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1 Introduction

The ultraviolet behavior of extended supersymmetric Yang-Mills (SYM) theories in higher

dimensions (D ≥ 5) represents an exciting subject with the long history [1–5]. In this work

we focus on the 6D SYM theory coupled to hypermultiplets. We formulate the theory

in 6D, N = (1, 0) harmonic superspace [6–12] and develop the corresponding background

superfield method. As the basic topic, we expose the ultraviolet properties of the one-

loop effective action for this theory in the general case when the hypermultiplet lies in an

arbitrary representation of the gauge group. In the particular case of the adjoint represen-

tation, the considered N = (1, 0) SYM - hypermultiplet system amounts to 6D, N = (1, 1)

SYM theory formulated in terms of N = (1, 0) harmonic superfields.

In a recent work [13] we have calculated the divergent part of the one-loop effective

action for the abelian 6D, N = (1, 0) gauge theory, in which the vector (gauge) multiplet

interacts with a hypermultiplet. The basic tools were the background superfield method

and proper time technique appropriately adapted to 6D, N = (1, 0) harmonic superspace.

By explicit calculations we confirmed the general structure of one-loop counterterms which

was analyzed earlier in refs. [1, 14] on the pure symmetry grounds. In the present paper

we generalize this study to the non-abelian case. We consider the 6D, N = (1, 0) model in

which the SYM multiplet interacts with the hypermultiplet in an arbitrary representation

of gauge group, the adjoint and fundamental representations being particular cases. We

extend the background superfield method to this general case of 6D, N = (1, 0) SYM

theory with the hypermultiplet matter. In many aspects, it is similar to the well-developed

background superfield method for 4D,N = 2 SYM theory with hypermultiplets [15–17].

Using the 6D, N = (1, 0) harmonic background superfield method constructed and the

proper time technique, we calculate the divergent part of the one-loop effective action in

the considered 6D, N = (1, 0) model. It should be emphasized that we take into account

the full set of contributions depending on both the background gauge multiplet and the

hypermultiplet. To the best of our knowledge, the explicit calculation of the hypermultiplet-

dependent divergent contributions to effective action of 6D SYM theories has never been

accomplished earlier, and it is the pivotal point of our consideration.
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It is well known that both 6D, N = (1, 0) and 6D, N = (1, 1) SYM theories at one

loop are on-shell finite [1, 14]. For the 6D, N = (1, 0) theory without hypermultiplets

this result is easily recovered from the quantum calculations. The main result of the

present work is the explicit proof of the absence of one-loop logarithmic divergencies in 6D,

N = (1, 1) SYM theory off shell. We demonstrate this by calculating the divergent part of

the one-loop effective action in N = (1, 1) SYM theory formulated in terms of N = (1, 0)

harmonic gauge and hypermultiplet superfields, both in the adjoint representation of the

gauge group [14]. We start with a general 6D, N = (1, 0) SYM - hypermultiplet action and

find the one-loop contributions to the divergent part of the effective action. We demonstrate

that the numerical factors depending on the gauge group and on the representation of the

hypermultiplet vanish in the case when the hypermultiplet is in the adjoint representation

of the gauge group. Hence, for the N = (1, 1) SYM theory we establish the absence of

logarithmic divergencies in the one-loop effective action. The similar phenomenon takes

place in N = 4 SYM theory in four dimensions formulated in terms of N = 2 superfields

(see, e.g., [16, 17]).

It should be pointed out that in a certain sense the off-shell absence of the one-loop

divergencies in that part of the total N = (1, 1) SYM effective action which depends

only on gauge background superfields is an expected result. It is dictated by the formal

structure of this one-loop effective action, in which the contributions from the ghost su-

perfields are canceled by the corresponding contribution from quantum hypermultiplet in

the adjoint representation. Once again, this happens in the full analogy with 4D, N = 4

case [15]. However, taking the background hypermultiplet parts of the one-loop effective

action into account entails a few technical problems. The basic one is that, after making

the background-quantum splitting, we encounter the mixed terms involving the quantum

gauge superfields along with the hypermultiplet ones. In order to diagonalize the action,

we are led to make a non-local shift of hypermultiplet variables [18–20] which induces an

additional background hypermultiplet dependence in the one-loop effective action caused

by the contributions from the quantum gauge multiplet.

The paper is organized as follows. In section 2 we briefly outline the gauge theory in

6D, N = (1, 0) harmonic superspace and fix our 6D notations and conventions. Section 3

presents the harmonic superspace background superfield method for N = (1, 0) SYM the-

ory. In section 4 we perform the direct calculations of the one-loop divergences in the model

under consideration. In section 5 we summarize the results and discuss the problems for

further study.

2 Gauge theory in 6D, N = (1, 0) harmonic superspace

Our consideration in this section (including notations, conventions and terminology) will

closely follow ref. [14].

