry. The on-
shell conditions need to be imposed only when we
prove the hidden second on-shell  supersymme-
try of this  superfield expression.

4.4. Component Structure

The abelian  on-shell vector multiplet con-
sists of one complex scalar ,  doublet of spinors

 and a gauge vector  with the Maxwell field
strength . The on-shell hypermul-
tiplet contains  doublet of complex scalars 
and two spinors , . We adopt the following two
essential simplifications, while considering the com-
ponent structure of the effective action: (i) we discard
all spinor and auxiliary fields and (ii) we assume that
the bosonic fields obey free classical equations of
motion. Though these constraints are very strong,
they suffice to determine the bosonic core of the low-
energy effective action which is non-vanishing on the
mass shell. Taking these constraints into account, we
find the component structure of the superfields , 
and ,  in the form

(4.94)

and

(4.95)

The component fields in these expressions were nor-
malized in agreement with the notations of [45].

4.4.1.  term. To derive the  term in
the  SYM effective action, it is sufficient to con-
sider a constant Maxwell field strength  and discard
all derivatives of the scalars. Then, we substitute (4.94)
and (4.95) into (4.93) and integrate over all Grass-
mann coordinates according to the rules (4.42)
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Here we used the identity for -matrices

(4.97)

Now it remains to express the complex scalars  and
 via the six real scalars , ,

(4.98)

Then, with  given in (4.77), the considered part of the
low-energy effective action takes exactly the form of
the  term (2.11)

(4.99)

4.4.2. Wess–Zumino term. In order to single out
the Wess–Zumino term in the component structure of
the low-energy effective action (4.93), it is sufficient to
consider another approximation: We discard the Max-
well field , but keep the space-time derivatives of
the scalars.

First of all, we point out that the non-holomorphic

potential  cannot make a contribution to
the Wess–Zumino term because it involves only two
out of six scalar fields. Thus we have to consider only
that part of the effective action (4.93) which is
described by the function ,

(4.100)

Here we assume that the superfields contain only sca-
lar fields in their component field expansion.

For deriving the Wess–Zumino term we will use
the rule of integration over the Grassmann variables
which is equivalent to (4.42)
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Thus we have to hit the function  by eight covariant
spinor derivatives. While doing so, we should take into
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ties can be derived, e.g.,
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and

(4.103)

Using these identities, we find

(4.104)

Here, we have explicitly written only terms with
cyclic contraction of the spinor indices of the space-
time derivatives, since only such expressions can pro-
duce, by the identity (4.97), the antisymmetric -ten-
sor. Now we set to zero the Grassmann variables

in (4.104) and obtain the following representation
for (4.100)

(4.105)

where

(4.106)

and

(4.107)

The expression (4.105) is not manifestly real. How-
ever, its imaginary part can be shown to be a total

-derivative and so vanishes under the space-time
integral. Applying the integration by parts, the
remaining real part can be represented in the form:

(4.108)

Here we have also expressed the partial derivatives of
 in terms of usual derivatives .

With  and , we then obtain

(4.109)

Using (4.98) and performing the polar decomposition
of ,

(4.110)
we find

(4.111)

where  are  indices and .
Finally, we observe that the function (4.107) obeys the
equation

(4.112)

After substituting this into the expression (4.111), the
latter becomes

(4.113)

With  defined in (4.77), it perfectly matches the
expression (3.21).

The Wess–Zumino term (4.113) in the component
field formulation of the  SYM low-energy effec-
tive action (4.93) was found for the first time in [24],
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although attempts to derive this term were undertaken
in the preceding papers [64, 65].

As we have shown in sect. 3.3, the Wess–Zumino
term in the form (4.113) has a manifest symmetry
under the group  which, in the consid-
ered setting, is locally isomorphic to

. Here, the group 
corresponds to the R-symmetry of the  super-
space, while  is the Pauli–Gürsey group
which acts on the index  of the hypermultiplet  in
(4.69). The last  factor is the phase rotation of the

 superfield strengths  and  in (4.69). Thus
it is absolutely natural that the Wess–Zumino term in
the  SYM low-energy effective action appears in
the  harmonic superspace approach just in the
form (4.113) with manifest  symmetry.

5. LOW-ENERGY EFFECTIVE ACTION 
IN  HARMONIC SUPERSPACE

Classical action of  SYM theory in harmonic
superspace was constructed in the pioneering papers
[46, 47]. On the mass shell, this theory is known to be
equivalent to  SYM [45]. Since no  off-
shell superfield description for  SYM theory is
known so far, the  harmonic superspace pro-
vides the maximal number of manifest supersymme-
tries. As a consequence, it appears very efficient at
quantum level. For instance, the quantum finiteness
of  SYM theory can be easily proved just by ana-
lyzing the dimension of the propagator for gauge
superfield in the  harmonic superspace [66].
What is more important for the present consideration,

 supersymmetry, combined with the require-
ment of scale invariance, prove to be so strong that
these symmetries fix uniquely, up to an overall coef-
ficient, the leading part of the  SYM low-
energy effective action [26]. In this section, we
explicitly construct such effective action, reviewing
the results of [26].

To make our consideration more pedagogical, we
start by explaining basics of the  harmonic
superspace and gauge theory in it. The detailed expo-
sition of  SYM theory is given in the book [45].

5.1.  Harmonic Superspace Setup

The standard  superspace is parametrized by
the coordinates (4.1), where the indices 
correspond now to the  R-symmetry group. The
covariant spinor derivatives  and  in this super-
space have the same form as in (4.4) and obey the anti-
commutation relations (4.5). We extend this super-
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tion on this coset, such that they can always be repre-
sented by power series expansions over the harmonic
variables.

The defining constraints (5.1) can be viewed as the
orthogonality and completeness relations for the har-
monic variables. They allow one to form the harmonic
projections of any objects with  indices just by
contracting the latter with the complementary 
indices of the harmonics. For instance, for the Grass-
mann coordinates and covariant spinor derivatives
we have

(5.7)

(5.8)

The covariant spinor derivatives (5.8) obey the follow-
ing anti-commutation relations

(5.9)

The full  harmonic superspace with the
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The harmonic derivatives ,  and  in the
analytic basis have the form

(5.13)

One can check that they commute with the covariant
spinor derivatives  and 

(5.14)

and, hence, preserve the Grassmann harmonic ana-
lyticity. The other three harmonic derivatives

(5.15)

do not possess this property.
Like in the  harmonic superspace, the con-

ventional complex conjugation is not useful as it does
not preserve the analyticity. Therefore, it is customary
to use the generalized complex conjugation denoted by

 and defined by the following properties: On the har-
monic-independent objects it coincides with the usual
complex conjugation, see eq. (4.17), while on the har-
monic variables it acts according to the rules12

(5.16)

Using these rules, one can find the conjugation prop-
erties of the Grassmann variables,

(5.17)

as well as of the harmonic covariant derivatives (17),

(5.18)

where  is an arbitrary function depending on the
superspace coordinates  and harmonics .

It is easy to see that the analytic subspace with the
coordinates (14) is closed under the -conjugation,
but not under the conventional complex conjugation.

12Here we use the convention for the -conjugation adopted in
[26, 67] which is somewhat different from the convention used
in [45].
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5.2. Gauge Theory in  Harmonic Superspace

In this section we shortly review the superspace
description of  SYM theory.

The constraints of this theory in the conventional
 superspace were introduced in [59], while their

harmonic superspace version was discussed in the
book [45] (see also [68]). Here we limit our attention
only to the abelian case, which is sufficient for con-
structing the low-energy effective action in the Cou-
lomb branch.

In the standard geometric approach, the gauge the-
ory is introduced through adding gauge connections to
the superspace derivatives, as in eq. (4.38). In the

 case, the analogs of the constraints (4.39) read

(5.19a)

(5.19b)

(5.19c)

where  and its conjugate  are the
superfield strengths for the  gauge vector multi-
plet. The constraints (5.19) imply the following Bian-
chi identities for these superfield strengths [59]

(5.20a)

(5.20b)

It is known that these constraints kill all unphysical
(auxiliary) components in the superfield strengths,
simultaneously yielding the free equations of motion
for the physical components of the  vector mul-
tiplet.

