УДК 539.1

ИССЛЕДОВАНИЕ РЕАКЦИИ ²⁴²Pu + ⁴⁸Ca НА ФАБРИКЕ СВЕРХТЯЖЁЛЫХ ЭЛЕМЕНТОВ

© 2022 Д. Ибадуллаев^{1,5,6} *, В. К. Утенков¹, Ю. Ц. Оганесян¹, Ф.Ш. Абдуллин¹, С.Н. Дмитриев¹, М.Г. Иткис¹, А.В. Карпов¹, Н.Д. Коврижных¹, Д.А. Кузнецов¹, О.В. Петрушкин¹, А.В. Подшибякин¹, А.Н. Поляков¹, А.Г. Попеко¹, Р.Н. Сагайдак¹, Л. Шлаттауэр^{1,7} В.Д. Шубин¹, М.В. Шумейко¹, Д.И. Соловьев¹, Ю.С. Цыганов¹, А.А. Воинов¹, В.Г. Субботин¹, А.Ю. Бодров¹, А.В. Сабельников¹, А. Линднер^{1,7}, К.П. Рикашевски², Т.Т. Кинг², Дж.Б. Роберто², Н.Т. Брюуэр², Р.К. Гживатч^{2,3}, З.Г. Ган⁴, З.И. Жан⁴, М.Х. Хуан⁴, Х.Б. Ян^{1,4} и и Ш.Г. Гиниятова⁶

¹Объединённый институт ядерных исследований, 141980 Дубна, Россия ²Ок-Риджская Национальная Лаборатория, Ок-Ридж, Теннесси 37831, США ³Департамент Физики и Астрономии, Университет Теннесси, Ноксвилл, Теннесси 37996, США

⁴ Институт Современной Физики, Китайская Академия Наук, Ланьчжоу 730000, Китай

⁵Институт ядерной физики, 050032 Алматы, Казахстан

⁶Евразийский Национальный Университет им. Л.Н. Гумилёва, 010000 Нур-Султан, Казахстан

⁷Университет Палацкого, 771 46 Оломоуц, Чехия

*E-mail: Ibadullayev@jinr.ru

Поступила в редакцию После доработки Принята к публикации

Эксперименты по синтезу изотопов 114 элемента в реакции 242 Pu + 48 Ca проведены на новом газонаполненном сепараторе DGFRS-2, установленном на пучке циклотрона ДЦ-280 Фабрики Сверхтяжёлых Элементов в ЛЯР ОИЯИ. Были уточнены свойства распада 286 Fl и 287 Fl, а также продуктов их α-распада.

Обсуждается возможность существования изомерных состояний у ядер в цепочке последовательных α -распадов ²⁸⁷Fl. Измерено максимальное сечение $10.4^{+3.5}_{-2.1}$ пб реакции ²⁴²Pu(⁴⁸Ca, 3n)²⁸⁷Fl.

ВВЕДЕНИЕ

В данной статье будут представлены результаты экспериментов с мишенью из ²⁴²Pu [1], проведенных на Фабрике Сверхтяжелых Элементов (Фабрика СТЭ) [2] ЛЯР, ОИЯИ, Дубна. Пучок ионов ⁴⁸Ca, ускоренных на новом циклотроне ДЦ-280, сталкивается с мишенью из обогащенного изотопа ²⁴²Pu, нанесённого на титановую подложку. Выбитые из мишени продукты реакции попадают в газонаполненный сепаратор DGFRS-2 [3], который отделяет их от пучка ионов ⁴⁸Ca и фоновых частиц. Этот и предыдущий эксперимент ²⁴³Am + ⁴⁸Ca [4] были проведены с целью тестирования возможностей Фабрики СТЭ для получения и изучения новых изотопов известных сверхтяжелых элементов до Og (Z=118), а также синтеза новых элементов с Z>118.

Реакцию ²⁴²Pu + ⁴⁸Ca планируется использовать для дальнейшего изучения химических свойств элемента Fl (Z=114). Для подготовки и проведения таких экспериментов необходимо более точно измерить сечение в максимуме функции возбуждения реакции ²⁴²Pu(⁴⁸Ca, 3n), а также свойства распада ²⁸⁷Fl (T_{1/2} \approx 0.5 c) и его дочерних ядер.