The 6D,N = (1, 0) gauge covariant derivatives in the “central basis” are defined by

∇M = DM + iAM, (2.1)
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where DM = (DM , D
i
a) are the flat derivatives. Here M = 0, . . . , 5, is the 6D vector index

and a = 1, . . . 4, is the spinorial one. The superfield AM is the gauge superconnection. The

covariant derivatives transform under the gauge group as

∇′M = eiτ∇Me−iτ , τ+ = τ . (2.2)

The fundamental object of 6D,N = (1, 0) SYM theory is revealed after extending the

standard 6D,N = (1, 0) superspace z := (xM , θai ) by SU(2) harmonics u±i , u
+iu−i = 1 , and

singling out, in this extended harmonic 6D,N = (1, 0) superspace (z, u), an analytic sub-

space (ζ, u) containing four independent Grassmann coordinates along with the harmonics

u±i . All geometric quantities of the theory are expressed in terms of the hermitian analytic

gauge connection V ++(ζ, u) = ˜V ++(ζ, u) ,

V ++ = (V ++)ATA , (TA)+ = TA , (2.3)

where the generalized conjugation ˜ is defined in [7] and TA are the generators of the

gauge group.

For simplicity, we will consider only simple gauge groups. In our notation the genera-

tors of the fundamental representation TAf ≡ tA are normalized by the condition tr(tAtB) =
1
2δ
AB. For an arbitrary representation R, which can be in general reducible,

[TA, TB] = ifABCTC , tr (TATB) = T (R)δAB , (TA)m
l(TA)l

n = C(R)m
n. (2.4)

If R is irreducible, we obtain:

C(R)m
n = C2(R)δnm, C2(R) = T (R)

dG
dR

, (2.5)

where C2(R) is the second Casimir for the representation R, dG ≡ δAA is the dimension of

the gauge group, and dR ≡ δmm is the dimension of the irreducible representation R. In the

case when R is a reducible representation, R =
∑

iR(i), we have (in the matrix notation)

T (R) =
∑
i

T (R(i))dR(i)
, C(R) =

∑
i

C2(R(i))I(i) , dR(i)
= tr I(i) , (2.6)

whence

T (R(i)) = C2(R(i))
dR(i)

dG
.

For the adjoint representation the generators are written as (TCAdj)A
B = ifACB. Conse-

quently,

T (Adj) = C2, C(Adj)m
n = C2δ

n
m. (2.7)

The connection V ++ , (2.3), covariantizes the flat analyticity-preserving harmonic

derivative D++:

D++ ⇒ ∇++ = D++ + iV ++ ,

(V ++)′ = −ieiλATA
D++e−iλ

ATA
+ eiλ

ATA
V ++e−iλ

ATA
, (2.8)
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where λA(ζ, u) = ˜λA(ζ, u) is the real gauge group parameter in the “λ-basis”. Another im-

portant object is the non-analytic harmonic connection V −− = (V −−)ATA covariantizing

the flat derivative D−−

D−− ⇒ ∇−− = D−− + iV −− ,

(V −−)′ = −ieiλATA
D−−e−iλ

ATA
+ eiλ

ATA
V −−e−iλ

ATA
. (2.9)

It is not independent and is related to V ++ by the harmonic flatness condition

[∇++,∇−−] = D0 ⇔ D++V −− −D−−V ++ + i[V ++, V −−] = 0 , (2.10)

where D0 is the operator counting the harmonic U(1) charges of the involved superfields.

The formal solution of (2.10) is

V −−(z, u) =

∞∑
n=1

(−i)n+1

∫
du1 . . . dun

V ++(z, u1) . . . V ++(z, un)

(u+u+
1 )(u+

1 u
+
2 ) . . . (u+

n u+)
. (2.11)

Using the zero curvature condition (2.10), one can derive a useful relation between arbitrary

variations of harmonic connections [14]

δV −− =
1

2
(∇−−)2δV ++ − 1

2
∇++(∇−−δV −−) . (2.12)

All the geometric quantities of the theory are expressed in terms of V −−. The covariant

derivatives in the λ-frame can be written as

∇+
a = D+

a , ∇−a = D−a + iA−a , ∇ab = ∂ab + iAab , (2.13)

where superfield connections are determined as

A−a = iD+
a V
−− , Aab =

1

2
D+
a D

+
b V
−− . (2.14)

The covariant derivatives satisfy the algebra

{∇+
a ,∇−b } = 2i∇ab, [∇±c ,∇ab] =

i

2
εabcdW

± d, [∇M ,∇N ] = iFMN , (2.15)

where ∇ab = 1
2(γM )ab∇M and W a± is the covariant superfield strength

W+a = −1

6
εabcdD+

b D
+
c D

+
d V
−− , W−a = ∇−−W+a . (2.16)

We also define the Grassmann-analytic superfield [14]

F++ ≡ 1

4
D+
aW

+a = (D+)4V −− , (2.17)

such that

D+
aW

+b = δbaF
++ , D+

a F
++ = 0 , ∇++F++ = 0 . (2.18)
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It will be used for constructing the background field formalism and counterterms in the

next sections.