Let us introduce the harmonic projections of the
superfield strengths

(5.21)

For these superfields one can deduce many off- and
on-shell constraints which follow from (5.20). Here
we will need only the independent constraints for the
superfield strengths  and . They can be
grouped into the three sets:

(i) Grassmann shortness constraints which origi-
nate from the harmonic projections of (5.20):

(5.22)
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(ii) Grassmann linearity constraints which are also
corollaries of (5.20):

(5.23)

(iii) Harmonic shortness constraints which are
direct consequences of the definitions (5.21) and the
form of the harmonic derivatives (5.4a):

(5.24)

The general solution of the equations (5.22)–(5.24) is
given by the following -expansions of  and 
written in the analytic basis

(5.25)

Here
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and  is a triplet of physical scalar fields subject to the
Klein–Gordon equation . The four spinor
fields are accommodated by the  singlet  and
the triplet , all satisfying the free equations
of motion, . The fields 
and  are spinorial components of the Max-

well field strength , .
Similarly to (5.8), the gauge-covariant spinor

derivatives have harmonic projections 
and . As follows from (5.19), the deriva-
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tives  and  form the set of anticommuting
operators

(5.27)

These relations are just the integrability conditions for
the existence of the covariantly analytic superfields
defined by

(5.28)

The explicit solution to these constraints can be found
using the bridge superfield  which solves the
integrability conditions (5.27):

(5.29)

Without loss of generality, the bridge superfield can be
chosen real, . Like in  SYM the-
ory,  in (5.29) is defined modulo the gauge
transformations

(5.30)

where  is an arbitrary real harmonic-indepen-
dent superfield, while  is an arbitrary tilde-
real and analytic superfield, , .
Using (5.29), the general solution to (5.28) can be
written as

(5.31)

where  is the manifestly analytic  super-
field (5.12).

Thus, the introduction of the bridge superfield
allows one to bring all the differential operators and
superfields to the -representation, in which the
covariantly analytic superfields become manifestly
analytic and the covariant spinor derivatives  and

 cease to contain the gauge connections.
On the contrary, the harmonic derivatives (5.13)

and (5.15) acquire gauge connections in the -frame

(5.32)

As stems from (5.18), the superfields  have the fol-
lowing properties under the -conjugation

(5.33)

The gauge transformations (5.30) imply that these
superfields transform as
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The commutation relations (5.14) have the gauge
covariant counterparts

(5.35)

Transferring these constraints to the -frame, one
observes that the superfields ,  and  are ana-
lytic

(5.36)

while the other three gauge connections ,  and 
are not. The analytic superfields ,  and  are the
fundamental prepotentials of  SYM theory, ana-
logs of the analytic prepotential  of  SYM
theory.

The harmonic commutators (5.5) can be rewritten
in the -frame. One of these relations is the equation

(5.37)

which implies that the analytic gauge connection  is
expressed through the other two analytic connections

 and 

(5.38)

Therefore, in what follows we will consider only the
analytic connections  and  as the independent
basic ones. Next, the commutators (5.5d) in the

-frame are

(5.39)

where the operators  and  do not have gauge con-
nections, since the bridge superfield  is uncharged.
As a consequence of (5.39), the non-analytic gauge
connections  and  are related to the basic analytic
ones  and  by the corresponding harmonic f lat-
ness conditions

(5.40)

In contrast to the  case, eq. (4.55), the explicit
solutions of these equations are not known because
harmonic distributions with the  harmonics are
not well worked out so far. Nevertheless, given that the
solution of these equations exists and is unique, we can
treat the superfields  and  as some functions of 
and 
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Taking harmonic projections of the anticommuta-
tion relations (5.19a) and (5.19b), we find the expres-
sions for the superfield strengths,

(5.42)

Recall that, in the -frame, the derivatives 
and  contain no gauge connections, unlike
the derivatives  and .
Hence, in the -frame we have

(5.43)

The spinor gauge connections  and  can be
expressed through the non-analytic harmonic gauge
connections  and  in virtue of the following com-
mutation relations in the -frame

(5.44a)

(5.44b)

These solutions for  and  allow us to express the
superfield strengths (5.43) as

(5.45)

In these expressions, the gauge connections  and 
are some functions of the unconstrained analytic gauge
prepotentials  and , as is defined by (5.41). One can
easily check that the superfield strengths (5.45) are
invariant under the gauge transformations (5.34). Note
also that the -conjugation maps  and  into
each other

(5.46)

5.3. Superconformal Transformations

The  superconformal group ,
besides the  super Poincaré transformations,
contains dilatation (with the parameter ), -trans-
formation (with the parameter ), conformal boosts
(with the parameters ), S-supersymmetry (with the
parameters , ) and  R-symmetry transfor-

mations (with the parameters , , ).
The realization of this supergroup on the analytic
coordinates (5.10) was found in [69],

(5.47)

where . For preserving the ana-
lyticity, the harmonic variables should transform
according to the rules

(5.48)

where

(5.49)

In this paper we will use the so-called passive form
of superconformal transformations of superfields,
when the variation is taken at different points, e.g.,

. In this case we have to take
care of transformations of the superspace derivatives

and the superspace integration measure. Nevertheless,
this does not lead to extra complications since we will
study the part of effective action which is described by
the superfield strengths without derivatives on them.
Moreover, it is possible to show, see, e.g., [45], that the
integration measure of the analytic superspace (5.10)
defined as follows [26, 67],

(5.50)

is invariant under (5.47) and (5.48):

(5.51)

Using the coordinate transformations (5.47) and
(5.48), it is straightforward to compute the supercon-
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formal variations of the harmonic derivatives:

(5.52)

The gauge-covariant harmonic derivatives (5.32) must
have the same transformation properties (5.52).
Hence, the gauge connections should transform under
the superconformal group according to the rules

(5.53)

Using (5.47) and (5.48) it is also easy to find the
superconformal transformations of the covariant
spinor derivatives  and 
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strengths (5.45),
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5.4. Classical  SYM Action

Superfield classical off-shell action of  SYM
theory was constructed in [46, 47]. For completeness,
here we review this construction, although it will not
be used in the next sections, when studying the effec-
tive action. As we will show, the classical action has a
very remarkable Chern-Simons form which does not
resemble the superfield classical SYM actions neither
in  nor in  superspaces. In this section we
consider the general case of non-abelian gauge theory.

Recall that in the -frame the covariant spinor
derivatives  and  possess
gauge connections which are subject to the constraints
(5.19). The harmonic derivatives (5.13) and (5.15) are
automatically gauge-covariant in the -frame and so
do not require gauge connections. It is unclear how to
relax the constraints (5.19) in such a way that they
would appear as Euler–Lagrange equations associated
with some superfield action. This becomes possible
after passing to the -frame.

In the -frame the covariant spinor derivatives 
and  become short (they have no gauge connec-
tions), but the covariant harmonic derivatives acquire
gauge connections (5.32). Let us concentrate on the
analyticity-preserving derivatives ,  and  (see
(5.36)). As follows from (5.5), the mutual commuta-
tors of these derivatives read

(5.59)

The basic idea of [46, 47] was to treat these equations
as constraints which admit a relaxation

(5.60)

Here ,  and  are some analytic superfields
which can be treated as the field strengths for the cor-
responding harmonic superfield connections. In
terms of the gauge connections  these superfield
strengths have the following explicit form

(5.61)

Relaxing the constraints (5.59) as in eqs. (5.60)
amounts to going off shell. Coming back to the mass shell
requires these harmonic superfield strengths to vanish,

(5.62)
Remarkably, these constraints can be reproduced as
the Euler–Lagrange equations associated with the fol-
lowing off-shell action13

13The overall coefficient in this action is chosen in agreement with
the conventions of [67].
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(5.63)

Indeed, the general variation of this action with
respect to the unconstrained analytic prepotentials

 and  reads

(5.64)

The action (5.63) is invariant, modulo a total deriv-
ative, under the non-abelian generalization of the
gauge transformation (5.63),

(5.65)
where  is a real and analytic superfield parameter tak-
ing values in the Lie algebra of the gauge group.
Indeed, the gauge variation of (5.63),

(5.66)

vanishes owing to the off-shell Bianchi identity for the
strengths (5.61)

(5.67)

The action (5.63) also respects full 
superconformal symmetry. To check this, one has to
take into account that the analytic measure is super-
conformally invariant, see (5.51), while the harmonic
derivatives and prepotentials transform according to
the rules (5.52) and (5.53), respectively.