Сечение реакции и свойства ядер в цепочке распада ²⁸⁷Fl были впервые измерены на DGFRS в 2003 году [5-8]. Всего было зарегистрировано 19 цепочек распада ²⁸⁷Fl в реакциях с ^{242, 244}Pu и ²⁴⁵Cm. Те же изотопы наблюдались в экспериментах по изучению химических свойств элементов Cn [9] и Fl [10] (6

цепочек), а также на сепараторах SHIP (1 цепочка ²⁹¹Lv и 4 цепочки ²⁸³Cn [11-13]), BGS (1 цепочка ²⁸⁷Fl [14]) и GARIS-II (2 цепочки ²⁸³Cn [15]).

В реакциях ²⁴²Pu, ²⁴⁵Cm + ⁴⁸Ca на DGFRS также был синтезирован и наблюдался как дочерний продукт более легкий изотоп ²⁸⁶Fl [6-8]. Две цепочки распада ²⁸⁶Fl были получены на сепараторе BGS в реакции ²⁴²Pu + ⁴⁸Ca [14,16].

ПОСТАНОВКА ЭКСПЕРИМЕНТА

Эксперимент по синтезу изотопов флеровия был проведён с марта по июнь 2021 года. Основные параметры эксперимента приведены в Табл. 1.

Мишень состояла из обогащенного изотопа ²⁴²Pu (95.5%) и изготавливалась электроосаждением на подложке из Ті толщиной 0.62 мг/см². Мишень состояла из 12 секторов, которые устанавливались по периметру диска диаметром 24 см, и вращалась со скоростью 980 об/мин.

Объём сепаратора DGFRS-2 [3] от системы дифференциальной откачки до детекторной камеры был заполнен водородом под давлением 0.9 мбар. Детекторная камера была отделена от объёма DGFRS-2 майларовой фольгой толщиной 0.7 мкм и заполнена пентаном под давлением 1.6 мбар.

Фокальный детектор размером 48 мм по вертикали и 220 мм по горизонтали состоял из двух двухсторонних кремниевых стриповых детекторов размером 48×128 мм² (Micron Semiconductor Ltd.). Они были установлены один за другим так, что передний детектор закрывал часть заднего детектора. Эти детекторы были окружены восемью односторонними боковыми детекторами размером 60×120 мм², каждый с 8 стрипами, образующими коробку глубиной

120 мм. Все сигналы в детекторах с амплитудами выше порога (E_n) 0.55–0.6 МэВ регистрировались независимо цифровыми и аналоговыми системами сбора данных, аналогичными используемым на DGFRS [17].

Перед детекторами были установлены две многопроволочные пропорциональные камеры для регистрации ядер, прошедших через сепаратор [3]. Аналоговая электроника была создана для регистрации в режиме реального времени пространственных, энергетических и временных корреляций между сигналами от имплантации ядер (ER) в детекторы и их α-распадами, зарегистрированными с полной энергией, с параметрами, ожидаемыми для изотопов Fl или их дочерних ядер (а именно, энергии событий и временные интервалы ER- α). Эта пара коррелированных событий приводила к отключению пучка через 0.1 мс после регистрации первой α-частицы для наблюдения распадов дочерних ядер в условиях низкого фона [18-20].

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Энергии α -частиц или осколков деления и времена распада ядер в цепочках, относящихся к ²⁸⁷Fl и ²⁸⁶Fl, приведены в [1]. Энергетические спектры и временные распределения α -частиц ²⁸⁷Fl, ²⁸³Cn, ²⁷⁹Ds, ²⁷⁵Hs, ²⁷¹Sg и ²⁶⁷Rf (только временное распределение), обнаруженных в [5-15] и в данной работе, показаны на Рис. 1. Для спектров α -частиц выбирались события с энергетическим разрешением лучше 40 кэВ. Для распределения времен распада были выбраны только распады после зарегистрированного ближайшего предшественника.

