УДК: 539.172.17

ПЕРВЫЙ ЭКСПЕРИМЕНТ НА ФАБРИКЕ СВЕРХТЯЖЁЛЫХ ЭЛЕМЕНТОВ: НОВЫЕ ДАННЫЕ В РЕАКЦИИ ²⁴³Am + ⁴⁸Ca

© 2022 г. Н.Д. Коврижных,^{1,*} Ю.Ц. Оганесян,¹ В.К. Утенков,¹ Ф.Ш. Абдуллин,¹ С.Н. Дмитриев,¹ А.А. Джиоев,¹ Д. Ибадуллаев,^{1, 2, 3} М.Г. Иткис,¹ А.В. Карпов,¹ Д.А. Кузнецов,¹ О.В. Петрушкин,¹ А.В. Подшибякин,¹ А.Н. Поляков,¹ А.Г. Попеко,¹ И.С. Рогов,¹ Р.Н. Сагайдак,¹ Л. Шлаттауэр,⁴ И.В. Широковский,¹ В.Д. Шубин,¹ М.В. Шумейко,¹ Д.И. Соловьев,¹ Ю.С. Цыганов,¹ А.А. Воинов,¹ В.Г. Субботин,¹ А.Ю. Бодров,¹ А.В. Сабельников,¹

А.В. Халкин, В.Б. Злоказов, К.П. Рикачевски, Т.Т.Кинг, Дж.Б. Роберто,

Н.Т.Брюэр,⁵ Р.К. Грживач,^{5,6} З.Г. Ган,⁷ З.Я.Чжан,⁷ М.Х. Хуан,⁷ Х.Б. Ян. ^{1,7}

¹ Объединённый Институт Ядерных Исследований, RU-141980 Дубна,

Российская Федерация

² Институт Ядерной Физики, 050032 Алматы, Казахстан

³ Евразийский Национальный Университет им. Л.Н.Гумилёва, 010000 Астана,

Казахстан

⁴ Университет Палацкого, 771 46 Оломоуц, Чехия

⁵ Ок-Риджская Национальная Лаборатория, Ок-Ридж, Теннесси 37831, США ⁶ Кафедра Физики и Астрономии, Университет Теннесси, Ноксвилл, Теннесси

37996, США

⁷ Институт Современной Физики, Китайская Академия Наук, Ланьчжоу 730000, Китай

*Электронный адрес: <u>kovrizhnyx@jinr.ru</u>

Поступила в редакцию 23.09.2022 После доработки 25.09.2022 Принята к публикации 30.10.2022

Мы представляем результаты серии экспериментов по синтезу изотопов Мс в реакции ²⁴³Am + ⁴⁸Ca, проведённых на новом сепараторе DGFRS-2 и циклотроне DC280 на Фабрике Сверхтяжёлых Элементов в ЛЯР ОИЯИ.

Зарегистрированы 110 новых цепочек распада ²⁸⁸Mc, 10 цепочек ²⁸⁹Mc и 4 цепочки ²⁸⁷Mc. Альфа-распад ²⁶⁸Db с энергией 7.6 – 8.0 МэВ, периодом полураспада 16^{+6}_{-4} ч и α-ветвью 51^{+14}_{-12} % зарегистрирован впервые вместе с новым спонтанно делящимся изотопом ²⁶⁴Lr с периодом полураспада $4.8^{+2.2}_{-1.3}$ ч. Измеренное сечение реакции ²⁴³Am(⁴⁸Ca,3n)²⁸⁸Mc составило $17.1^{+6.3}_{-4.7}$ пб, что является самым большим для известных сверхтяжёлых ядер. Был синтезирован новый изотоп ²⁸⁶Mc с периодом полураспада 20^{+98}_{-9} мс и энергией α-частиц 10.71 ± 0.02 МэВ. Спонтанное деление ²⁷⁹Rg впервые наблюдалось в одной из четырех новых цепочек распада ²⁸⁷Mc. Функция возбуждения реакции была измерена при шести энергиях ⁴⁸Ca в диапазоне 239 – 259 МэВ, что привело к первому наблюдению 5n канала с сечением $0.5^{+1.3}_{-0.4}$ пб. С более высокой точностью определены свойства распада 20 ранее известных изотопов.