The action (5.63) has the very specific form as
compared to the  SYM action (4.62). The latter
is non-polynomial in the gauge prepotential (in the
non-abelian case) while the above  SYM action
has only cubic interaction vertex. Surprisingly, the
superfield Lagrangian of  SYM theory is of the
first order in harmonic derivatives. The form of this
Lagrangian resembles the Chern–Simons Lagrang-
ians, though the action (5.63) describes the full-
fledged  super Yang–Mills theory. In fact, as
was pointed out in [70], the  superfield
Lagrangian does acquire the literal Chern–Simons
form for the properly defined one-form of gauge con-
nection.

In components, the off-shell  gauge multi-
plet contains an infinite tower of auxiliary fields
[46, 47] (along with an infinite number of gauge
degrees of freedom most of which, however, are
brought away in WZ gauge). It is possible to show that,
once all auxiliary fields have been eliminated from the
action, one is left with the multiplet of physical fields
which coincides with the  gauge multiplet on the

mass shell. The classical action for the physical fields
has exactly the form (2.3). Thus, classically, the 
and  gauge theories are equivalent on the mass
shell.

5.5. Superconformal Effective Action

The aim of this section is to construct the 
superspace prototype of the effective action (4.93).
Before solving this problem, let us briefly discuss a
closely related issue concerning the  supersym-
metric generalization of the Born–Infeld theory con-
structed for the first time in [67].

The Lagrangian of the Born–Infeld theory is a
non-polynomial function of the abelian field strength

. Being expanded in a power series in , it starts
with the standard Maxwell  term, while the next term

is , where ,  and
,  are the spinorial components of . The

 supersymmetric generalization of this  term
is given by [67]

(5.68)

where  is a coupling constant of dimension one in
mass units, which is introduced to ensure the correct
dimension of the integrand. The analytic measure
defined as in (5.50) is dimensionless, ,
and . With this analytic measure, it is
straightforward to check that, together with other
component terms, the action (5.68) yields the stan-
dard  term,

(5.69)

Consider now the superconformal variation of the
action (5.68)

(5.70)

where we made use of the variations of the superfield
strengths (5.56) and the property of invariance of the
analytic measure (5.51). Here  and  are the superfield
parameters of superconformal transformations (5.57)
collecting the constant parameters of the superconfor-
mal transformations (5.47) and (5.48). We see that the
action (5.68) is not superconformal, since its variation
(5.70) is non-vanishing. In the present section we will
construct a superconformal generalization of (5.68)
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and will show that it contains the terms (2.11) and
(2.13) in its component-field expansion.

5.5.1. Scale and  invariant  term. We will
denote the superconformal generalization of (5.68) by

 to stress that it is a part of the  SYM low-
energy effective action. The action  should meet the
following criteria:

(1) It should be a local functional defined on the
analytic superspace and constructed out of the super-
field strengths  and  without derivatives
on them,

(5.71)

The analytic Lagrangian density  is an arbitrary
function of its arguments, such that its external har-
monic  charges cancel those of the analytic inte-
gration measure. This is the most general form of the
superspace action yielding terms with four derivatives
in components, since the analytic measure (5.50) con-
tains just eight spinor derivatives which can produce
four space-time ones on the component fields.

(2) The action  should be invariant under the
superconformal transformations (5.56),

(5.72)

As a weaker requirement, in this subsection we will
employ only the scale- and -transformations out of
the full  superconformal group. We will show
that this is sufficient to uniquely specify the structure of
the action. The check of the full superconformal sym-
metry will be performed in the next subsection.

(3) In the component-field expansion the action 
should reproduce the scale- and -invariant

 term (5.69),

(5.73)

(4) We are interested in the low-energy effective
action for massless fields, with massive ones being
integrated out. The massive fields appear in the Cou-
lomb branch, when the gauge symmetry is broken
down spontaneously. For instance, the  gauge
symmetry is broken down to , when the scalar field
corresponding to the Cartan subalgebra of 
acquire non-trivial vevs,

(5.74)

However, the effective action should be independent
of any particular choice of these constants,

(5.75)
because such a dependence would break superconfor-
mal invariance of the action.

5γ
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(5) Finally, we simplify the problem by considering
only those parts of the action (5.71), which do not van-
ish on the mass shell, i.e., we will assume that the
superfield strengths obey the constraints (5.22)–
(5.23). We will neglect all terms in the action  which
vanish when these constraints are imposed. As a con-
sequence, one is free to add to , or to subtract from it,
the following expressions which vanish on the mass
shell,

(5.76)

Here  is an arbitrary function of its argument.
We will frequently employ this property, when deriving
the action.

Now we turn to constructing the action  that
meets the requirements and properties listed above.

As the first step, we introduce the shifted scalar
fields,  and ,

(5.77)

Next, we define the harmonic projections of these vev
constants

(5.78)

Using these objects, we introduce the shifted super-
field strengths,  and ,

(5.79)

Under the scale and  transformations these shifted
superfields transform inhomogeneously,

(5.80)

where . The case of generic  and  defined
in (5.57) will be considered in the next subsection.

We point out that on shell, when the relations (5.76)
are valid, the non-superconformal action (5.68) can
be rewritten in terms of  and  as

(5.81)

Here we substituted  in the denominator instead
of , because no other dimensionful constants
besides the vevs  can be present in the superconfor-
mal case.
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We seek for a superconformal generalization of the
action (5.81) in the form

(5.82)

where  is some function to be determined and
 is a dimensionless coupling constat. The arguments

 and  of the function  are uncharged and

dimensionless. We assume that the function  has a
regular power series expansion with respect to its
arguments,

(5.83)

with undefined coefficients . The reality of the
action (5.82) with respect to the tilde-conjugation
implies the symmetry of this function,

, whence .

Reordering the summation in (5.83), it is conve-
nient to represent (5.82) as

(5.84)

The invariance of the action (5.84) under the transfor-
mations (5.80) can be secured order by order, i.e., the
non-vanishing terms from  are required to be
canceled by similar terms from , and so forth.
To simplify the derivation, we put  and ;
these constants will be restored in the final expression.

Consider two lowest terms in the series (5.84),

(5.85)

The superconformal variation of  reads

(5.86)

Note that the terms with  and  van-
ish on shell because of the relations (5.76).

The superconformal variation of  reads

(5.87)

Using the identities

(5.88)
which follow from the definitions (5.78), one can write

(5.89)

We substitute these expressions into (5.87) and inte-
grate by parts with respect to the harmonic derivatives

,  and ,

(5.90)

Here we made also use of the identity
. Comparing (5.90) with

(5.86), we observe that the terms with four superfield
strengths are canceled out under the condition

(5.91)

Let us now consider the -th term in the series
(5.84),

(5.92)

and compute its variation under (5.80),

(5.93)
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In the second line of (5.93) we apply the identity

(5.94)

Upon integrating by parts with respect to the harmonic derivatives  and , this expression is replaced by

(5.95)

Similarly, in the last line of (5.93) we apply the identity

(5.96)

and again integrate by parts with respect to the har-
monic derivatives. As a result, the expression

 in (5.93) produces the term

(5.97)

Taking all this into account, the variation (5.93)
can be written as

(5.98)

We observe that the terms in the last two lines in (5.98)
cancel similar terms in the first line of , pro-
vided that the coefficients  obey the following two
equations

(5.99)

As a consequence, any two adjacent coefficients are
related as

(5.100)

The solution of this equation reads

(5.101)

With these coefficients, the series (91) can be
summed up to the function

(5.102)

We point out that this function is regular at the origin,

(5.103)

Hence the action (5.82) with this function is well-
defined and the harmonic integral does not encounter
any singularities.

The contributions from the last two terms in
(5.102) to the action (5.82) vanish on shell due to the
properties (5.76).14 Therefore, the on-shell effective
action can be rewritten in the following explicit form
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14The properties (5.76) are valid essentially on shell. Therefore the
last two terms in (5.102) can be neglected only on the mass shell
although they can be important for the off-shell completion of
the action.
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(5.104)

Although the charged objects  and  appear in the
denominators, they do not lead to the divergent har-
monic integrals. It can be explicitly checked that upon
passing to the component form of the action (5.104),
all dangerous terms with divergent harmonic integrals
vanish after performing the integration over the Grass-
mann variables.