The harmonic covariant derivatives ∇±± = D±±+ iV ±± act on the arbitrary analytic

superfields F in an arbitrary representation of the gauge group as

(∇±±F)m =
(
D±±δnm + i(V ±±)C(TC)m

n
)
Fn ≡ (∇±±)m

nFn . (2.19)

If F belongs to the adjoint representation, then the above equation gives

(∇±±F)A =
(
D±±δAB − fACB(V ±±)C

)
FB ≡ (∇±±)ABFB . (2.20)

The superfield action of 6D, N = (1, 0) SYM interacting with a hypermultiplet has

the form

S0[V ++, q+] =
1

f2

∞∑
n=2

(−i)n

n
tr

∫
d14z du1 . . . dun

V ++(z, u1) . . . V ++(z, un)

(u+
1 u

+
2 ) . . . (u+

n u
+
1 )

−
∫
dζ(−4)du q̃+m(∇++)m

nq+
n , (2.21)

where f is a dimensionful coupling constant ([f ] = −1). In the SYM part of this action

V ++ = V ++AtA with tA being generators of the fundamental representation, while in the

hypermultiplet part of the action (V ++)m
n = V ++A(TA)m

n, where TA are generators of

the representation for the hypermultiplet. The action (2.21) is invariant under the gauge

transformation (2.8) and

(q+
m)′ = (eiλ

ATA
)m

nq+
n . (2.22)

Classical equations of motion following from the action (2.21) read

δS

δ(V ++)A
= 0 ⇒ 1

f2

(
F++

)A
+ iq̃+m

(
TA
)
m
n q+

n = 0 , (2.23)

δS

δq̃+m
= 0 ⇒ (∇++)m

nq+
n = 0 . (2.24)

The ˜ - reality of eq. (2.23) (as well as of the action (2.21)) is guaranteed by the conjugation

rules ˜̃q+ = −q+ , F̃++ = F++ [7].

3 Background field formalism for N = (1, 0) SYM theory

In the present paper we generalize the background field method developed in [13] for the

abelian case to the non-abelian model (2.21). The construction of gauge invariant effective

action in the model under consideration is very similar to that in 4D,N = 2 supersymmetric

gauge theories [15, 21] (see also the reviews [16, 17]).1

One splits the superfields V ++, q+ into the sum of the “background” superfields

V ++, Q+ and the “quantum” ones v++, q+ ,

V ++ → V ++ + fv++, q+ → Q+ + q+ , (3.1)

1The background field method can be also constructed in the ordinary N = 2 superspace [22, 23].

However, this approach encounters a problem of an infinite number of the Faddeev-Popov ghosts.
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and then expand the action in a power series in quantum fields. As a result, we obtain

the classical action as a functional of background superfields and quantum superfields.

The original infinitesimal gauge transformations are realized in two different ways: as the

background transformations:

δV ++ = −∇++λ, δv++ = −i[v++, λ] , (3.2)

and as the quantum transformations2

δV ++ = 0, δv++ = −∇++λ− i[v++, λ]. (3.3)

To construct the gauge invariant effective action, we need to impose the gauge-fixing

conditions only on quantum superfields. We introduce the gauge-fixing function in the full

analogy with 4D case [15–17]

F (+4)
τ = D++v++

τ = e−ib(∇++v++)eib = e−ibF (+4)eib , (3.4)

where b(z) is a background-dependent gauge bridge superfield and τ means τ -frame (see,

e.g., [7]). We consider the non-abelian gauge theory, where the gauge-fixing function (3.4)

is background-dependent. The gauge-fixing function transforms according to the law

δF (+4)
τ = −e−ib{∇++(∇++λ+ i[v++, λ])}eib (3.5)

under the quantum transformations (3.3). Eq. (3.5) leads to the Faddeev-Popov determi-

nant

∆FP [v++, V ++] = Det(∇++(∇++ + iv++)) .

Following the standard procedure, we can obtain a path-integral representation for

∆FP [v++, V ++] by introducing two real analytic fermionic ghosts b and c, both in the

adjoint representation of the gauge group. The corresponding ghost action is

SFP [b, c, v++, V ++] = tr

∫
dζ(−4)du b∇++(∇++c + i[v++, c]). (3.6)

As a result, we arrive at the effective action Γ[V ++, Q+] in the form

eiΓ[V ++,Q+] =

∫
Dv++Dq+DbDc δ[F (+4)− f (+4)] ei

{
S0[V +++fv++,Q++q+]+SFP [b,c,v++,V ++]

}
,

(3.7)

where f (+4)(ζ, u) is an external Lie-algebra valued analytic superfield which is independent

of V ++, and δ[F (+4) − f (+4)] is the functional analytic delta-function. As the next step,

we average the right-hand side in eq. (3.7) with the weight

∆[V ++] exp

{
i

2
tr

∫
d14zdu1du2f

(+4)
τ (z, u1)

(u−1 u
−
2 )

(u+
1 u

+
2 )3

f (+4)
τ (z, u2)

}
. (3.8)

2We denote the parameters of these transformations by the same letter, hoping that this will not lead

to confusion.
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Following the Faddeev-Popov method, the functional ∆[V ++] is determined from the equa-

tion

1 = ∆[V ++]