²⁸⁷Fl Количество зарегистрированных цепочек распада новых приблизительно в три раза превышает количество ядер, синтезированных во всех предыдущих экспериментах, что позволяет точнее определить их свойства распада. Периоды полураспада, измеренные в этой работе, составляют 0.33 ± 0.04 с, $3.7^{+0.5}_{-0.4}$ с, 0.18 ± 0.02 с, $0.78^{+0.38}_{-0.19}$ с, 28^{+14}_{-7} с, и 40^{+23}_{-11} мин для изотопов ²⁸⁷Fl, ²⁸³Cn, ²⁷⁹Ds, ²⁷⁵Hs, ²⁷¹Sg и ²⁶⁷Rf соответственно. Следует отметить, что в предыдущих экспериментах было обнаружено только 4 цепочки ²⁸⁷Fl, в которых ²⁷⁹Ds испытывает α-распад. Энергетические спектры, измеренные в данном эксперименте, хорошо согласуются с результатами предыдущих экспериментов. Однако период полураспада ²⁸⁷Fl оказался ниже ранее измеренного значения (0.36 ± 0.04 с вместо $0.48^{+0.14}_{-0.09}$ с), что может снизить чувствительность эксперимента по изучению химических свойств Fl.

Если выделить из α-частиц ²⁸⁷Fl и ²⁸³Cn только те, которые сопровождаются α -распадом ²⁷⁹Ds, то можно заметить небольшое отличие их энергетических от суммарных α-спектров спектров этих ИЗОТОПОВ. Распределения энергий α-частиц и времен распада ядер в таких случаях показаны чёрными гистограммами на Рис. 1. Представляется, что относительно большая энергий таких частиц приходится на более часть низкую энергетическую область спектра. Например, 11 из 66 событий (17%) всего спектра ²⁸⁷Fl были зарегистрированы с Е_а<9.94 МэВ, но большая часть, 2 из 8 событий (25%), приведших к а-распаду ²⁷⁹Ds, наблюдались в этой низкоэнергетической области. Для α-частиц ²⁸³Сп с E_α<9.44 МэВ эти отношения

составляют 9/82 (11%) и 3/9 (33%) соответственно. Кроме того, периоды полураспада ²⁸⁷Fl и ²⁸³Cn в таких цепочках несколько меньше тех, которые определены по сумме событий, $T_{1/2}=0.21^{+0.10}_{-0.05}$ с и $2.8^{+1.1}_{-0.6}$ с соответственно (сравните с данными Рис. 1). Период полураспада ²⁷⁹Ds, определенный по его α-распаду, составляет $0.16^{+0.06}_{-0.04}$ с, что аналогично значению, рассчитанному по всем событиям. Очевидно, что эти наблюдения основаны на небольшом количестве событий, и для их подтверждения или опровержения требуются дальнейшие исследования. Если это действительно так, то это может означать, что структура уровней ядер, участвующих в α-распаде, влияет на вероятность деления. Аналогичная особенность наблюдается у ²⁶¹Rf, который имеет два состояния с $T_{1/2}=68$ с, $E_{\alpha}=8.28$ МэВ, ветвь спонтанного деления (SF) $b_{SF}<0.11$ и $T_{1/2}=3$ с, $E_{\alpha}=8.51$ МэВ, $b_{SF}=0.91$ (см., например, [21]).