5.5.2. Complete  superconformal symmetry.
In the previous section we found the low-energy effec-
tive action (5.104) by imposing the requirements of
scale and -invariance only. In this section we
demonstrate that this action is invariant under the full

 superconformal group. For this purpose we
have to consider the transformations (5.56) which
include all parameters of the superconformal transfor-
mations. The corresponding variations (5.80) of the
shifted superfield strengths  and  read

(5.105)

where  and  are given in (5.57) and  are defined
in (5.49). The variation of the action (5.82) under
these transformations is as follows

(5.106)

For simplicity, we set here , so ,
. The first and second lines in (5.106) are

tilde-conjugated to each other.
Given the explicit form (5.102) of the function

, it is easy to check that it solves the differential
equations

(5.107)

Taking them into account, we are going to show that
the integrand in (5.106) is a total harmonic derivative,
so the variation (5.106) vanishes.

To this end, we introduce the auxiliary functions
 and :

(5.108)

They possess the following properties
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Here dots stand for the terms integrals of which over
the analytic superspace with the weight  are
on-shell vanishing due to the relations (5.76). Up to
these terms, the equations (5.109) allow one to deduce
the relations
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Here we made use of the obvious identities for the
superfield parameters 

(5.111)

as well as of the convention .
Next, we introduce the functions

(5.112a)

(5.112b)

with the properties

(5.113a)

(5.113b)

(5.113c)

Here, as in (5.109b) and (5.109d), the dots stand for
the terms vanishing on shell after integration over the
analytic superspace with the weight . Up to
these terms, we obtain the relation

(5.114)

Finally, we introduce the functions
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with the properties
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These properties allow us to derive one more useful
relation

(5.118)

Now, taking into account the relations (5.110),
(5.114) and (5.118), we observe that the variation
(5.106) can be represented as a linear combination of
harmonic derivatives acting on the quantities com-
posed of the functions (5.108), (5.112) and (5.115),

(5.119)

The variation (5.119) vanishes as an integral of total
harmonic derivative. This proves the invariance of the
action (5.104) under the full  superconformal
group.15

5.5.3. Independence of the choice of vacua. By con-
struction, the effective action (5.82) with the function

 given in (5.102) is well defined only on the Cou-
lomb branch of  SYM theory. This is manifested
in the explicit presence of non-zero vacuum constants

 and  in the Lagrangian in (5.82). However, the
action itself should be independent of any particular

choice of these constants, except for the point 
at which the effective action is singular.

Let us rewrite (5.82) in terms of the original (non-

shifted) superfield strengths  and 

(5.120)

In the previous subsection we proved that this action is
invariant under the full  superconformal
group. Taking into account that the analytic integra-
tion measure is  invariant by itself, the prop-

15Note that (5.104) is  invariant for any , without

any restriction on the norm  which was set equal to  in the
above consideration merely for convenience.
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erty of superconformal invariance of the action can be
written in the finite form as

(5.121)

In particular, consider scale and  transformations of
the superfield strength in the finite form,

(5.122)

where . The transformation of the action
(5.120) under (5.122) can be represented as

(5.123)

Here the -dependence is absorbed into the vev con-
stants, , . Hence, the supercon-
formal invariance of the action (5.120) implies its
independence of the complex rescalings of the vev
constants,

(5.124)

In a similar way, one can prove that the action (5.120)
is independent of the parameters of finite  rota-
tions of the vev constants,

(5.125)

where  are  matrices. As a result, the action
(5.120) is independent of any particular choice of the

vacuum , . Indeed, let us assume, without loss
of generality, that . Then, using the coset

 transformations with a constant

 doublet as parameters, one can cast  in the
form . The constant  can be made real
by exploiting the residual  transformation (a com-
bination of the  transformations and those of 
from the denominator of ).
Finally, it can be rescaled to any non-zero value, keep-
ing in mind that the action is independent of the res-
calings of the vev constants.

5.6. Component Structure

5.6.1.  term. To derive this term from the
effective action (5.82), it suffices to consider only con-
stant Maxwell and scalar fields, omitting all other
components in (5.25),

(5.126)

Substituting these superfields into (5.82), we integrate
over the Grassmann variables and obtain

(5.127)

Here we used the series expansion (5.83) for the func-
tion  with the coefficients given by (5.101). In this
subsection we assume  for simplicity and use
the notation  , .

In (5.127), we have to calculate the harmonic inte-
grals. According to [45], the definition of harmonic
integration over the  harmonic variables is

(5.128)

From this definition one can derive the following sim-
ple relations

(5.129)

All these integrals appear as particular cases of the
general formula

(5.130)
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Here both  and  denote symmetrization of the indices. Contracting this expression with vev constants ,
 and with the scalar fields , , we find

(5.131)

After some combinatorics, this expression can be rewritten in the following useful form

(5.132)

Now we represent (5.127) as a sum of two terms,

(5.133)

where
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The reason for this separation is that the monomials
with  are in , while those with  are in T2.

Therefore, for each of these two terms we can apply
the equation (5.132) for the harmonic integrals,

(5.135)

Changing the order of summation, these terms can be rewritten as

(5.136)

Putting these two expressions together, we find

(5.137)

As a result, the F4/X4 term in the effective action reads

(5.138)

This expression is explicitly scale and  invariant,
as expected.
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It is a highly non-trivial and remarkable phenome-
non that the vev constants  and the shifted scalars 
have combined into the initial scalar fields , (5.77),
after doing the Grassmann and harmonic integrals
which is a rather involved procedure in its own. This
confirms the independence of the action (5.82) of any
particular choice of the vacua, the fact that has been
proved in the previous section.

Note that (5.138) also respects hidden
 invariance, with the 

transformations acting as

(5.139)

where  comprise 6 corresponding group parameters.
This is an indication that the superfield effective
action (5.82), besides the superconformal 

symmetry, enjoys on shell the SU(4) symmetry, and
hence, the superconformal  symmetry as a
closure of these two symmetries.

5.6.2. Wess–Zumino term. To single out the Wess–
Zumino term, it is enough to keep only scalar fields in
the superfields (5.25),

(5.140)

We substitute these superfields into the action (5.82) and
integrate there over the Grassmann variables, keeping
only those terms which contain four derivatives con-
tracted with the antisymmetric -symbol,

(5.141)

To compare this expression with the standard expres-
sion (2.13) for Wess–Zumino term,16 it is necessary to
compute the harmonic integrals and to sum up the
series. Unfortunately, it is very difficult to find the
explicit expression for the integral

(5.142)

in terms of (anti)symmetrized irreducible combina-
tions of the delta-symbols. Therefore, here we restrict
our consideration only to the lowest terms in (5.141),
namely,

(5.143)

The corresponding harmonic integral is quite easy
to do,

(5.144)

Then it is straightforward to see that only the first
term in the r.h.s. of (5.144) contributes to (5.143),
while all other terms either vanish after contracting the

indices, or form total derivatives. As the result,
Eq. (5.143) can be rewritten as

(5.145)

To compare (5.145) with (3.44), we represent the
latter as a series expansion over the vevs
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Here the fields  are related with  as in (5.77) and
we assumed that .
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second line in (5.146)
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Up to total derivatives, the following identity holds

(5.148)

This identity allows us to bring the action (5.147) to
the form

(5.149)

This expression coincides with (5.145) under the
choice

(5.150)

This proves that the action (5.82) contains the Wess–
Zumino term (3.44).

6. LOW-ENERGY EFFECTIVE ACTION 
IN   HARMONIC SUPERSPACE

The  harmonic variables were introduced
for the first time in [71]. Later they were used in [72]
to formulate a superparticle model in  harmonic
superspace17 and to study the  SYM theory with
central charge [76]. The underlying harmonic super-
space proved very efficient for the construction of the

 SYM low-energy effective action, as was shown
in [26]. In this section we review the basic results of the
latter work.