ВВЕДЕНИЕ

Изотопы элемента 115, ²⁸⁸Mc и ²⁸⁷Mc, были впервые синтезированы в 2003 году в реакции ²⁴³Am + ⁴⁸Ca на сепараторе DGFRS [1]. В 2010 – 2012 годах была проведена другая серия экспериментов в диапазоне энергий ⁴⁸Ca 240 – 254 MeV [2]. В результате этих экспериментов, мы отнесли четыре цепочки, состоящие из двух α-распадов и спонтанного деления (SF), наблюдавшиеся в течение минуты, к активности ²⁸⁹Mc. Другие длинные цепочки (пять последовательных α-распадов и SF) были отнесены к ²⁸⁸Mc (31 цепочка) и к ²⁸⁷Mc (2 цепочки). Кроме того, изотопы ²⁸⁹Mc and ²⁹⁰Mc наблюдались как

дочерние ядра изотопов ^{293,294}Ts, продуктов реакции ²⁴⁹Bk + ⁴⁸Ca, в двух экспериментах, проведённых в 2009-2010 и 2012 годах (суммарно 20 цепочек распада [3]). Известно, что сложный спектр α-частиц нечётных ядер затрудняет их идентификацию. Однако, основываясь на комбинированном анализе их радиоактивных свойств, результатов экспериментов при разных энергиях ⁴⁸Са и в реакциях с разными мишенями (²⁴³Am и ²⁴⁹Bk), мы отнесли наблюдавшиеся в этих реакциях цепочки к ядрам ²⁸⁷Mc, ²⁸⁸Mc и ²⁸⁹Mc. Результаты экспериментов, проведённых в 2013 и 2015 годах на сепараторах TASCA (GSI) и BGS (LBNL), были представлены в [4] и [5]. Продукты реакции ²⁴³Am + ⁴⁸Ca были исследованы методами α-, Х- и γ-совпадений. Двадцать две цепочки распада были отнесены к ²⁸⁸Мс и одна к ²⁸⁷Мс в [4]. В работе [6] не исключалось, что семь коротких цепочек распада могут так же быть отнесены к разным ветвям распада ²⁸⁸Мс. В работе [5] все 46 синтезированных цепочек, включая три коротких, были отнесены к ²⁸⁸Мс. В этих работах, благодаря регистрации $\alpha - \gamma$ совпадений, энергии α-распада нескольких членов цепочки были измерены и были предложены схемы уровней ²⁷⁶Мt и ²⁷²Bh. Короткие и длинные цепочки (две цепочки ²⁹³Ts и две ²⁹⁴Ts) были также зарегистрированы в реакции ²⁴⁹Bk + ⁴⁸Са в [7]. В обеих коротких цепочках ²⁹³Тs, также как в двух из 16 в [3], после α -распада ²⁸¹Rg с энергией $E_{\alpha} = 9.3$ МэВ, было зарегистрировано спонтанное деление с периодом полураспада 5 мс. Наконец, в 2018 году были опубликованы результаты экспериментов по измерению массового числа продуктов реакции ²⁴³Am + ⁴⁸Ca на установке FIONA [8]. Массы первых ядер в двух цепочках оказались около 288 и 284 (после распада ²⁸⁸Мс), что

подтверждает правильность нашей идентификации ядра ²⁸⁸Mc. В дополнение к физическим экспериментам, был проведён эксперимент по исследованию химических свойств ²⁸⁸Mc и/или его дочерних ядер [9]. Пять зарегистрированных цепочек распада отнесены к ²⁸⁸Mc.

Несмотря на то, что цепочки распада Мс составляют примерно половину всех цепочек сверхтяжёлых ядер, зарегистрированных в реакциях ⁴⁸Ca с актинидными мишенями, несколько важных вопросов остаются открытыми, среди которых: масса материнского ядра в коротких цепочках, возможное существование двух времён распада ²⁷⁶Mt, вероятность электронного захвата у ядер в цепочке распада Mc, сечение реакции слияния с испарением протона, вероятность α -распада ²⁶⁸Db.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Новый экспериментальный комплекс, Фабрика Сверхтяжёлых Элементов (SHE Factory) с новым циклотроном DC280, введён в строй в конце 2019 года. Интенсивность пучка ионов ⁴⁸Са в DC280 может достигать 10 мкА частиц [10]. Для изучения продуктов реакций слияния, имеющих низкие сечениям, новый газонаполненный сепаратор DGFRS-2 был установлен и протестирован в калибровочных экспериментах [11]. Его отличают от DGFRS высокая трансмиссия тяжёлых ионов и низкий фон в фокальной плоскости.

Кроме научных задач первого эксперимента, проведённого в период с ноября 2020 г. по февраль 2021 г. [12] (см. Таблицу I), были тесты DGFRS-2 в условиях длительной работы, измерение распределения ядер на фокальной

4

плоскости и сравнение результатов с расчётами трансмиссии [13, 14], а также изучение фоновых условий.