∫
Df (+4) exp

{
i

2
tr

∫
d14zdu1du2 f

(+4)
τ (z, u1)

(u−1 u
−
2 )

(u+
1 u

+
2 )3

f (+4)
τ (z, u2)

}
. (3.9)

Passing in this expression to the analytic subspace, we obtain

∆−1[V ++] =

∫
Df (+4) exp

{
i

2
tr

∫
dζ

(−4)
1 dζ

(−4)
2 du1du2 f

(+4)(ζ1, u1)A(1, 2)f (+4)(ζ2, u2)

}
= Det−1/2A . (3.10)

Here, like in 4D case [15–17], we have introduced the special background-dependent oper-

ator A, which arose when we passed from (3.9) to (3.10). This operator depends on the

background field through a background-dependent bridge b(z) and has the form

A(1, 2) =
(u−1 u

−
2 )

(u+
1 u

+
2 )3

(D+
1 )4(D+

2 )4
[
(eib1e−ib2)Adjδ

14(z1 − z2)
]
, (3.11)

where

(eib1e−ib2)Adjf
(+4)(ζ2, u2) = eib1e−ib2f (+4)(ζ2, u2)eib2e−ib1 . (3.12)

We note that operator A(1, 2) acts in the space of analytic superfields, which take

values in the Lie algebra of the gauge group. Thus, we have derived the following formal

expression for the functional ∆[V ++]

∆[V ++] = Det1/2A . (3.13)

To calculate the functional determinant for the operator A, we do not need the explicit

form for it. We represent the determinant for this operator through a functional integral

over analytic superfields,

Det−1A =

∫
Dχ(+4)Dρ(+4) exp

{
itr

∫
dζ

(−4)
1 du1dζ

(−4)
2 du2 χ

(+4)(1)A(1, 2)ρ(+4)(2)

}
,

(3.14)

and, as in 4D case, make use of the following substitution of the functional variables

ρ(+4) = (∇++)2σ, Det

(
δρ(+4)

δσ

)
= Det(∇++)2 . (3.15)

Then we find (see a similar calculation in [15–17])

Det−1A = Det(∇++)2

∫
Dχ(+4)Dσ exp

{
itr

∫
dζ(−4)duχ(+4)

_
�λ σ

}
. (3.16)

Here, the operator
_
�λ is the covariant d’Alembertian. Hereafter we use the formal definition

for this covariant d’Alembertian
_
�λ in λ-frame

_
�λ=

1

2
(D+)4(∇−−)2 . (3.17)

– 7 –
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It is possible to present this operator as a sum of two terms,

_
�λ=

_
� +X, (3.18)

where

_
� = ηMN∇M∇N +W+a∇−a + F++∇−− − 1

2
(∇−−F++) , (3.19)

X =
(
W−a −W+a∇−− + 2i∇ab∇−b

)
D+
a +

(
i∇ab∇−− − 1

4
εabcd∇−c ∇−d

)
D+
a D

+
b

−∇−−∇−d (D+)3d +
1

2
(∇−−)2(D+)4. (3.20)

In this equation we use the notation

(D+)3d ≡ −1

6
εdabcD+

a D
+
b D

+
c ; ∇ab ≡ 1

2
εabcd∇cd. (3.21)

The presentation (3.18) is convenient, because the operator X gives vanishing contribution

acting on the analytic superfields. Therefore, when acting on the analytic superfields, the

operator
_
�λ is reduced to the operator

_
�.

In every case we should determine the space of superfields on which the operator (3.17)

acts, namely, the harmonic U(1) charge of superfield and the representation of gauge group

to which it belongs. Using eqs. (3.13)–(3.16), one obtains

∆[V ++] = Det−1/2(∇++)2Det1/2
_
� . (3.22)

Finally, we can represent the functional determinant ∆[V ++] as the functional integral over

bosonic real analytic superfield ϕ taking values in the Lie algebra of the gauge group,

∆[V ++] = Det1/2
_
�

∫
Dϕ exp

{
iSNK [ϕ, V ++]

}
, (3.23)

SNK =
1

2
tr

∫
dζ(−4)duϕ(∇++)2ϕ . (3.24)

Like in 4D case, ϕ is the Nielsen-Kallosh ghost. As a result, we see that the 6D, N = (1, 0)

SYM theory, in the close analogy with 4D, N = 2 SYM, in the background field approach

is described by the three ghosts: two fermionic ghosts b and c together with the single

bosonic ghost ϕ.

According to (3.4), the gauge-fixing part of the quantum field action has the form

SGF [v++, V ++] = −1

2
tr

∫
d14zdu1du2

v++
τ (1)v++

τ (2)

(u+
1 u

+
2 )2

+
1

4
tr

∫
d14zdu v++

τ (D−−)2v++
τ .

(3.25)

The action (3.25) depends on the background field V ++ through the background gauge

bridge b, v++
τ = e−ibv++eib.