6.1.  Harmonic Superspace

The standard  superspace is parametrized by
the coordinates (4.1), where the indices 
correspond to the  R-symmetry group. The
covariant spinor derivatives  and  in this super-
space have the form (4.4) and obey the commutation
relations (4.5). The basic idea of the  harmonic
superspace is to abandon the manifest  symme-
try and keep only the explicit invariance under

. Then, we extend the standard 
superspace by the harmonic coordinates

 which form the  matrices

(6.1)

17Note that the relativistic particle models in the  and 
harmonic superspaces were studied in [73, 74] and [75], respec-
tively.
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Here  is a constant antisymmetric matrix, .
The canonical choice of this matrix is

(6.2)

though other forms are also possible. Being an invari-
ant tensor of the group ,  can be used to
raise and lower the  indices, e.g.,

(6.3)

where  is the inverse of ,

(6.4)

The group  contains two independent 
subgroups. These subgroups can be chosen in such a
way that the harmonic variables have the following

 charge assignment

(6.5)

With these notations, the defining harmonic con-
straints (6.1) take the form of the orthogonality condi-
tions

(6.6)

and the completeness relations

(6.7)

There by the harmonics can be used to define the
 projections of all objects with  indi-

ces. In particular, for Grassmann coordinates , 
and covariant spinor derivatives ,  we have

(6.8)

Among the anticommutators of the derivatives  and
, only the following ones are non-trivial
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Associated with the harmonic variables are the
-covariant harmonic derivatives defined as

(6.10)

It is easy to check that they obey the commutation
relations of the Lie algebra . In particular, the
operators  and  are the generators of the two 
subgroups, and they count the corresponding 
charges

(6.11)

They appear on the right-hand sides of the appropriate
commutators

(6.12)
It is also easy to check that any operators from the set

 commute with those from the set

. Thus, these sets form two inde-
pendent mutually commuting  subalgebras in the
full  algebra of the harmonic derivatives.

The harmonic variables and the matrix  reveal the
following complex conjugation properties

(6.13)

As was already mentioned earlier, the conventional
complex conjugation is not too useful in the harmonic
superspace, since it does not allow to ensure reality for
the analytic subspaces of the full superspace. In the
harmonic superspace approach, it is customary to use
the generalized -conjugation which, in the present
case, is defined to act on the harmonics by the rules

(6.14)

The transformations of the Grassmann variables
and covariant spinor derivatives under this conjuga-
tion read

(6.15)

  harmonic superspace with the coor-
dinates  contains several analytic sub-
spaces with 8 (out of the total 16) Grassmann coordi-
nates. One of these subspaces is parametrized by the
set of coordinates

(6.16)
where

(6.17)

In the analytic basis , the following
Grassmann derivatives become short,

(6.18)

The harmonic derivatives (6.10) in the analytic
basis acquire the form
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It is interesting to note that the operators  and
 in the analytic basis do not involve terms with

the  derivatives.
Note also that the analytic subspace (6.16) is closed

under the -conjugation defined in (6.14) and (6.15).

6.2.  SYM Constraints 
in the  Harmonic Superspace

Within the standard geometric approach, the gauge
theory is introduced through adding gauge connec-
tions to the superspace derivatives, as in eq. (4.38).
The  SYM constraints have the same form as in
the  case (5.19), but the indices  take now the
values . In the abelian case, these constraints
imply the following Bianchi identities

(6.20a)

(6.20b)

Besides this, the  superfield strengths
 should be subject to the reality condition

which is a superfield counterpart of (2.1):

(6.21)

The constraints (6.20) and (6.21) can be rewritten
in  harmonic superspaces based on different
cosets of the  group [68, 77, 78]. The aim of the
present subsection is to rewrite them in the 
harmonic superspace introduced in the previous sub-
section.

Given the  superfield strength , we can
project it on the harmonics:

(6.22)

Recall that the harmonic variables have the -
charge assignment indicated in Eq. (6.5). Then, the
corresponding charges of  are

(6.23)

where  and  are two different uncharged projec-
tions

(6.24)

Let us examine the superfield .
By construction, this superfield obeys the following
equations with the harmonic derivatives (6.10)

(6.25a)

(6.25b)

The equations (6.20b) imply certain analyticity prop-
erties for 

(6.26)

Eq. (6.21) means that  is real under the -conjuga-
tion (6.14):

(6.27)

In a similar way one can find the equations for all
other superfield strengths (6.23), see [72] for details.

It is instructive to consider the equations (6.25) and
(6.26) in the analytic basis. As follows from (6.18), the
constraints (6.26) are automatically solved by an arbi-
trary real analytic 

(6.28)

The equations (6.25a) are not dynamical, since the
harmonic derivatives  and  in the analytic
coordinates do not contain , see (6.19). These
equations serve to eliminate auxiliary fields in the
component field expansion of , but they do not
impose any constraint on the physical components.
Only eq. (6.25b) is dynamical: It leads to the standard
free equations of motion for physical components in

. The solution of the total set of equations (6.25)–
(6.27) is given by the following component field
expansions:
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(6.29c)

Here, the component fields satisfy the free equations
of motion

(6.30)

All component fields in (6.29) depend on  defined
in (6.17). These fields are subject to the reality con-
ditions

(6.31)

Recall that the group  is locally isomorphic
to . For computational reasons, it is useful to
express  in terms of  harmonic variables.
Recall also that the representation  of

 is given by the antisymmetric -trace-
less  matrix. The corresponding Clebsch–Gordan
coefficients are gamma matrices , with 
of  and  of , such that

(6.32)

Using the bilinear combinations of
 harmonics appearing in (6.29b),

we define
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These objects have definite  charges, but
they do not form an  matrix on their own
because their non-zero products are
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The correct definition of  harmonics  is pro-
vided by the formulas
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These harmonics are real, , and obey the
needed  relations
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The integration over  harmonic variables is
defined by
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Two basic harmonic integrals are
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A small amount of combinatorics yields the following
generalization of these integrals
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The gamma matrices defined in (6.32) can also be
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Taking into account the above redefinition of the sca-
lars, we rewrite the bosonic part of the superfield strength
(6.29b) in terms of  harmonic variables as

(6.41)

We will use this form of the superfield strength in sub-
section 6.4 for studying the bosonic component struc-
ture of the low-energy effective action in  SYM
theory.

6.3. Scale Invariant Low-Energy Effective Action

In general, the four-derivative part of the  SYM
low-energy effective action can be represented by the
following functional in the  superspace

(6.42)

where  is the measure of integration over the ana-
lytic subspace with the coordinates (6.16). We assume
that this measure is defined so that

(6.43)

and the integration over the harmonic variables is
defined by the standard rules

(6.44)

As is seen from (6.43), the analytic measure is
uncharged and dimensionless. Effectively, it contains
eight covariant spinor derivatives which produce four
space-time derivatives on the component fields.
Hence, all the space-time derivatives in (6.42) are
already hidden in the superspace measure and the
function  should contain neither space-time,
nor covariant spinor derivatives of the superfield
strength . This is very similar to the situation with
the effective action in the  and  harmonic
superspaces considered in the previous sections.

Now we implement the requirement of scale
invariance of the effective action . The function

 should be dimensionless, since the analytic
measure (6.43) has the dimension zero, but the super-
field strength  has the dimension one. Thus, we are
led to introduce a parameter , such that  is
dimensionless, and to choose

(6.45)

Since the dependence on  must disappear upon
doing the integration over superspace, the function 
is uniquely determined to be

(6.46)

where  is some constant coefficient. Rescaling 
amounts to shifting  by a constant, which yields zero
under the  integral.

We conclude that the four-derivative part of the
SYM effective action on the Coulomb branch in

  harmonic superspace has the following
simple unique form

(6.47)

We will show that this action contains the  term
(2.11), as well as the Wess–Zumino term (3.14). This
will allow us to fix the coefficient .

6.4. Component Structure

6.4.1.  term. In order to identify the 
term (2.11) it is sufficient to consider the bosonic part
of the superfield strengthh  (6.29b). Recall that it
can be rewritten through the  harmonic vari-
ables, see (6.41). Hence, for deriving the  term
we substitute (6.41) into (6.47) and replace the inte-
gration measure  by ,

(6.48)

Moreover, it suffices to consider  with constant
scalar fields  and . Then only the first line in (6.41)
survives. Substituting this simplified expression for

 into the action (6.48) and integrating there over
’s by the rule (6.43), we find

(6.49)
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where  stands for the n’th derivative of  with
respect to its argument. To compute the harmonic
integral, we expand  in the Taylor series,

(6.50)

Applying (6.39) to each term in this series, we obtain

(6.51)

For the function  defined in (6.46), we obtain

(6.52)

Substituting this expression into (6.51) and summing
up the series, we find

(6.53)

This precisely matches with (2.11), provided that we
identify  and set

(6.54)

Thus, the superfield action (6.47) contains the 
term (2.11).