Сепаратор состоит из 5 магнитов в конфигурации Q_vD_hQ_bQ_vD, где D обозначает дипольный магнит и Q - квадрупольный магнит, а индексы h и v обозначают горизонтальное и вертикальное фокусирование соответственно [11]. Сепаратор был заполнен водородом при давлении 1.15 мбар, который постоянно прокачивался через сепаратор в направлении от детекторной камеры до мишенного блока. Детекторная камера была отделена от объёма DGFRS-2 майларовой фольгой толщиной 0.7 мкм и заполнена пентаном при давлении 1.60 мбар. В течение первой серии экспериментов, объём сепаратора, заполненного водородом, был отделён от ионопровода вращающимся титановым окном толщиной 0.62 мг/см². В последующих экспериментах, мы использовали систему дифференциальной откачки [11]. Мишени из изотопа ²⁴³Ат (обогащение 99.5%) были изготовлены путем электроосаждения на подложку из Ті толщиной 0.62 мг/см². Шесть мишенных секторов были установлены на диск с диаметром 15 см и вращались со скоростью 1500 об/мин. Интенсивность пучка постепенно повышалась до 1.2 – 1.3 мкА частиц. Фокальный детектор размером 48 мм по вертикали и 220 мм по горизонтали состоял из двух двухсторонних стриповых детекторов (DSSD) площадью 48×128 мм² с шириной стрипа 1 мм, установленных таким образом, что передний детектор закрывает часть заднего детектора. Фокальный детектор окружён восемью 60×120-мм² боковыми детекторами, каждый с 8 стрипами, формируя параллелепипед с пятью гранями и глубиной 120 мм. Перед детекторами установлены две многопроволочные пропорциональные камеры (МППК) для регистрации прилетающих из сепаратора ядер [11]. Система набора данных позволяла в онлайн режиме регистрировать пространственные, энергетические и временные корреляции между сигналами от имплантации ядер в детекторы и α-распадами изотопов Мс или их дочерних ядер. После этого пучок автоматически отключался для наблюдения распадов дочерних ядер при низком фоне. Энергии и времена распада ядер в цепочках ²⁸⁸Мс и ²⁸⁹Мс приведены в [12].

Основываясь на результатах работы [7], где был зарегистрирован α распад ²⁷⁰Db (N = 165) с периодом полураспада 1 ч, и ожидаемом сходстве свойств распада изотопов с N = 163 и N = 165, после онлайн регистрации десяти цепочек распада ²⁸⁸Mc – ²⁷²Bh мы продлили отключение пучка до 3 – 4 ч. В течение этих остановок мы не наблюдали α -частицы с E_{α} = 7 – 9 MэB в тех же самых стрипах фокального детектора, где наблюдались распады ²⁸⁸Mc.

Мы также искали α-распады ²⁶⁸Db, после которых наблюдалось бы деление ²⁶⁴Lr с относительно коротким периодом полураспада. Мы выбрали цепочки ²⁸⁸Mc, в которых α-подобные события с $E_{\alpha} = 7 - 10$ МэВ наблюдались между распадами ²⁷²Bh и спонтанны делением. Энергетическое распределение α-подобных событий в зависимости от времени их регистрации относительно времени регистрации SF в цепочках (время SF взято как точка отсчёта) показано на Рис. 1(а).

Как видно, во временном интервале от -10 до 0 часов и E_α = 7.6-8.0 МэВ наблюдается повышенная концентрация событий, что говорит об их

неслучайном происхождении. Рисунок 1(б) показывает временное распределение событий с E_a = 7.6 - 8.0 МэВ, из которого мы определили период полураспада спонтанно делящегося ядра $T_{1/2} = 4.9^{+2.1}_{-1.3}$ ч, которое следует за α -распадом ²⁷²Bh и другого ядра с $E_{\alpha} = 7.6 - 8.0$ МэB. Энергетическое распределение событий, зарегистрированных за 10 часов перед SF, показано на Рис. 1(в). Виден пик в диапазоне $E_{\alpha} = 7.6 - 8.0$ МэВ. Рисунок 1(д) представляет спектр α-подобных событий, зарегистрированных за всё время эксперимента, который показывает ядер, оставшиеся после калибровочных пики экспериментов, например, ²¹¹Ро ($E_{\alpha} = 7.45 \text{ МэВ}$). Неслучайная природа пика 7.6 - 8.0-MeV также следует из рис. 1(б). Например, вероятность наблюдения 14 событий в пике при уровне фона около единицы меньше 10⁻¹¹. Энергетический диапазон 7.6 – 8.0 МэВ хорошо согласуется с величиной, ожидаемой для ²⁶⁸Db из таблиц масс [15 - 17], а также энергией 7.9 MeV, отнесённой к ²⁷⁰Db в [7]. Основываясь на этом, мы относим α -распад с $E_{\alpha} = 7.6 - 8.0$ МэВ к ²⁶⁸Db. В этом случае, спонтанное деление с периодом полураспада 4.9 ч принадлежит новому изотопу ²⁶⁴Lr.

