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Abstract: A development of the neutron imaging facilitates provides the growing range of its appli- 11 
cation in different research fields. The significance of the obtained structural information among 12 
others depends on the reliability of phase segmentation. We focused on the problem of the segmen- 13 
tation of pores in low-resolution images and tomography data, taking into consideration possible 14 
image corruptions in the neutron tomography experiment. Two pores segmentation techniques are 15 
proposed. There are the binarization of the enhanced contrast data using the global threshold, and 16 
the segmentation using the modified watershed technique – local threshold by watershed. The pro- 17 
posed techniques were compared with conventional marker-based watershed on the test images 18 
simulating low-quality tomography data and on the neutron tomography data of the samples of 19 
magnesium potassium phosphate cement (MKP). The obtained results demonstrate the advantages 20 
of the proposed techniques over conventional watershed-based approach. 21 
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1. Introduction 24 

Over the past years, neutron imaging (neutron radiography and tomography) has 25 
become a widely used non-destructive method realized at dozens neutron facilities over 26 
the world [1]. The specifics of neutron interaction with matter, such as high penetration 27 
into material volume and sensitivity to both light and heavy nucleus, provoke a growing 28 
range of applications of neutron radiography and tomography [2-3] including engineer- 29 
ing, plant science, petrophysics, cultural heritage, cement research, etc. In particular case 30 
of cement materials, aggregates, cracks, pores and other kind of inclusions or phases in- 31 
side the cement matrix can be visualized using neutron tomography [4]. Based on the 32 
obtained structural data, physical and mechanical properties of cement materials can be 33 
predicted [5]. 34 

However, what makes neutron imaging unique or advantageous as compared to 35 
other imaging techniques (e.g., X-ray CT), it makes difficult to work with neutrons and to 36 
build a high-quality measurement setup, including beam collimation, an efficient detector 37 
system, low radiation background, and the desired energy spectrum of neutrons. The res- 38 
olution of the neutron images is mostly constrained by the parameters of the pin-hole 39 
geometry, thickness and efficiency of the scintillator screen [6]. Complex radiation condi- 40 
tions and background, which formed by scattered neutrons from sample itself, as well as 41 
an unfocused camera, additionally decrease the image quality. As an example, it is sche- 42 
matically shown in Figure 1 the formation of the neutron radiographic image of the phan- 43 
tom ‘hole’ that simulates a pore in a material. The hole is transparent for neutrons, i.e. 44 
neutron attenuation coefficient equals zero everywhere within its boundaries. However, 45 
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we find that intensity of neutrons behind the phantom after the flat field correction is not 46 
uniform, and depends on the distance between phantom and the scintillator screen. There- 47 
fore, even the center point of the hole may appear to be attenuative (see Figure 1). The 48 
center point of the hole will be fully transparent for neutrons (incoming intensity equals 49 
detected one) if the following condition is fulfilled: 50 𝑑௛ ≥ 𝑙 1𝐿/𝐷 (1) 

where dh – hole diameter of the phantom, l – distance from the phantom to the scintillator 51 
screen, L – distance between the pin-hole and the scintillator screen, D – diameter of the 52 
pin-hole. Due to l ≠ 0, the resulted radiographic image of the phantom is blurred, and the 53 
holes with different sizes will appear differently in the image following Equation (1). The 54 
presence of the additional background brings corresponding artifacts to the data, making 55 
the studied sample artificially less attenuative [6-7]. Assuming the intensity of the back- 56 
ground to be small compared to the intensity of the neutron beam, the contribution of the 57 
background to the measured projection may be expressed through: 58 𝑃௠௘௔௦ ≈ 𝑃௦௔௠௣௟௘ − 𝑒௉ೞೌ೘೛೗೐ ∆ூ್ೌ೎ೖ೒ೝ೚ೠ೙೏ூబ , (2) 

where Pmeas – measured projection, Psample – projection solely of the sample, ∆Ibackground – back- 59 
ground intensity, I0 – open beam intensity. Equation (2) must be modified for accounting 60 
the additional blur coming from scintillator and unfocused camera. As a result, measured 61 
neutron images can be expressed as 62 𝐼௠௘௔௦௨௥௘ௗ = 𝐵௖௔௠௘௥௔ ∗ 𝐵௦௖௜௡௧ ∗ ൫𝐼௦௔௠௣௟௘ + ∆𝐼௕௔௖௞௚௥௢௨௡ௗ൯, (3) 

where ∗ denotes the convolution, and 𝐵௖௔௠௘௥௔, 𝐵௦௖௜௡௧  are the kernels defining the blur 63 
from unfocused camera and scintillator respectively. 64 