6.4.2. Wess–Zumino term. Recall that the Wess–
Zumino term (3.14) depends only on the scalar fields
and their derivatives. Hence, for singling out this term
in the component field representation of (6.47) it is
enough to use the same superfield expression (6.48),
but in the superfield (6.41) we now need to keep only
the scalar fields. Then, performing integration over ’s
by the rule (6.43), we find

(6.55)

where ellipsis stand for other component fields in
(6.47).

To extract the Wess–Zumino term from (6.55), we
point out that the Levi–Civita tensor  can arise
only from the cyclic contraction of the spinor indices

on four -derivatives ’s, recall (4.97). In addition, if
two ’s act on the same object, no contribution to the
Wess–Zumino term appears, since  van-
ishes. Therefore, only the first integral in (6.55) can
contribute, and we find

(6.56)

Once again, using the power series expansion (6.50)
and computing the harmonic integral for each term in
the series with the help of (6.39), we obtain

(6.57)

Substituting (6.52) into (6.57) and summing up the
series, we eventually find

(6.58)
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This perfectly matches with (3.14), (3.17) for ,
provided that we once again identify  and take

 as in (6.54).

7. LOW-ENERGY EFFECTIVE ACTION 
IN   HARMONIC 

SUPERSPACE
In section 3 we discussed various forms of the

Wess–Zumino term in the  SYM effective
action and showed that there exist four different repre-
sentations of this term which are associated with four
maximal subgroups of  listed in (3.45). In the
previous sections we presented three different super-
space formulations of the  SYM low-energy
effective action which correspond to three different
forms of the Wess–Zumino term. Namely, the 
harmonic superspace gives the Wess–Zumino term in
the  covariant form, the  har-
monic superspace corresponds to the 
covariant form of the Wess–Zumino term, while the

 superspace with  harmonic variables
gives rise to the Wess–Zumino term with manifest

. The last option in the list (3.45) is the group
 which is locally isomorphic to
. In the present section we will show

that this case is naturally reproduced within the for-
mulation of the low-energy effective action in the

 superspace equipped with  har-
monic variables. This formulation was developed
in [25].

7.1. bi-Harmonic Superspace

In the present section we will consider the 
harmonic superspace which is based on the harmonic
variables for the maximal subgroup  of

. In [25] it was christened the bi-harmonic
 superspace, by analogy with the earlier works,

where this kind of harmonic variables appeared
[79‒85].

The basic idea is to give up the manifest 
symmetry of  SYM theory and use a superspace
formulation which keeps manifest only the maximal

 subgroup of  and employs two
independent sets of  harmonic variables for this
subgroup.18 In this section, we change our conven-
tions for the indices: The  indices will be
denoted by capital letters I, J, K, …, while the indices

of the two SU(2)’s will be represented by i, j, k, … and
, respectively. Then, every  index  is

replaced by a pair of  indices 
(7.1)

For instance, the Grassmann variables  and

 are now labeled as  and , respec-
tively. The  indices are raised and lowered by the
standard rules, e.g.

(7.2)
In these new notations, the covariant spinor deriva-
tives are represented as

(7.3)

They obey the anti-commutation relation

(7.4)
Now we introduce two sets of  harmonic

variables,  and , with the defining properties

(7.5)

Respectively, we have two sets of the covariant har-
monic derivatives

(7.6)

which generate two mutually commuting  alge-
bras. The operators  and  form  subalgebras in
these two ’s and count the  charges of other
operators:

(7.7)

Having the harmonic variables  and , one can
define the harmonic projections of all objects with

 indices. In particular, the Grassmann
variables are projected as

(7.8)

18In principle, it is possible to define also another type of bi-har-
monic  superspace by reducing  to its

 subgroup and harmonizing both 
groups in this product. The  SYM effective action in such
a superspace is expected to be equivalent to its  super-
space formulation considered in sect. 4.
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Here, the superscripts stand for the U(1) charges.
In what follows, to simplify the subsequent expres-

sions, we will label the  charges by the boldface
capital index I = 1, 2, 3, 4, so that

(7.9)

In this new notation, the harmonic projections of the
covariant spinor derivatives (7.3) are written as

(7.10)

The non-vanishing anticommutation relations
between these projections are

(7.11)

In order to be able to define real structures in har-
monic superspaces, one needs the proper definition of
the generalized conjugation. Recall that in the 
harmonic superspace such a conjugation is given by
the involution (4.18) which is a generalization of the
standard complex conjugation. In the  bi-har-
monic superspace considered here the analogous
operation can be defined in different ways. We postu-
late that the -conjugation acts on the -harmonics by
the same rules (4.18), but on the -harmonics it is
realized as the conventional complex conjugation,

(7.12)

Assuming that all the harmonic-independent objects
behave under this conjugation in the same way as
under the complex conjugation, we can specify the

-conjugation properties of Grassmann variables (7.8)
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By definition, the full  bi-harmonic super-
space is parametrized by the coordinates

(7.14)
This superspace has several analytic subspaces, each
involving eight Grassmann variables out of sixteen
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ones. Every analytic subspace is closed under the full
supersymmetry. All these subspaces were considered
in detail in [25]. Here we will need only one of them,
parametrized by the coordinates

(7.15)
where

(7.16)

It is straightforward to check that this subspace is
closed under the -conjugation (7.12), (7.13).

In the analytic basis involving (7.15) as the coordinate
subset, half of the covariant spinor derivatives (7.10)
become short:

(7.17)

A superfield  is called analytic if it is annihilated
by the following covariant spinor derivatives

(7.18)
The general solution of these constraints is given by

(7.19)
For completeness and for the further use, we give the

expressions of the covariant harmonic derivatives (7.6) in
the analytic basis
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7.2. SYM Constraints 
in bi-Harmonic Superspace

Recall that the  SYM constraints are given in
the abelian case by Eqs. (6.20) and (6.21). With
employing the notations of the present section, they
are rewritten as

(7.21a)

(7.21b)

(7.21c)

Here  is the  superfield strength
with  indices. Representing the  indices as
pairs of the  ones, like in (7.1), we find

(7.22)

so that the superfield strength  is now split into a
pair of symmetric  tensors:  and

. The constraints (7.21a)–(7.21c) can be
readily rewritten in terms of these tensors. In particu-
lar, using the identity

(7.23)

we find that the reality condition (7.21c) is equivalent
to the following reality properties

(7.24)

It is also straightforward to rewrite the constraints
(7.21a) and (7.21b) in terms of the newly introduced
superfield strengths

(7.25a)

(7.25b)

It should be stressed that the equations (7.24), (7.25a)
and (7.25b) are equivalent to the  SYM con-
straints (7.21c), (7.21a) and (7.21b).

Now we introduce the harmonic projections of the
superfields  and :

(7.26)

(7.27)

(7.28)
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According to the conjugation rules (7.12) and (7.24),
these harmonic projections obey the reality properties:

(7.29)

For the goals of the present subsection, we need to
consider only one of these superfields, ; the remain-
ing ones were studied in [25]. In order to find the dif-
ferential constraints for this basic superfield, we are led
to consider contractions of the equations (7.25) with
various combinations of harmonic variables. As a
result, we derive the set of the first-order differential
constraints on 

(7.30)

These equations are easily recognized as the analyti-
city conditions, since the covariant spinor derivatives
appearing in (7.30) become short in the analytic basis,
see (7.17). Thus the general solution of (7.30) is an
arbitrary analytic superfield

(7.31)

It is obvious that there remain many auxiliary fields
in  which should be removed by the other con-
straints also following from (7.25):

(7.32)

These second-order constraints eliminate the unphys-
ical components in , but do not imply any dynami-
cal equations for the physical components. The equa-
tions of motion for the physical components follow
from the relations

(7.33)

In the central basis, these constraints are satisfied for
the superfields (7.26) by construction. However, they
become non-trivial dynamical equations in the ana-
lytic basis, in which the harmonic derivatives involve
the space-time derivatives, see (7.20).