Summarizing, one can write the final expression for the effective action (3.7) as follows

eiΓ[V ++,Q+] = Det1/2
_
�

∫
Dv++Dq+DbDcDϕ eiSquant[v++,q+,b,c,ϕ,V ++,Q+]. (3.26)

– 8 –
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Here, the quantum action Squant has the structure

Squant = S0[V ++ + fv++, Q+ + q+] + SGF [v++, V ++]

+ SFP [b, c, v++, V ++] + SNK [ϕ, V ++]. (3.27)

In the one-loop approximation, the first quantum correction to the classical action,

Γ(1)[V ++, Q+] , is given by the following path integral [15, 21]:

eiΓ
(1)[V ++,Q+] = Det1/2

_
�

∫
Dv++Dq+DbDcDϕ eiS2[v++,q+,b,c,ϕ,V ++,Q+] . (3.28)

In this expression, the full quadratic action S2 is the sum of three terms. These are

the classical action (2.21) in which the background-quantum splitting was performed, the

gauge-fixing action (3.25) and the actions for the ghost superfields (3.6) and (3.23):

S2 =
1

2

∫
dζ(−4)du v++A

_
�
AB

v++B +

∫
dζ(−4)dubA(∇++)2ABcB

+
1

2

∫
dζ(−4)duϕA(∇++)2ABϕB −

∫
dζ(−4)du q̃+m(∇++)m

nq+
n

−
∫
dζ(−4)du

{
Q̃+mif(v++)C(TC)m

nq+
n + q̃+mif(v++)C(TC)m

nQ+
n

}
. (3.29)

Hereafter, we write all the group indices explicitly. The operator
_
� (3.17) transforms the

analytic superfields v++ into analytic superfields and, according to (2.20), has the following

structure

_
�
AB

=
1

2
(D+)4

{
(D−−)2δAB − 2fACB(V −−)CD−− − fACB(D−−V −−)C

+fACEfEDB(V −−)C(V −−)D
}
. (3.30)

The Green function, associated with (3.30), i.e. GAB(2,2)(z1, u1|z2, u2) =

i〈0|T(v++
1 )A(v++

2 )B|0〉 , is given by the expression which is similar to that of the

4D,N = 2 case [7]

GABτ (2,2) (z1, u1|z2, u2) = −
(
_
�
−1

1

)AB
(∇+

1 )4δ14(z1 − z2)δ(−2,2)(u1, u2) . (3.31)

The action S2 (3.29) contains terms with a mixture of quantum superfields v++ and

q+. For further use, we diagonalize this quadratic form by means of the special substitution

of the quantum hypermultiplet variables3 in the path integral (3.28), such that it removes

the mixed terms,

q+
n (1) = h+

n (1)− f
∫
dζ

(−4)
2 du2G(1,1)(1|2)n

p iv++C(2) (TC)p
lQ+

l (2) , (3.32)

with h+
n being a set of new independent quantum superfields. It is evident that

the Jacobian of the variable change (3.32) is unity. Here Gτ(1,1)(ζ1, u1|ζ2, u2)m
n =

3A similar substitution was used in [18, 21] and [19] for computing one- and two-loop effective actions

in supersymmetric theories, and in [20] for non-local redefinition of fields in non-supersymmetric QED.
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i〈0|Tq+
m(ζ1, u1)q̃+n(ζ2, u2)|0〉 is the superfield hypermultiplet Green function in the τ -frame.

This Green function is analytic with respect to both its arguments and it satisfies

the equation

(∇++
1 )m

pGλ (1,1)(1|2)p
n = δnmδ

(3,1)
A (1|2) . (3.33)

In τ -frame the Green function can be written in the form

Gτ (1,1)(1|2)m
n =

(
_
�
−1

1

)
m

n
(
∇+

1

)4 (∇+
2

)4 δ14(z1 − z2)

(u+
1 u

+
2 )3

. (3.34)

Here δ
(3,1)
A (1|2) is the covariantly-analytic delta-function and (

_
�)m

n is the covariantly-

analytic d’Alembertian (3.17) [25] which acts on analytic superfields q+
m, in accordance

with (2.19), as follows

_
�m

n =
1

2
(D+)4

{
(D−−)2δnm + 2i(V −−)C(TC)m

nD−− + i(D−−V −−)C(TC)m
n

−(V −−)C(V −−)D(TCTD)m
n
}
. (3.35)

Note that the covariant d’Alembertian transforms the analytic superfields into analytic

superfields.

After performing the shift (3.32), the quadratic part of the action S2 (3.29) splits into

few terms, each being bilinear in quantum superfields:

S2 =
1

2

∫
dζ

(−4)
1 dζ

(−4)
2 v++A

1

{
_
�
AB

δ
(3,1)
A (1|2)− 2f2Q̃+m

1

(
TAG(1,1)T

B
)
m
nQ+

n2

}
v++B

2

+

∫
dζ(−4)dubA(∇++)2ABcB +

1

2

∫
dζ(−4)duϕA(∇++)2ABϕB

−
∫
dζ(−4)du h̃+m(∇++)m

nh+
n . (3.36)

Starting from the action (3.36) one can construct the one-loop quantum correction

Γ(1)[V ++, Q+] to the classical action (2.21), which has the following formal expression

Γ[V ++, Q] =
i

2
Tr ln

{
_
�
AB
−2f2Q̃+m

(
TAG(1,1)T

B
)
m
nQ+

n

}
− i

2
Tr ln

_
�

− iTr ln(∇++)2
Adj +

i

2
Tr ln(∇++)2

Adj + iTr ln∇++
R , (3.37)

where subscripts Adj and R mean that the corresponding operators are taken in the adjoint

representation and that of the hypermultiplet.