Из временных интервалов между α-распадами ²⁷²Bh и событиями с $E_{\alpha} = 7.6 - 8.0$ MeV, за которыми следовало спонтанное деление в течение 5 ч, мы вычислили период полураспада ²⁶⁸Db 16^{+6}_{-4} ч. Кривая распада ²⁶⁸Db показана на Рис. 1(г). Ветвь α-распада составила 55^{+20}_{-1} %. Так как во всех предыдущих экспериментах период полураспада ²⁶⁸Db был рассчитан из временных интервалов между распадами ²⁷²Bh и спонтанным делением, которое может

происходить с одинаковой вероятностью от ²⁶⁸Db и ²⁶⁴Lr, мы приходим к выводу, что период полураспада ²⁶⁸Db был также определён впервые с использованием его ветви α-распада.

Измеренное сечение реакции ²⁴³Am(⁴⁸Ca,3n)²⁸⁸Mc составило 17.1_{-4.7}^{+6.3} пб, что почти вдвое превышает значение, измеренное ранее при энергии возбуждения 34 – 38 МэВ [2], и является самым большим из всех известных реакций слияния ⁴⁸Ca с актинидными ядрами, приводящими к образованию сверхтяжёлых ядер.

Вторая серия экспериментов по синтезу изотопов Мс прошла в ноябре декабре 2021 г. и в феврале 2022 г. [18]. Экспериментальные условия и некоторые результаты показаны в Таблице II.

Энергетический спектр α-частиц ядер ²⁸⁶Mc, ²⁸⁷Mc, ²⁸⁸Mc, ²⁸⁹Mc и продуктов их распада, наблюдаемых в [1-8, 19], а также и в наших недавних экспериментах [12,18], показаны на Рис.2. Для спектра α-частиц, были выбраны события с энергетическим разрешением ≤40 кэВ. Периоды полураспада, показанные на рисунках, определены из всех известных данных.

При максимальной энергии ⁴⁸Ca (см. Рис. 3 ниже) мы зарегистрировали α-распад нового изотопа ²⁸⁶Mc с $E_{\alpha} = 10.71\pm0.02$ МэВ и $T_{1/2} = 20^{+98}_{-9}$ с [18]. Энергии α-частиц ²⁸²Nh, ²⁷⁸Rg и ²⁷⁰Bh совпадают с теми значениями, что были измерены в реакции ²³⁷Np(⁴⁸Ca,3n)²⁸²Nh [19]. Времена распада от ²⁸²Nh до ²⁷⁰Bh не противоречат временам, измеренным ранее. Период полураспада ²⁶⁶Db составил 11⁺²¹₋₄ мин. Сечение реакции ²⁴³Am(⁴⁸Ca,5n)²⁸⁶Mc было измерено впервые для реакций ⁴⁸Ca с нечётными по Z ядрами мишени и составило $0.5^{+1.3}_{-0.4}$ пб при E*=49 MэB (Рис. 3). Это значение близко к измеренным в реакциях ²⁴⁴Pu(⁴⁸Ca,5n)²⁸⁷Fl ($1.1^{+2.6}_{-0.9}$ пб при E*=53 MэB) [20] и ²⁴²Pu(⁴⁸Ca,5n)²⁸⁵Fl ($0.6^{+0.9}_{-0.5}$ пб при E*=50 MэB) [21].

В эксперименте мы зарегистрировали четыре цепочки распада ²⁸⁷Mc. Удвоение числа цепочек ²⁸⁷Mc по сравнению с известными данными сделало возможным более точно определить свойства распада изотопов от ²⁸⁷Mc до ²⁶⁷Db. По сравнению с данными работ [2, 4, 22] периоды полураспада ²⁸⁷Mc, ²⁷⁹Rg, ²⁷⁵Mt и ²⁶⁷Db (T_{SF} =1.4^{+1.0}_{-0.4} ч) практически совпадают с известными ранее данными. Периоды полураспада ²⁸³Nh and ²⁷¹Bh оказались несколько больше, но разница не превышает экспериментальных неопределённостей.

В одной из цепочек распада ²⁸⁷Мс, мы впервые зарегистрировали спонтанное деление ²⁷⁹Rg, третьего из 26 нечётных по Z известных ядер с Z>105 и N>162. Это позволило оценить ветвь α-распада ²⁷⁹Rg $b_{\alpha}=87^{+05}_{-19}$ %; парциальные периоды полураспада $T_{\alpha}=0,10^{+0,08}_{-0,03}$ с и $T_{SF}=0,7^{+0,7}_{-0,5}$ с.

В этих экспериментах, продукты 4n-испарительного канала наблюдались в диапазоне энергий возбуждения от 35 до 49 МэВ. Максимальное сечение в 1.4^{+3,2}_{-1.2} пб измерено при E*=42 МэВ.