The constraints (7.29), (7.30), (7.32) and (7.33)
completely specify the superfield :

(7.34a)

(7.34b)
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(7.34c)

Here, all the component fields depend on ,
 and  are two triplets of scalar fields,

 are four Weyl spinors and  is the Maxwell field
strength. These fields obey the classical free equations
of motion

(7.35)
No auxiliary fields are present present in  as they all
have been eliminated by the constraints (7.30), (7.32)
and (7.33).

The component field expansion (7.34b) starts with
an arbitrary constant . This constant would have
never appeared, had we started with the component
form of  that solves (7.21a)–(7.21c), defined  by
the rule (7.26) and then passed to analytic coordinates.
Instead, here we postulated  to be defined by the
constraints (7.29), (7.30), (7.32), and (7.33). Finally,
these constraints proved sufficient to properly restrict
the component degrees of freedom, except for the
residual appearance of an extra constant parameter .

We set  equal to zero by requiring that  trans-
forms linearly under the scale transformations with a
constant parameter ,

(7.36)
This requirement is particularly natural for the pur-
poses of the next subsection, where we will construct
the superconformal effective action of  SYM
theory in the bi-harmonic  superspace.

Note that the bosonic part of the superfield
strength (7.34b) involves only a few harmonic mono-
mials, , , , and , , . For
the computational reasons, it is convenient to rewrite
these  monomials in terms of the  har-
monics , ,  and , , ,

(7.37)

where ,  are two copies of  gamma-matrices
with the defining properties

(7.38)
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Using (7.5), (7.25) and (7.38), it is straightforward to
check that the objects (7.37) are real under the usual
complex conjugation and obey the standard properties
of  matrices,

(7.39)

In terms of the -harmonics (7.37), the
bosonic part (7.34b) of the superfield strength  can
be rewritten as

(7.40)

where we have defined the  triplets of the scalars:

(7.41)

7.3. Scale Invariant Low-Energy Effective Action

We will look for the low-energy effective action in
the form of a functional of 

(7.42)

where  is some function of  without deriva-
tives. The integration goes over the analytic super-
space (7.15) with the analytic measure defined as

(7.43)

The integration over harmonic variables  and  is
defined by the same rule (4.32b). We point out that the
function  must have zero  charges, since the
integration measure  of the analytic superspace
(7.15) is uncharged.

Note that the integration measure (7.43) amounts
to eight spinor covariant derivatives, or, equivalently,
to four space-time ones on the component fields.
Therefore, we expect that the action (7.42) with some

 describes the four-derivative term in the 
low-energy effective action, and that this term is the
leading one in the derivative expansion. We will now
determine the function  by requiring scale invari-
ance of the action (7.42), in exactly the same way as we
proceeded in sect. 6.3.
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As the measure dζ is dimensionless, the function
 must also be dimensionless. Recalling that the

mass dimension of  is one, we are forced to intro-
duce a parameter  such that  is dimensionless,
and choose . However, the dependence
on  should disappear after doing the integral over
Grassmann variables. This requirement uniquely fixes
the form of the function ,

(7.44)

with some coefficient . The corresponding low-
energy effective action

(7.45)

is scale invariant. Indeed, rescaling  shifts the inte-
grand in (7.45) by a constant, which gives a zero con-
tribution under the Grassmann integral. Thus, the
requirement of scale invariance fixes the form of the
low-energy effective action. Surprisingly, this form is
very similar to (6.47).

7.4. Component Structure

7.4.1.  term. To find the  term in the
component field expansion of the low-energy effective
action (7.45), it suffices to substitute in it the bosonic
part of the superfield strength  in the form (7.40),

(7.46)

where we have replaced the integration over the 
harmonics by that over the  harmonics. More-

over, we can neglect all terms with derivatives of the
scalar fields in (7.40), since they do not contribute to
the  term,

(7.47)

Substituting (7.47) into (7.46) and integrating there
over the Grassmann variables by the rules (7.43),
we find

(7.48)

Here we have applied the standard identity (4.97) for
the trace of four sigma-matrices. Choosing now the
function  as in (7.44), we expand it in the Taylor
series over ,

(7.49)

Here  stands for the ’th derivative of the function
 with respect to its argument. Next, we substitute

this series into (7.48) and compute the harmonic inte-
gral over , using the rules

(7.50)

As a result, we obtain

(7.51)

It is notable that the series in the first line in (7.51) is
summed up into the concise analytical expression
given in the second line. This allows us to expand the
expression in the second line in (7.51) in a series over

another argument, , and compute the harmonic
integral over , using the same rules (7.50):
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This series can be easily re-summed, and we obtain the
following result

(7.53)

Note that the scalar fields in the denominator appear
in the right -invariant form, and we end up
exactly with the -term in the form (2.11), under
the choice

(7.54)

7.4.2. Wess–Zumino term. To derive the Wess–
Zumino term, we can start from the same superfield
expression (7.46). However, in the expansion (7.40) we
have to omit the Maxwell field strength and keep all
terms with derivatives of scalars:

(7.55)

The terms in the last line do not contribute to the
Wess–Zumino term, as they contain two space-time
derivatives acting on the same scalar. Substituting the
remaining terms into (7.46) and computing the inte-
gral over the Grassmann variables, we find

(7.56)

Re-expressing  as , we apply the trace
formula (4.97) for the sigma-matrices and single out
the term with the antisymmetric -tensor,

(7.57)
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Substituting the power series expansion (7.49) into
(7.57) and computing the integral over the -harmon-
ics by the rules (7.50), we obtain

(7.58)

Next, we expand the integrand in a series over 
and perform the integration over the -harmonics in
a similar way,
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The series can be summed up, and we obtain the fol-
lowing result
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Let us now introduce the normalized scalars,
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which lie on the unit five-sphere, . In
terms of these scalars, the action (7.60) is rewritten as
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Comparing (7.63) with (3.22), we observe the perfect
agreement between the two expressions, provided that
the coefficient  is chosen as in (7.54).

Thus in this section we demonstrated that the
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ponent structure, the  and Wess–Zumino terms
as the necessary ingredients of the  SYM low-
energy effective action. In principle, it is possible to
explicitly compute all other component terms in the
action (7.42) needed to complete these selected bosonic
terms to the full  supersymmetry invariants.

8. CONCLUDING REMARKS
The present review was devoted to the problem of

constructing the low-energy effective action in 
SYM theory, based upon the powerful off- and on-
shell superfield methods of extended supersymmetry.
The consideration was basically concentrated around
the papers [21, 24–26], in which the four-derivative
part of the low-energy effective action in the Coulomb
branch was studied. This part of the effective action
represents the leading quantum correction in the the-
ory. Although it was known for a long time that this
contribution to the effective action is one-loop exact
[12, 13, 32] and does not receive instanton corrections
[34], only some selected terms in the action were stud-
ied before. In particular, in the papers [14–16, 18, 35]
there was considered that part of the  SYM
effective action, which refers to the  vector mul-
tiplet. The derivation of the completely  super-
symmetric extension of these results appeared a quite
non-trivial problem. It was resolved in [21, 24–26],
with making use of different harmonic superspace
approaches. It turned out that the corresponding
superfield effective action can be restored solely on the
symmetry ground, by requiring it to enjoy the 
supersymmetry and/or superconformal 
symmetry. Although only some part of the underlying
supersymmetries can be realized off shell (
supersymmetry in the  harmonic approach and

 supersymmetry in the  harmonic
approach), the on-shell realization of the remaining
part proved quite sufficient to fully fix the superfield
effective actions.

Dine and Seiberg [12] argued that the  term
in the low-energy effective action of  SYM the-
ory is one-loop exact, so that the coefficient in front of
this term is non-renormalized against higher-order
quantum loop corrections. The origin of this non-
renormalizability was clarified in [24]. It is very
important to realize that the  SYM low-energy
effective action contains the Wess–Zumino term [19]
for six scalar fields of the  gauge multiplet. This
Wess-Zumino term is obviously one-loop exact
because it appears in the Coulomb branch as the nec-
essary consequence of the anomaly-matching condi-
tion for the  R-symmetry [20]. Because this
term involves four space-time derivatives of scalars, it
is of the same order as the  term. Thus, these
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two terms are related to each other by  super-
symmetry and are, in fact, different components of the
same superfield expression for the four-derivative part
of the low-energy effective action [24]. This explains
the non-renormalizability of the coefficient in the

 term.