В реакции ²⁴²Pu+⁴⁸Ca также зарегистрировано 25 распадов соседнего изотопа ²⁸⁶Fl [1]. Спонтанное деление ²⁸⁶Fl зарегистрировано в 11 из 25 цепочек распадов. Такое количество α-распадов и событий SF хорошо согласуется с известной ветвью для α-распада этого изотопа, $b_{\alpha}=60^{+10}_{-11}$ % [5]. Энергетический спектр ²⁸⁶Fl и распределения времен распада ²⁸⁶Fl, наблюдавшихся в [6-8,14,16-17,22] и этой работе, показаны на Рис. 2. Новые данные хорошо согласуются с ранее известными результатами. Период полураспада, измеренный в этой работе, составляет 91^{+22}_{-15} мс для ²⁸⁶Fl. Энергетический спектр вновь измеренных α-частиц также согласуется со спектром, представленным в [5] для ²⁸⁶Fl. Для четно-четного ²⁸⁶Fl впервые обнаружены три α -частицы с E_{α}=10.003±0.036, 10.050±0.027 и 10.109±0.016 МэВ, отличающиеся, с учетом энергетических неопределенностей, от энергии основной линии 10.19 МэВ. Времена их распада выделены чёрным на Рис. 2. Энергия второго пика E_{α} =10.054±0.053 МэВ ниже энергии основной линии примерно на 100-200 кэВ.

Возможной причиной таких α -переходов является распад на первый ротационный уровень 2+ ²⁸²Cn. Ветвь α -распада в основное состояние (0+) и на ротационный уровень 2+ оценивается согласно [23] как 67% и 33% соответственно. Экспериментальные значения составляют около 82% и 18%. Наблюдаемое различие между расчетными и измеренными значениями ветви распада может быть связано с двумя факторами: недостаточной статистикой распадов на возбужденный уровень и/или завышенным значением деформации β_2 , использованной в расчетах.

Другое объяснение основано на предсказанных изомерных состояниях. Схема двухквазичастичных уровней ²⁸⁶Fl и его дочернего ядра ²⁸²Cn была предложена в [24]. Согласно расчетам, энергия 10.05 МэВ может быть обусловлена заселением в прямой реакции ²⁴²Pu + ⁴⁸Ca двухквазипротонного изомерного состояния 5⁺_{π} у ²⁸⁶Fl и последующим распадом на тот же уровень 5⁺_{π} у ²⁸²Cn. Имеется хорошее согласие между экспериментальными и теоретическими результатами.

В эксперименте с ²⁴²Ри энергии ⁴⁸Са выбирались близкими к ожидаемым максимумам сечений 3n- и 4n-каналов. Для 4n-канала измеренные сечения не

противоречат известным ранее значениям [6,16], см. Рис. 3. Максимальное сечение 3n-канала превышает значение, измеренное в [6], примерно в 3 раза. Такие различия могут быть связаны с небольшим количеством ядер, зарегистрированных в предыдущих экспериментах. Кроме того, повышенное значение сечения можно объяснить тем, что энергия ⁴⁸Ca в текущих экспериментах была ближе к максимуму функции возбуждения, чем в [6]. Также на расчетное значение сечения влияла настройка магнитных элементов DGFRS, определяющая его трансмиссию, а также точность оценки толщины мишени и дозы пучка. Для расчета сечений реакций с мишенью толщиной 0.76 мг/см² использовалась трансмиссия 50% [25, 26].

ЗАКЛЮЧЕНИЕ

Реакция ²⁴²Pu+⁴⁸Ca изучена при двух энергиях пучка на новом сепараторе DGFRS-2. Свойства распада ²⁸⁶Fl и ²⁸⁷Fl, а также их дочерних ядер были уточнены благодаря 25 и 69 новым цепочкам распада соответственно.

Максимальное сечение 3n-канала, ведущего к ²⁸⁷Fl, оказалось примерно в три раза больше, чем было измерено в предыдущих экспериментах.

Два разных α -перехода в основное состояние и на возбужденный уровень в цепочках распадов ²⁸⁷Fl, приводящих к α -распаду ²⁷⁹Ds в одном случае и его SF в другом, могут следовать из несколько разных энергий α -частиц и периодов полураспада ²⁸⁷Fl и ²⁸³Cn.

Для четно-четного ²⁸⁶Fl впервые наблюдалась новая α-линия с энергией на 100-200 кэВ ниже основного пика. Обсуждается возможное происхождение

этой линии, а именно, заселение ротационного уровня $2+y^{282}$ Cn или переход, соединяющий изомерные состояния у 286 Fl и 282 Cn.