При энергии возбуждения около 35 МэВ, мы зарегистрировали 52 новых цепочки распада ²⁸⁸Мс. Как и в первой серии экспериментов, была

зарегистрирована α-активность с E_{α} =7.6-8.0 МэВ между α-распадами ²⁷²Bh и событиями спонтанного деления, которые мы отнесли к изотопу ²⁶⁴Lr. Новые результаты позволили более точно измерить период полураспада ²⁶⁴Lr (4.8^{+2.2}_{-1.3} ч) и ветвь α-распада для ²⁶⁸Db (51⁺¹⁴₋₁₂%).

Всего в этих экспериментах мы зарегистрировали 110 новых цепочек распада ²⁸⁸Мс. Вместе с результатами работ [1, 2, 4, 5, 8, 12, 18] число цепочек распада этого ядра достигло примерно 210. Однако в этом и предыдущих экспериментах цепочка распада ER-²⁸⁸Mc (SF/ β +, T_{1/2}=0.2 c)-²⁸⁸Fl (E_{α} =9.9 M₃B, $T_{1/2}=0.7$ с)-²⁸⁴Cn (SF, $T_{1/2}=0.1$ с), а именно, продукт электронного захвата или β + распада (ЕС/β+) ²⁸⁸Мс или р2п-канала реакции ²⁴³Ат+⁴⁸Са не наблюдался. Из этого следует, что вероятность EC не превышает примерно 0.5% для ²⁸⁸Mc. В то же время, из 24 коротких цепочек, наблюдаемых в реакции ²⁴³Am+⁴⁸Ca в [2, 6] и в данных экспериментах [12, 18], 9 цепочек могут напоминать α-распад ²⁸⁸Мс, за которым следует EC ²⁸⁴Nh и спонтанное деление ²⁸⁴Cn. К сожалению, предсказания периодов полураспада относительно ЕС скудны, и точность теоретических оценок может варьироваться в пределах двух порядков в зависимости от параметров моделей, см., например, [23, 24]. Однако оба ядра ²⁸⁸Мс и ²⁸⁴Nh расположены в области изотопов этих элементов, для которых прогнозируемые времена жизни относительно ЕС превышают 100 с [25].

Мы также ценили периоды полураспада относительно ЕС в рамках независимого квазичастичного приближения на основе функционалов

10

плотности энергии Скирма SLy4 и SkO. Периоды составили 1.1×10³ с (SLy4), 1.0×10² с (SkO) для ²⁸⁸Mc и 9.9×10² с (SLy4), 2.0×10² с (SkO) для ²⁸⁴Nh [18].

Из этих оценок следует, что ветвь b_{EC} для ²⁸⁴Nh может быть такой же, как и для ²⁸⁸Mc, или в два раза выше, т.е., $\leq 1\%$. Исходя из этого, кажется маловероятным, что 9 цепочек обусловлены EC ²⁸⁴Nh и делением ²⁸⁴Cn.

Совокупность нескольких факторов указывает на то, что короткие цепочки принадлежат ²⁸⁹Mc. Спектры α -частиц и периоды полураспада ядер, показанные на Рис. 2, также включают события, зарегистрированные после распада ²⁹³Ts [3, 7]. Энергетические распределения ²⁸⁹Mc отличаются от спектров α -частиц соседних лёгких изотопов. Например, спектр ²⁸⁸Mc имеет пик с максимумом при $E_{\alpha} \approx 10.5$ МэВ, а спектр ²⁸⁹Mc представляет собой распределение, состоящее из двух пиков с $E_{\alpha} \approx 10.35$ и 10.5 МэВ. Спектры дочерних ядер также различаются. Большинство событий, отнесённых к ²⁸⁴Nh, имеют более узкое распределение, а спектр ²⁸⁵Nh шире.

Времена распада материнского и дочернего ядер в длинной и короткой цепочках близки друг к другу, но периоды полураспада определенно различаются (Рис. 2). Следует также иметь в виду, что вероятность деления ядер с нечетным числом нейтронов (288 Mc и 284 Nh) должна быть меньше по сравнению с ядрами с четным N (289 Mc и 285 Nh). Наконец, характер цепочки распада 293 Ts, продукта реакции 249 Bk(48 Ca,4n), хорошо совпадает с характером распада короткой цепочки, наблюдаемой в реакции 243 Am+ 48 Ca. Поэтому мы считаем, что присвоение короткой цепочки 289 Mc кажется более реалистичным.