The presence of the potential anomaly of the
 R-symmetry current in  SYM theory

was explicitly demonstrated in [54]. Therefore, the
effective Lagrangian is invariant under  only up
to the total derivative terms. The 
group has four maximal subgroups: ,
SO(4) × SO(2) ~ , SO(3) ×
SO(3) ~  and . Only the
last of these groups is anomalous, while the others are
not. As a consequence, only the first three groups can
appear as the manifest symmetry of the effective action.
As we showed in the present paper, each of these sub-
groups correspond to a particular superspace description
of the  SYM low-energy effective action. In par-
ticular, the  group is manifest in
the  harmonic superspace, the group  is
manifest in the  superspace equipped with

 harmonic variables, while the group
 corresponds to the  bi-harmonic

superspace. The last option  is the R-sym-
metry group of the  harmonic superspace.

Each of the four superspace approaches considered
here has its own specific features. The  har-
monic superspaces with  and 
harmonic variables provide the most elegant descrip-
tion of the  SYM low-energy effective action:
the effective Lagrangian is given simply by the loga-
rithm of the uncharged  superfield strength. All
four-derivative component terms in the low-energy
effective action prove to be encapsulated in this simple
superfield expression.

The effective Lagrangian in the  harmonic
superspace is still simple enough as it is expressed in
terms of elementary functions, but it explicitly involves
the constants  which correspond to the vevs of the
scalars fields . These constants break manifest

 symmetry, although the latter is implicitly real-
ized modulo total derivative terms. This is a manifes-
tation of the fact that the  subgroup of the R-
symmetry group is anomalous in  gauge theory.
An important advantage of the  harmonic
superspace is that, in principle, it provides a way to
realize the maximal number of supersymmetries off
the mass shell owing to the existence of an uncon-
strained superfield formulation of the  SYM
classical action in this superspace [46, 47].
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The  harmonic superspace is the most deeply
elaborated approach among all the superspace
approaches discussed here. In particular, the quantum
perturbation theory is well developed in it [17, 62].
These perturbative methods were applied in [27–29] for
direct computations of the low-energy effective action
in  SYM theory. In principle, this approach
opens the ways to study higher-order quantum correc-
tions to the low-energy effective action in  SYM
theory [86, 87]. However, this issue is very subtle and
below we will only briefly comment on it.

Let us dwell on possible generalizations of the
results reviewed here.

In the present paper we considered only the gauge
group  spontaneously broken down to . It is
rather trivial to generalize it to an arbitrary simple Lie
group  broken down to its maximal abelian subgroup

. For instance, consider the gauge group
 spontaneously broken down to

. The  superfield  in this case is
the diagonal  matrix in the Cartan subalgebra
of ,

(8.1)

with all eigenvalues being distinct,  for .
Then the effective action (6.47) generalizes to this case as

(8.2)

Here  correspond to root subspaces in the
Lie algebra  of the gauge group and the summa-
tion is performed over the positive roots. Taking this
into account, one can immediately write down the
low-energy effective action in  SYM theory for
any other simple gauge group. In the same manner
one can generalize all other superfield actions (4.93),
(5.104) and (7.45) considered in this paper.

Another possible generalization is the study of the
next-to-leading terms in the  SYM low-energy
effective action. Indeed, in this paper we considered
only the four-derivative part of the effective action, the
typical representative of which is the  compo-
nent term. In general, the effective action contains the
terms , , with all their supersymmet-
ric complements. The interest in these terms is moti-
vated by the AdS/CFT conjecture [6, 11, 88], which
predicts that the  SYM low-energy effective
action is related to the D3-brane action in .

2=1

4=1

4=1

(2)SU (1)U

G
H

( )G SU N=
1[ (1)]NH U −= 4=1 W
N N×

( )su N

1 2

1

diag( ) 0
N

N i

i

W W W …W W
=

= , , , = ,∑

i jW W≠ i j≠

2
1 ln

96

i jN

i j

W W
d du

<

−
Γ = − ζ .

Λπ ∑∫

i jW W−
( )su N

4=1

4=1

4 4F X

2 2 2n nF X+ n ∈N

4=1
5

5AdS S×

The latter is described by the following action in the
bosonic sector

(8.3)

where  are six coordinates transverse to the world-
volume of the D3-brane,  is the number of D3-
branes which create the background  geom-
etry and  is the string coupling constant. Upon the
series expansion of the square root of the determinant
in (8.3), one uncovers all terms of the form ,
which are present in the  SYM effective action
as well. In this expansion, the  term is a part of the
abelian  SYM classical action, while the 
term should originate from the low-energy effective
action described in the present paper. After the appro-
priate redefinition of the constants in (8.3), the coeffi-
cients before its  and  terms exactly match
those in the  SYM low-energy effective action.

However, it is hard to match the higher order terms
in these actions. This problem is multi-fold. It is quite
obvious that (8.3) cannot exactly match the 
SYM low-energy effective action in the bosonic sector.
Indeed, the D3-brane action (8.3) involves only the
first space-time derivatives of physical scalars, while
the  SYM low-energy effective action in any
superfield formulation discussed here inevitably con-
tains higher-order derivatives of the scalars. Thus,
these actions can coincide only upon the appropriate
redefinition of fields,

(8.4)

Such a redefinition was worked out to some order in
[89], but in general, it is still a non-trivial issue which
has never been presented in literature in a closed form.
The reason for such a field redefinition was explained
in [90]: the superconformal group  is real-
ized differently on the fields inherent to the field the-
ory and those appearing in the AdS settings.

The problem of higher-order terms in the low-
energy effective action is even more subtle. Different
superspace methods of quantum computations of the
coefficient in the  term used in [86, 87] ( )
and [91] ( ) give different results. This mismatch
is explained [87] by the fact that in distinct superfield
methods different gauges are applied and it is very dif-
ficult to perform higher-loop quantum computations
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in a gauge-independent way. In [92] it was also argued
that the higher-order terms can be found by employing
the quantum-deformed conformal symmetry.

To understand this issue better, it would be inter-
esting to develop the methods of computations of
quantum corrections to the effective action in the

 harmonic superspace. Although the basic prin-
ciples of quantum perturbation theory in this super-
space were formulated in [66], the background field
method has never been worked out in the 
superfield approach. Given the  superfield
background field method, it would be possible to
check the conjecture made in [26] that the 
term does not receive quantum corrections beyond
one loop and the correct value of this coefficient
appears after elimination of all auxiliary fields in the

 effective action (5.104) considered together
with the classical action (5.63) in the abelian case.

It is also tempting to develop alternative superspace
methods for studying classical and quantum aspects of
the  SYM theory. For instance, in the recent
papers [93, 94] the so-called Lorentz harmonic chiral
superspace was proposed for computing certain classes
of correlation functions. It would be very interesting to
apply this approach to the problem of low-energy
effective action in the  SYM theory.

The relation of the  SYM low-energy effec-
tive action to the D3-brane dynamics discussed above
suggests that a similar correspondence can be estab-
lished for supersymmetric gauge theories in space-
times of dimension other than four. In particular, the
low-energy dynamics of multiple M2-branes in M-the-
ory can be understood through the three-dimensional
superconformal gauge theories with  and 
supersymmetries, which are known as the ABJM [95]
and BLG [96–98] theories. In [99] it is conjectured
that the low-energy effective action in the ABJM the-
ory should describe the effective dynamics of single
M2-brane on the  background, in a similar
way as the  SYM low-energy effective action is
related to the D3-brane. In the three-dimensional
case, this conjecture has never been tested. We expect
that the extended superspace methods could be useful
for solving this problem. For the Lagrangians of the
ABJM and BLG theories, the 3D  harmonic
superspace [100] seems to provide the highest number
of off-shell supersymmetries (see also [101] for a
recent discussion). It would be interesting to study the
superfield low-energy effective action in the ABJM
theory.

As the final remark, we point out that the harmonic
superspace methods turned out to be very useful also
in the recent studies of effective actions in higher-
dimensional supersymmetric models [102–107].
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