Эти исследования поддержаны Министерством науки и высшего образования Российской Федерации в рамках гранта № 075-10-2020-117 и грантом дирекции ОИЯИ, а также грантами DE-AC05-00OR22725 Министерства энергетики США и XDB34010000 Китайской академии наук.

СПИСОК ЛИТЕРАТУРЫ

- Oganessian Yu.Ts., Utyonkov V.K., Ibadullayev D. et. al. // Phys. Rev. C. 2022. V. 106. No. 2. P. 024612.
- 2. Gulbekian G.G. et. al. // Phys. Part. Nucl. Lett. 2019. V. 16 P. 866.
- Oganessian Yu.Ts., Utyonkov V.K., Solovyev D.I. et. al. // Nucl. Instrum. Methods Phys. Res. A. 2022. V. 1033. P. 166640.
- 4. Oganessian Yu.Ts., Utyonkov V.K., Kovrizhnykh N.D. et. al. // Phys. Rev. C (to be published).
- 5. Oganessian Yu.Ts. and Utyonkov V. K. // Nucl. Phys. A. 2015. V. 944, P. 62.
- 6. Oganessian Yu.Ts. et. al. // Phys. Rev. C. 2004. V. 70. P. 064609.
- 7. Oganessian Yu.Ts. et. al. // Phys. Rev. C. 2004. V. 69. P. 054607.
- 8. Oganessian Yu.Ts. et. al. // Phys. Rev. C. 2006. V. 74. P. 044602.
- 9. Eichler R. et. al. // Angew. Chem. Int. Ed. 2008. V. 47. P. 3262.
- 10. Eichler R. et. al., Radiochim. Acta. 2010. V. 98. P. 133.
- 11. Hofmann S. et. al. // Eur. Phys. J. A. 2007. V. 32. P. 251.
- 12. Hofmann S. et. al. // Eur. Phys. J. A. 2016. V. 52. P. 180.
- 13. Hofmann S. et. al. // Eur. Phys. J. A. 2012. V. 48. P. 62.
- 14. Stavsetra L., Gregorich K.E. et. al., Phys. Rev. Lett. 2009. V. 103. P. 132502.
- Daiya Kaji, Kouji Morimoto, Hiromitsu Haba et. al., J. Phys. Soc. Jpn. 2017. V.
 86. P. 085001.

- 16. Ellison P.A. et. al. // Phys. Rev. Lett. 2010. V. 105, P. 182701.
- 17. Brewer N.T. et. al. // Phys. Rev. C. 2018. V. 98. P. 024317.
- 18. *Ibadullayev D.*, *Tsyganov Yu.S. et. al.* // Eurasian Journal of physics and functional materials. 2022. V. 6. No.1. P. 18-31.
- *Tsyganov Yu.S., Ibadullayev D. et. al.* // Acta Phys. Pol. B Proc. Suppl. 2021. V.
 14. No. 4. P. 767-774.
- Ibadullayev D., Tsyganov Yu.S. et. al. // Acta Phys. Pol. B Proc. Suppl. 2021. V.
 14. No. 4. P. 873-878.
- 21. Haba H. et. al., Phys. Rev. C. 2011. V. 83. P. 034602.
- 22. Såmark-Roth A. et al. // Phys. Rev. Lett. 2021. V. 126. P. 032503.
- 23. Kuklin S.N., Shneidman T.M., Adamian G.G., and Antonenko N.V. // Eur. Phys. J. A. 2012. V. 48. P. 112.
- 24. *Kuzmina A.N., Adamian G.G., and Antonenko N.V.* // Phys. Rev. C. 2012. V. 85. P. 027308.
- 25. Popeko A.G. // Nucl. Instrum. Methods Phys. Res. B. 2016. V. 376. P. 144.
- 26. Solovyev D.I. and Kovrizhnykh N.D. // J. Instrum. 2022. V. 17. P. 07033.

ПОДПИСИ К РИСУНКАМ

Рис. 1. Энергетические спектры α -частиц (а) – (е) и распределения времен распада в логарифмическом масштабе (f) – (k) для ²⁸⁷Fl и дочерних ядер. Данные этой работы и их совокупность с известными результатами показаны серой и открытой гистограммами соответственно. Энергии α -частиц и времена распада ²⁸⁷Fl и ²⁸³Cn с последующим α -распадом ²⁷⁹Ds, а также времена α -распада ²⁷⁹Ds показаны чёрным цветом.