The expression (3.37) is the starting point for studying the one-loop effective action in

the model (2.21). In the next section we will calculate the divergent part of (3.37). The

whole dependence on the background hypermultiplet is contained in the first term of the

first line of eq. (3.37).

We also note that the possible structure of the one-loop divergences in the model under

consideration was discussed in [14] and [13].
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4 Divergent part of the one-loop effective action

The (F++)2 part of the effective action depends only on the background vector multiplet

V ++ and is defined by the last three terms in eq. (3.37). More precisely,

Γ
(1)
F 2 [V ++] = −iTr ln(∇++)2

Adj +
i

2
Tr ln(∇++)2

Adj + iTr ln∇++
R

= −iTr ln∇++
Adj + iTr ln∇++

R . (4.1)

Let us vary the expression (4.1) with respect to the background gauge multiplet (V ++)A ,

keeping in mind the explicit expressions for the covariant harmonic derivatives (2.20)

and (2.19),

δΓ
(1)
F 2 [V ++] = iTr fACB δ(V ++)C GBA(1,1) − Tr (TC)m

n δ(V ++)C (G(1,1))n
m . (4.2)

Here (G(1,1))n
m is the superfield Green function (3.34) for operator (∇++)n

m (2.19)

acting on the superfields in the representation R of gauge group to which the hy-

permultiplet belongs. Also we denoted GBA(1,1) the Green function for the operator

(∇++)BA (2.20), which acts on superfields in adjoint representation. The Green function

GBA(1,1) has the structure similar to (3.34), but it is constructed in terms of the covariant

d’Alembertian (3.30), (3.18)–(3.20).

The calculation of (4.1) was discussed in details in recent works [13, 24, 26]. It is

similar for abelian and non-abelian cases. Our aim is to calculate the divergent part of the

effective action (4.1). In the proper-time regularization scheme [25, 26], the divergences are

associated with the pole terms of the form 1
ε , ε→ 0, with d = 6− ε. Taking into account

the expression for the Green functions (3.34), we obtain

δΓ
(1)
F 2 [V ++] = i

∫
dζ

(−4)
1 du1δ(V

++
1 )C

{
fACBGBA(1,1)(1|2) + i(TC)m

nG(1,1)(1|2)n
m
} ∣∣∣2=1

div
.

= −i
∫
dζ

(−4)
1 du1δ(V

++
1 )C

∫ ∞
0

d(is)(isµ2)
ε
2 (4.3)

×
{
fACB(eis

_
�1)BA + i(TC)m

n(eis
_
�1)n

m

}
(∇+

1 )4(∇+
2 )4 δ

14(z1 − z2)

(u+
1 u

+
2 )3

∣∣∣2=1

div
.

Here s is the proper-time parameter and µ is an arbitrary regularization parameter of

mass dimension. Like in the four- and five-dimensional cases [27–31], one makes use of the

identity

(∇+
1 )4(∇+

2 )4 δ
14(z1 − z2)

(u+
1 u

+
2 )3

=(∇+
1 )4

{
(u+

1 u
+
2 )(∇−1 )4−(u−1 u

+
2 )Ω−−1 +

_
�1

(u−1 u
+
2 )2

(u+
1 u

+
2 )

}
δ14(z1−z2),

(4.4)

where the operator
_
� is given by eq. (3.19), and we have introduced the notation

Ω−− = i∇ab∇−a∇−b −W
−a∇−a +

1

4
(∇−aW−a) . (4.5)

To find a part of eq. (4.3) corresponding to the first term in eq. (4.4), we use the identity

eis
_
�1(u+

1 u
+
2 ) = eis

_
�1(u+

1 u
+
2 )e−is

_
�1eis

_
�1 (4.6)
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and the well-known equation

eABe−A = B +
1

1!
[A,B] +

1

2!
[A, [A,B]] + . . . (4.7)

This gives the following terms which are relevant for calculating the divergent part of the

effective action:

eis
_
�1(u+

1 u
+
2 )e−is

_
�1

∣∣∣2=1

div
= −(is)2

2

(
∇M∇MF++ + F++(∇−−F++)− 1

2
[∇−−F++, F++]

+W+a(∇−a F++)
)

− 2(is)3

3
∇M∇NF++∂M∂N + . . . , (4.8)

where dots denote terms which do not contribute to the one-loop divergences. Adding the

relevant terms coming from the expansion of the last factor in eq. (4.6) we obtain

eis
_
�1(u+

1 u
+
2 )
∣∣∣2=1

div
= −(is)2

2

(
∇M∇MF++ − 1

2
[∇−−F++, F++] +W+a(∇−a F++)