В экспериментах по синтезу элемента Ts в реакции ²⁴⁹Bk+⁴⁸Ca на DGFRS α-распад ²⁸⁵Nh не наблюдался в двух из 16 цепочек ²⁹³Ts [3], но он был зарегистрирован в обеих цепочках, полученных на TASCA [7]. В реакции 243 Am+ 48 Ca α -распад 285 Nh был обнаружен во всех четырех цепочках на DGFRS [2], но в 2 из 7 цепочек, полученных на TASCA, и в 2 из 3 цепочек на BGS [5, 6] ²⁸⁵Nh не наблюдался. Из анализа результатов [2, 5, 6] был сделан вывод, что существует 29%-ная ветвь SF у изотопа ²⁸⁵Nh [6]. В этой работе мы также не наблюдали α-распад ²⁸⁵Nh в половине из 10 цепочек. Таким образом, α-распад ²⁸⁵Nh не был зарегистрирован в 11 из 42 цепочек. Из всех полученных данных следует, что 285 Nh имеет ветвь на SF 18^{+10}_{-9} %, что не противоречит результату [6]. Мы оценили парциальные периоды полураспада $T_{\alpha}=2.6^{+0.7}_{-0.5}$ с и $T_{\rm SF}=12^{+12}_{-5}$ с для ²⁸⁵Nh. Мы также оценили ветвь α-распада для дочернего ядра ²⁸¹Rg в 14⁺¹⁰₋₄% и парциальные периоды полураспада T_{α} =79⁺⁴²₋₃₄ с и $T_{\rm SF}$ =13⁺⁴₋₂ с.

ЗАКЛЮЧЕНИЕ

Ha газонаполненном сепараторе DGFRS-2 Фабрики новом Сверхтяжёлых Элементов ЛЯР ИЯИО были проведены две серии экспериментов по синтезу продуктов реакции ²⁴³Am + ⁴⁸Ca при шести энергиях ⁴⁸Са для изучения свойств распада Мс и его дочерних ядер, а также определения возможностей дальнейших исследований сверхтяжелых ядер.

Измерена функция возбуждения реакции ²⁴³Am + ⁴⁸Ca в широком диапазоне энергии ⁴⁸Ca 239 – 259 МэВ. Сечение реакции ²⁴³Am(⁴⁸Ca,3n)²⁸⁸Mc составило 17.1^{+6.3}_{-4.7} пб, что является самым большим для известных сверхтяжёлых ядер вблизи Острова Стабильности.

В экспериментах было зарегистрировано 110 распадов ²⁸⁸Мс. В них впервые обнаружен α -распад ²⁶⁸Db с энергией 7.6–8.0 МэВ, периодом полураспада 16^{+6}_{-4} ч и α -ветвью 51^{+14}_{-12} %. Был также впервые синтезирован новый спонтанно делящийся изотоп ²⁶⁴Lr с периодом полураспада $4.8^{+2.2}_{-1.3}$ ч.

Зарегистрировано 10 коротких цепочек ER- α -(α)-SF. Наблюдение этих ядер в реакциях с разными мишенными изотопами ²⁴³Am и ²⁴⁹Bk, а также отличие радиоактивных свойств ядер в цепочках от свойств ядер в цепочке распада ²⁸⁸Mc указывает на то, что их следует отнести к ²⁸⁹Mc. Из совокупности имеющихся данных мы оценили ветвь на SF 18⁺¹⁰₋₉% для ²⁸⁵Nh, а также его парциальные периоды полураспада $T_{\alpha}=2.6^{+0.7}_{-0.5}$ с и $T_{\rm SF}=12^{+12}_{-5}$ с. Мы также оценили ветвь α -распада для дочернего ядра ²⁸¹Rg в 14⁺¹⁰₋₄% и парциальные периоды полураспада $T_{\alpha}=79^{+42}_{-34}$ с и $T_{\rm SF}=13^{+4}_{-2}$ с.

Зарегистрированы четыре новые цепочки распада ²⁸⁷Мс. Впервые наблюдалось спонтанное деление ²⁷⁹Rg. Были установлены его парциальные периоды полураспада T_{α} =0.10^{+0.08}_{-0.03} с и $T_{\rm SF}$ =0.7^{+0.7}_{-0.5} с.

При максимальной энергии ⁴⁸Са впервые был синтезирован новый легчайший изотоп ²⁸⁶Мс с энергией α -частиц 10.71±0.02 МэВ и периодом полураспада 20⁺⁹⁸₋₉ мс. Сечение 5п канала составляло $0.5^{+1.3}_{-0.4}$ пб. Это значение

близко к тем, которые были измерены в реакциях 244 Pu(48 Ca,5n) 287 Fl и 242 Pu(48 Ca,5n) 285 Fl, где было получено по одному ядру в каждой из реакций.

Свойства распада всех изотопов хорошо согласуются с данными, полученными в 2003-2018 годах. Новые данные позволили нам определить свойства распада 20 изотопов с более высокой точностью. Совокупность полученных результатов демонстрирует, что новая Фабрика Сверхтяжёлых Элементов является отличной лабораторией для продолжения исследований сверхтяжелых ядер.

Эти исследования поддержаны Министерством науки и высшего образования Российской Федерации в рамках гранта № 075-10-2020-117 и грантом дирекции ОИЯИ, а также грантами DE-AC05-00OR22725 Министерства энергетики США и XDB34010000 Китайской академии наук.