Рис. 2. То же, что и на Рис. 1, но для ²⁸⁶Fl. Времена распада ²⁸⁶Fl с низкими энергиями α-частиц показаны черным цветом.

Рис. 3. Сечения реакции ²⁴²Pu+⁴⁸Ca с испарением от 2 до 5 нейтронов. Данные, показанные открытыми, полузакрытыми и закрытыми символами, взяты из [11,15,16], [6] и этой работы соответственно.

Табл. 1. Параметры эксперимента ²⁴²Pu + ⁴⁸Ca: Приведены толщины мишени из ²⁴²Pu, лабораторные энергии ⁴⁸Ca в центре мишени, соответствующие энергии возбуждения составного ядра ²⁹⁰Fl, дозы пучка, количество зарегистрированных цепочек распада изотопов Fl и сечения их образования.

Толщина	E_{lab}	E^*	Доза	Кол-во	σ_{3n}	σ_{4n}
мишени	(MəB)	(МэВ)	пучка	цепочек		(pb)
(мг/см ²)			(×10 ¹⁸)	3n/4n	(pb)	
²⁴² Pu	242.5	37.1-40.7	11.2	65/11	$10.4^{+3.5}_{-2.1}$	$1.8^{+1.0}_{-0.6}$
10×0.76, 0.56,						
0.35	247.5	41.3-44.8	5.0	4/14	$1.2^{+1.2}_{-0.7}$	$4.8^{+2.1}_{-2.1}$

Рис. 1.

Рис. 3

Study of the ²⁴²Pu + ⁴⁸Ca reaction at Super Heavy Element Factory

© 2022 D. Ibadullayev^{1,5,6}*, V.K. Utyonkov¹, Yu. Ts. Oganessian¹, F. Sh.

Abdullin¹, S. N. Dmitriev¹, M. G. Itkis¹, A. V. Karpov¹, N. D. Kovrizhnykh¹, D.

A. Kuznetsov¹, O. V. Petrushkin¹, A. V. Podshibiakin¹, A. N. Polyakov¹, A. G.

Popeko¹, R. N. Sagaidak¹, L. Schlattauer^{1,7}, V. D. Shubin¹, M. V. Shumeiko¹, D.

I. Solovyev¹, Yu. S. Tsyganov¹, A. A. Voinov¹, V. G. Subbotin¹, A. Yu. Bodrov¹,

A.V. Sabel'nikov¹, A. Lindner^{1,7}, K. P. Rykaczewski², T. T. King², J. B. Roberto²,

N. T. Brewer², R. K. Grzywacz^{2,3}, Z. G. Gan⁴, Z. Y. Zhang⁴, M. H. Huang⁴, H. B.

Yang^{1,4} and Sh.G. Giniyatova⁶

 ¹Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation ²Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ³Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
 ⁴Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ⁵Institute of Nuclear Physics, 050032 Almaty, Kazakhstan
 ⁶L.N. Gumilyov Eurasian National University, 010000 Nur-Sultan, Kazakhstan ⁷Palacky University Olomouc, Department of Experimental Physics, Faculty of Science, 771 46 Olomouc, Czech Republic

*E-mail: <u>Ibadullayev@jinr.ru</u>

Experiments on the synthesis of isotopes of element 114 in the ²⁴²Pu + ⁴⁸Ca reaction were carried out at a new gas-filled separator DGFRS-2 online to the DC-280 cyclotron of the Superheavy Element Factory at FLNR JINR. The decay properties of ²⁸⁶Fl and ²⁸⁷Fl, as well as their α -decay products, were refined. The possibility of the existence of isomeric states in successive α -decays of ²⁸⁷Fl is discussed. The maximum cross section of $10.4^{+3.5}_{-2.1}$ pb was measured for the ²⁴²Pu(⁴⁸Ca, 3n)²⁸⁷Fl reaction.