)
− 2(is)3

3
∇M∇NF++∂M∂N + . . . (4.9)

In calculating a divergent part of eq. (4.3) corresponding to the second term of eq. (4.4) we

can commute the exponent with (u−1 u
+
2 ). After this, it is necessary to expand exp(is

_
�) in

a series and keep only terms containing (D+)4(D−)4. Then calculating the divergent part

of the effective action according to the standard technique, after some (rather non-trivial)

transformations we obtain the result proportional to

∇M∇MF++ + {W+a,∇−a F++} − 3

2
[∇−−F++, F++] =

_
� F++. (4.10)

The fact that the operator
_
� appears in the final expression is a non-trivial test of the

calculation. Actually, the final expression has the form

δΓ
(1)
F 2 [V ++] =

(C2 − T (R))

3(4π)3ε

∫
dζ(−4)du δV ++A

_
� F++A . (4.11)

This implies that following the same procedure as in our previous work [13], it is possible

to find the action the variation of which coincides with (4.11). Up to an unessential

additive constant,

Γ
(1)
F 2 =

C2 − T (R)

6(4π)3ε

∫
dζ(−4)du (F++A)2 =

C2 − T (R)

3(4π)3ε
tr

∫
dζ(−4)du (F++)2 , (4.12)

where in the last equation F++ = F++AtA, with tA being the generators of the fundamental

representation.

The hypermultiplet-dependent part Q̃+F++Q+ of the one-loop counterterm comes out

from the first term in (3.37). To calculate this contribution, one expands the logarithm in
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the first term (3.37) up to the first order and computes the functional trace,

i

2
Tr ln

{
_
�
AB
−2f2Q̃+m

(
TAG(1,1)T

B
)
m
nQ+

n

}
=
i

2
Tr ln

_
�

+
i

2
Tr ln

{
δAB − 2f2

(
_
�
−1
)AC

Q̃+m
(
TCG(1,1)T

B
)
m
nQ+

n

}
. (4.13)

We note that, like in 4D, N = 2 SYM theory, the term i
2Tr ln

_
� does not contribute to the

divergent part.4 To see this, let us expose some details of the structure of Green function for

vector multiplet (3.31). In the limit of coincident points we need to collect eight spinorial

derivatives on delta-function ∼ (D+)4(D−)4δ8(θ − θ′) in order to obtain a non-vanishing

contribution. However, the Green function (3.31) manifestly contains only four derivatives

(D+)4, while the other four spinor derivatives could be taken from the expansion of the

inverse operator
_
� in (3.31) up to the fourth order in D− . However, from this expansion we

will simultaneously gain the fourth power of the inverse flat d’Alembertian. Thus, we will

be left with the operator ∼ (D−)4

�4 which can contribute only to the finite part of effective

action and so is of no interest for our consideration.

Now, let us consider the second term in (4.13). Following [13], we decompose the

logarithm up to the first order and compute the functional trace

Γ
(1)
QFQ = −if2

∫
dζ(−4)du Q̃+mQ+

n

(
_
�
−1
)AB (

TBG(1,1)T
A
)
m
n
∣∣∣2=1

div

= −if2

∫
dζ(−4)du Q̃+mQ+

n (4.14)

×
(
_
�
−1
)AB (

TB
_
�
−1

TA
)
m

n(u+
1 u

+
2 ) δ6(x1 − x2)

∣∣∣
2=1

.

Here we made use of the explicit expression for the Green function (G(1,1))m
n (3.34) and

once again applied the identity (4.4) for extracting the divergent contribution to effective

action. Then we decompose the inverse covariant d’Alembertians (3.30) and (3.35) up to

the second order and obtain

Γ
(1)
QFQ = −if2

∫
dζ(−4)du Q̃+mQ+

n

(
δAB

�1
+ 2fACB(F++)C

D−−1

�2
1

)

× (TB)m
p

(
δlp
�1
− 2i(F++)C(TC)p

lD
−−
1

�2
1

)
(TA)l

n(u+
1 u

+
2 )δ6(x1 − x2)

∣∣∣
2=1

= 2if2

∫
dζ(−4)du Q̃+mQ+

n (F++)C

×
{
fACB(TBTA)m

n − i(TATCTA)m
n
} 1

�3
1

δ6(x1 − x2)
∣∣∣
2=1

. (4.15)

Let is rewrite the expression within the brackets in the last line of eq. (4.15), using the

commutation relation

TCTA = TATC + ifCADTD . (4.16)

4A similar analysis can be done for the contribution Tr ln
_

� in (3.37).
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Then we obtain for this expression

fACBTBTA − iTATCTA = 2fACBTBTA − iTATATC . (4.17)

Finally, we use eq. (2.4) and the identity

fACBTBTA =
i

2
fACBfBADTD =

i

2
C2T

C , (4.18)

as well as the momentum representation of the space-time δ-function, and calculate the

momentum integral in the ε-regularization scheme. This leads to

1

�3
δ6(x1 − x2)

∣∣∣
2=1

=
i

(4π)3

1

ε
, ε→ 0 . (4.19)