РИСУНКИ

Рисунок 1

Рисунок 2

Рисунок 3

ТАБЛИЦЫ

ТАБЛИЦА I: Толщины мишени из ²⁴³Am, энергии ⁴⁸Ca в середине слоя, результирующие интервалы энергии возбуждения, суммарные дозы пучка, числа наблюдаемых цепочек распада ²⁸⁸Mc (3n) и ²⁸⁹Mc (2n) и сечения их образования.

Толщина	E _{lab} , МэВ	Е [*] , МэВ	Доза	Число	σ _{3n} , пб	σ _{2n} , пб
мишени, $m/2$			пучка × 10 ¹⁸	цепочек		
MI/CM			10	5 <i>n/2n</i>		
0,36	243,9	35,5 - 37,8	8,0	30/5	9,8 ^{+2,6}	$1,6^{+1,2}_{-0,7}$
0,38	240,9	33,1-35,2	2,2	16/1	$17,1^{+6,3}_{-4,7}$	$1,1^{+2,5}_{-0,9}$
0,38	239,1	31.5 - 33.6	2,3	9/0	$9,9^{+5,1}_{-3,4}$	<2,1

ТАБЛИЦА II. Энергии пучка в середине мишенного слоя, соответствующие диапазоны энергий возбуждения, дозы пучка, количество наблюдаемых цепочек распада 289 Mc(2n), 288 Mc(3n), 287 Mc (4n) и 286 Mc (5n) и сечения их образования.

E _{lab}	E^*	Beam	No.	σ_{2n}	σ_{3n}	σ_{4n}	σ_{5n}
(MeV)	(MeV)	dose	of chains	(pb)	(pb)	(pb)	(pb)
		$\times 10^{18}$	2n/3n/4n/5n				
242.2	34.0-36.3	9.2	4 / 52 / 2 / 0	$1.2^{+1.0}_{-0.6}$	$15.^{+5.}_{-3.}$	$0.6^{+0.7}_{-0.4}$	
250.8	41.3-43.5	2.0	0/3/1/0		$4.1^{+4.2}_{-2.3}$	$1.4^{+3.2}_{-1.2}$	
259.1	48.2-50.4	5.0	0/0/1/1			$0.5^{+1.3}_{-0.4}$	$0.5^{+1.3}_{-0.4}$

СПИСОК ЛИТЕРАТУРЫ

- 1. Yu. Ts. Oganessian et al., Phys. Rev. C 69, 021601(R) (2004).
- 2. Yu. Ts. Oganessian et al., Phys. Rev. C 87, 014302 (2013).
- 3. Yu. Ts. Oganessian et al., Phys. Rev. C 87, 054621 (2013).
- 4. D. Rudolph et al., Phys. Rev. Lett. 111, 112502 (2013).

- 5. J. M. Gates et al., Phys. Rev. C 92, 021301(R) (2015).
- 6. U. Forsberg et al., Nucl. Phys. A 953, 117 (2016).
- 7. J. Khuyagbaatar et al., Phys. Rev. C 99, 054306 (2019).
- 8. J. M. Gates et al., Phys. Rev. Lett. 121, 222501 (2018).
- 9. S. N. Dmitriev et al., Mendeleev Commun. 24, 253 (2014).
- 10. G. G. Gulbekian et al., Phys. Part. Nucl. Lett. 16, 866 (2019).
- 11. Yu. Ts. Oganessian et al., Nucl. Instrum. Methods Phys. Res. A 1033, 166640 (2022).
- 12. Yu.Ts. Oganessian et al., Phys. Rev. C (to be published).
- 13. A. G. Popeko, Nucl. Instrum. Methods Phys. Res. B 376, 144 (2016).
- 14. D. I. Solovyev and N. D. Kovrizhnykh, J. Instrum. 17, P07033 (2022).
- 15. M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).
- I. Muntian, S. Hofmann, Z. Patyk, and A. Sobiczewski, Acta Phys. Polonica B 34, 2073 (2003).
- 17. N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014).
- 18. Yu. Ts. Oganessian et. al. (unpublished).
- 19. Yu. Ts. Oganessian et al., Phys. Rev. C 76, 011601(R) (2007).
- 20. Yu. Ts. Oganessian et al., Phys. Rev. C 69, 054607 (2004).
- 21. P. A. Ellison et al., Phys. Rev. Lett. 105, 182701 (2010).
- 22. Yu. Ts. Oganessian and V. K. Utyonkov, Nucl. Phys. A 944, 62 (2015).
- 23. A. V. Karpov, V. I. Zagrebaev, Y. Martinez Palenzuela, L. Felipe Ruiz, and Walter Greiner, International Journal of Modern Physics E **21**, 1250013 (2012).