 65 

Figure 1. Illustration of the blurring effect in the pin-hole geometry (see Equation (1)). Numbers 66 
denote three base rays of the neutron beam. When the phantom is placed at distance l from the 67 
scintillator the center point of the hole will be absolutely transparent for neutrons, because ூூబ = 68 ூభାூమାூయூభାூమାூయ = 1. At distance 𝑙ᇱ ூூబ = ூᇱభାூమାூᇱయூభାூమାூయ < 1, and the hole appears to be attenuative even in its center 69 

point. 70 

The considered example of the phantom ‘hole’ is intended to demonstrate the for- 71 
mation of neutron images of porous materials and to highlight fact that the data obtained 72 
after the tomographic reconstruction may have low resolution and artifacts. The arising 73 
problem is how to discriminate the pores against other phases in the reconstructed im- 74 
ages, because the aforementioned corruptions produce the effect of uneven illumination 75 
making some pores more or less attenuative in neutron images than others. 76 

There is a large number of segmentation methods and its modifications used in the 77 
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image analysis in different fields of research. Concerning pore segmentation in the tomog- 78 
raphy data, Otsu’s thresholding [8], k-means [9], region growing [10], watershed [11], 79 
kriging [12] and machine learning techniques [13] have been commonly utilized. The ex- 80 
tensive overview by [14] and [15] cover most of the segmentation techniques used in X- 81 
ray tomography studies of porous materials. However, there is no any universal pore seg- 82 
mentation technique that robustly works for any kind of data, especially, when the image 83 
quality is poor [16-17]. In addition, we have not found in literature the pore segmentation 84 
techniques specifically designed for the neutron tomography data. 85 

In this work, we present pore segmentation techniques for low-resolution data. One 86 
of them is the application of the morphological enhance contrast operators, while the sec- 87 
ond one is the extension of the conventional watershed-based technique, that we called 88 
local threshold by watershed segmentation (LTWS). The proposed techniques were com- 89 
pared on the test images simulating low-quality tomography data and on the ‘real’ neu- 90 
tron tomography data obtained for the samples of magnesium potassium phosphate 91 
(MKP) cement. 92 

2. Pore segmentation techniques 93 

2.1. Global threshold of the ecnhanced contrast data 94 

Quality of the reconstructed data significantly suffers from all blurring effects and 95 
artifacts. The corresponding effect of the uneven illumination does not allow for the reli- 96 
able choice of the global threshold. At any chosen gray level, as a global threshold, there 97 
will be the segmented pores, that are oversized, undersized or both, as compared to the 98 
ground truth. The effect of the uneven illumination may be diminished by enhancing the 99 
overall contrast of the image, i.e., by increasing the gradients at the boundaries of phases. 100 
Then, the corrected image can be binarized using the global threshold. 101 

The corresponding enhance contrast operator for the gray-tone image f can be con- 102 
structed from the morphological top-hat operators [18]. The top-hat contrast operator for 103 
a given structural element or a connected neighborhood is defined as: 104 𝜅்ு(𝑓) = 3𝑓 − 𝜙(𝑓) − 𝛾(𝑓), (4) 

where 𝜙 and 𝛾 are the morphological closing and opening operators, respectively. The 105 
output image is further constrained to the dynamic range of an input image as [0, 𝑓௠௔௫] 106 
in case of porous materials. Subsequent application of 𝜅்ு  multiple times will finally 107 
transform the input image into the binary one. However, the result of such ultimate bina- 108 
rization will show connected regions of local maxima and minima rather, than the seg- 109 
mented regions corresponding to  pores. This is also due to the fact, that most of the stud- 110 
ied materials are presented by more than two phases (e.g., pores, matrix and highly atten- 111 
uative phase inside the matrix) and thus require at least trinarization. 112 

The dynamic range of the top-hat contrast operator can be saturated by adding factor 113 
n, that scales the impact of the top-hat operators. By such definition: 114 𝜅௡்ு(𝑓) = (2𝑛 + 1)𝑓 − 𝑛 ∙ 𝜙(𝑓) − 𝑛 ∙ 𝛾(𝑓), (5) 

and the contrast operator can be tuned by n as any positive number. Range of n < 1 is 115 
useful for preserving the integer format of the output image or for constraining the effect 116 
of contrast operator. We note, that there is finite number 𝑛୫ୟ୶, at which the top-hat con- 117 
trast operator (5) becomes independent on n, and the output image becomes flattened, so 118 
that the local minima or maxima no longer exist (but only global extrema). 119 