The result is

Γ
(1)
QFQ[V ++, Q+] = − 2if2

(4π)3ε

∫
dζ(−4)du Q̃+m(C2δ

l
m−C(R)m

l)(F++)A (TA)l
nQ+

n . (4.20)

Summing up the contributions (4.12) and (4.20), we finally obtain the total divergent

contribution

Γ
(1)
div[V

++, Q+] =
C2 − T (R)

3(4π)3ε
tr

∫
dζ(−4)du (F++)2

− 2if2

(4π)3ε

∫
dζ(−4)du Q̃+(C2 − C(R))F++Q+. (4.21)

We observe that the coefficients of the (F++)2 and Q̃+F++Q+ terms in the divergent part

of one-loop effective action are proportional to the differences between the second order

Casimir operator for adjoint representation of gauge group and the operators T (R) and

C(R) for the hypermultiplet representation R, respectively. Since 6D, N = (1, 1) super-

symmetric Yang-Mills theory involves only the hypermultiplet in the adjoint representation

of gauge group, (4.21) vanishes for this case. Hence, the 6D, N = (1, 1) SYM theory is

one-loop finite, and there is no need to use the equations of motion (2.23), (2.24) to prove

this property.

In general, for any other choice of the irreducible representation R, the expression (4.21)

does not vanish even with taking into account the equations (2.23), (2.24), i.e. we meet

the same situation as in the abelian case considered in [13], the theory is divergent already

at the one-loop level.5 The case of pure 6D, N = (1, 0) SYM theory corresponds to the

evident choice T (R) = 0 and C(R) = 0 in (4.21), and the one-loop divergent part is

vanishing on shell, where F++ = 0, in agreement with the old result of ref. [1].

5In principle, when the hypermultiplet is in some reducible representation of gauge group, we can pick

up this representation in such a way that the coefficients before the corresponding divergent parts vanish.

Such a theory will be also off-shell finite at one loop.
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5 Summary and outlook

In the present paper we explicitly calculated the divergent part of the one-loop effective

action in 6D, N = (1, 0) SYM gauge theory coupled to the hypermultiplet in an arbitrary

representation of the gauge group. The theory was formulated in the 6D, N = (1, 0)

harmonic superspace, which preserves the manifest 6D, N = (1, 0) supersymmetry and

provides a reliable ground for conducting the quantum field analysis.

We developed the background field quantization of the model under consideration. Al-

though the N = (1, 0) SYM theories are in general anomalous6 (see, e.g., the papers [32, 33]

and references therein), the one-loop divergences can be calculated in the manifestly gauge

invariant and N = (1, 0) supersymmetric way. Anomalies are obtained by considering finite

contributions and do not affect the one-loop divergences considered in this paper. Namely,

we found one-loop divergences of the effective action both in the gauge multiplet sector and

in the hypermultiplet sector for an arbitrary gauge group and an arbitrary hypermultiplet

representation. The structure of the divergences in the gauge multiplet sector (with all

hypermultiplet contributions being suppressed) completely matches with the results of the

analysis in refs. [1, 2]. In particular, the divergences in this sector can be eliminated by

a field redefinition. This implies that the theory is on-shell finite in the gauge multiplet

sector. However, when the hypermultiplet sector is taken into account, the situation is

drastically changed. The divergences cannot be eliminated by a field redefinition and the

theory is divergent even on-shell.

However, there is a subclass of the general theory, which deserves a special consider-

ation. It is the N = (1, 1) SYM theory which includes the interacting N = (1, 0) gauge

multiplet and the N = (1, 0) hypermultiplet, both being in the same adjoint representa-

tion. The structure of the coefficients in various terms of the divergent part of the one-loop

effective action (4.21) allows us to assert that the one-loop quantum effective action of the

N = (1, 1) SYM theory does not contain the logarithmic divergences at all, even off-shell.

Such a result is entirely unexpected.

We would like to emphasize that 6D, N = (1, 1) SYM theory is in many aspects

analogous to 4D, N = 4 SYM theory. The 4D, N = 4 SYM theory is formulated in N = 2

harmonic superspace, the 6D, N = (1, 1) SYM theory is formulated in N = (1, 0) harmonic

superspace, both theories include vector multiplet and hypermultiplet in the same adjoint

representation, both theories are described by the same set of harmonics. Both theories

are off-shell finite at one loop. But 4D, N = 4 SYM theory is a completely finite field

model. Taking into account these analogies and the results of this paper, we are led to

assume that 6D, N = (1, 1) SYM theory can be off-shell finite at higher loops as well.7 The

first crucial test for such a conjecture would be the study of the structure of the two-loop

divergences in 6D, N = (1, 1) SYM theory. In the forthcoming paper, we plan to carry

out an explicit calculation of the divergent part of the effective action of this theory in the

two-loop approximation.

6The main object of our investigation, the N = (1, 1) SYM theory, is free from anomalies.
7It is possible that there are new non-renormalization theorems in 6D, N = (1, 1) SYM theory (see

the discussion of the non-renormalization theorem in 4D, N = 2 SYM theories in harmonic superspace

approach in [34, 35]).
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