24. P. Sarriguren, Phys. Rev. C 100, 014309 (2019).

25. P. Möller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).

ПОДПИСИ К РИСУНКАМ

РИС. 1: Распределение энергии α-подобных событий в зависимости от времени их обнаружения по отношению к времени регистрации SF (a), распределение событий по времени с $E_{\alpha} = 7.6 - 8.0$ МэВ (б) и распределение энергии событий, зарегистрированных за 10 часов до SF (в). Большая часть событий с $E_{\alpha} \ge 9$ МэВ возникает в результате α-распадов 272 Bh – 284 Nh. На рис. 1(г) показана кривая распада 268 Db, см. текст. На рис. 1(д) представлен спектр α-подобных событий, зарегистрированных во время всех трех опытов.

РИС. 2: Спектр α-частиц ^{286–289}Мс и дочерних ядер. События, зарегистрированные в обеих сериях экспериментов [12, 18], показаны закрытыми гистограммами, а их совокупность с ранее известными данными - открытыми гистограммами.

РИС. 3: Сечения 2n-, 3n-, 4n- и 5n-испарительных каналов реакции 243 Am + 48 Ca. Ошибки в величине сечения соответствуют полным неопределённостям. Символы со стрелками показывают верхние пределы сечений. Данные, показанные открытыми, полузакрытыми, и закрытыми символами взяты из работ [4, 5], [2] и [12, 18] соответственно. Пунктирные линии нарисованы через данные для упрощения визуального восприятия.

FIRST EXPERIMENT AT THE SUPER HEAVY ELEMENT FACTORY: NEW DATA FROM THE ²⁴³Am+⁴⁸Ca REACTION

© 2022 г. N.D. Kovrizhnykh^{1,*}, Yu.Ts. Oganessian¹, V.K. Utyonkov¹, F.Sh.

Abdullin¹, S.N. Dmitriev¹, A.A. Dzhioev¹, D. Ibadullayev^{1,2}, M.G. Itkis¹, A.V.

Karpov¹, D.A. Kuznetsov¹, O.V. Petrushkin¹, A.V. Podshibiakin¹, A.N.

Polyakov¹, A.G. Popeko¹, I.S. Rogov¹, R.N. Sagaidak¹, L. Schlattauer^{1,3}, I.V.

Shirokovski¹, V.D. Shubin¹, M.V. Shumeiko¹, D.I. Solovyev¹, Yu.S.

Tsyganov¹, A.A. Voinov¹, V.G. Subbotin¹, A.Yu. Bodrov^{1,4}, A.V. Sabel'nikov¹, A.V. Khalkin¹, V.B. Zlokazov¹, K.P. Rykaczewski⁵, T.T. King⁵, J.B. Roberto⁵, N.T. Brewer⁵, R.K. Grzywacz^{5,6}, Z.G. Gan⁷, Z.Y. Zhang⁷, M.H. Huang⁷, H.B. Yang^{1,7}

¹Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation

²L.N. Gumilyov Eurasian National University, 010000 Nur-Sultan, Kazakhstan

³*Palacky University Olomouc, Department of Experimental Physics, Faculty of*

Science, 771 46 Olomouc, Czech Republic

⁴Lomonosov Moscow State University, Department of Chemistry, Radiochemistry

division, RU-119991 Moscow, Russian Federation

⁵Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

⁶Department of Physics and Astronomy, University of Tennessee, Knoxville,

Tennessee 37996, USA

⁷Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

*Электронный адрес: <u>kovrizhnyx@jinr.ru</u>

Received by the editorial office 23.09.2022 After completion 25.09.2022 Accepted for publication 30.10.2022

We present results of the series of experiments on the synthesis of Mc isotopes in the 243 Am+ 48 Ca reaction performed at the new separator DGFRS-2 and cyclotron DC280 of the SHE Factory at FLNR JINR. There were registered 110 new 288 Mc decay chains, 10 289 Mc chains, and 4 287 Mc chains. Alpha decay of 268 Db with an energy of 7.6 - 8.0 MeV, half-life 16 $^{+6}_{-4}$ h and α -branch 51 $^{+149}_{-12}$ % was registered for the first time

together with a new spontaneously fissioning isotope ²⁶⁴Lr with a half-life of $4.8_{-1.3}^{+2.2}$ h. The measured cross section of the ²⁴³Am(⁴⁸Ca,3n)²⁸⁸Mc reaction was $17.1_{-4.7}^{+6.3}$ pb, which is the largest for known superheavy nuclei. A new isotope ²⁸⁶Mc was synthesized with a half-life of 20_{-9}^{+98} ms and an α -particle energy of 10.71 ± 0.02 MeV. Spontaneous fission of ²⁷⁹Rg was first observed in one of the four new decay chains of ²⁸⁷Mc. The reaction excitation function was measured at six ⁴⁸Ca energies in the range of 239 – 259 MeV, which led to the first observation of the 5n channel with a cross section of $0.5_{-0.4}^{+1.3}$ pb. The decay properties of 20 previously known isotopes have been determined with higher accuracy.