Enhance contrast operator can also be constructed from the median filter as well. If 120 
m is medium operator, then the following decomposition into increasing (𝑚௜) and decreas- 121 
ing (𝑚ௗ) medium filters can be used: 122 𝑚௜ = 𝑚 ∨ 𝑖𝑑 = max(𝑚, 𝑖𝑑) ; 𝑚ௗ = 𝑚 ∧ 𝑖𝑑 = min(𝑚, 𝑖𝑑), (6) 
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where 𝑖𝑑 is an identity operator. From this definition, it follows: 123 𝑚 = 𝑚௜ + 𝑚ௗ − 𝑖𝑑. 

While the medium filter is a self-dual operator with respect to the complementation 124 𝐶: 𝐶𝑚𝐶 = 𝑚; its increasing and decreasing versions are dual: 𝐶𝑚ௗ𝐶 = 𝑚௜. Although me- 125 
dium filters are not idempotent, they share some common properties with morphological 126 
opening and closing. Thus, the alternative contrast operator can be introduced, which is a 127 
self-dual one: 128 𝜅௠(𝑓) = 3𝑓 − 𝑚௜(𝑓) − 𝑚ௗ(𝑓) = 2𝑓 − 𝑚(𝑓), (7) 

The corresponding extended version 𝜅௡௠(𝑓) is constructed in the same way as for the top- 129 
hat contrast operator in Equation (5): 130 𝜅௡௠(𝑓) = (2𝑛 + 1)𝑓 − 𝑛 ∙ 𝑚௜(𝑓) − 𝑛 ∙ 𝑚ௗ(𝑓) = (𝑛 + 1)𝑓 − 𝑛 ∙ 𝑚(𝑓). (8) 

According to Equations (7)-(8), medium based enhance contrast operators can be com- 131 
puted without a decomposition (6). Also, Equation (8) may be further extended for the 132 
use of other filters, e.g., mean and gaussian. If we denote by s such a smoothing operator, 133 
then the corresponding enhance contrast operator can be written: 134 𝜅௡௦ (𝑓) = (𝑛 + 1)𝑓 − 𝑛 ∙ 𝑠(𝑓). (9) 

The obvious advantage of using the medium filter in (9) is its edge preserving property, 135 
which is valid at low signal-to-noise ratio [19] 136 

The size of either the window or the structural element for contrast operators de- 137 
pends on whether large or small regions should be sharpened in the image. Finally, image 138 
with enhanced contrast can be binarized using the global threshold, since the illumination 139 
variations, that are larger than the window size of contrast operator became smaller with 140 
respect to the difference between bright and dark regions in the image.  141 

2.2. Watershed based techniques 142 

2.2.1. Conventional approach (WS) 143 

The purpose of the segmentation is to determine the boundaries between phases. For 144 
the gray-tone image such boundary can be chosen as locus of points with the highest gra- 145 
dient. The problem of the segmentation of phase boundaries employing the gradient im- 146 
age is efficiently solved by the watershed transform (WS) [20]. Gradient image may be 147 
visualized, as the topographic landscape with ridges as local maximum, and valleys as 148 
local minima. Watershed transform decomposes such image, showing only the catchment 149 
basins of all valleys, which are separated by the watersheds. By computing the water- 150 
sheds, the seeking boundaries between phases can be found. Since, we are interested only 151 
pores, an additional image is required – marker image. The marker image is binary image 152 
showing the approximate locations of pores in the original image. It can be thought as an 153 
image of seeds placed at the positions of pores. With a help of the marker image, we can 154 
eliminate all local minima in the gradient image, that don’t correspond to the pores by 155 
using minima imposition technique [18]. Also, this operation suppresses spurious local 156 
minima and prevents the over segmentation. In present work, we use the following se- 157 
quencing: gauss filtering of the original image, calculation of the gradient image, minima 158 
imposition using marker image, watershed transform. 159 

2.2.2. Local threshold by watershed (LTWS) 160 

The conventional WS approach fully relies on the gradient image. However, the pres- 161 
ence of false local maxima in the gradient image, due to a noise and blur, will lead to the 162 
false segmentation. In general, the image intensity along the watershed contours varies 163 
and do not correspond to the single gray-level. Based on the fact that each pore can be 164 
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segmented by its own threshold, we propose the following modification of the conven- 165 
tional watershed approach employing the gradient image. The idea of proposed method 166 
is to compute the local threshold for each of the pores, which were segmented by the wa- 167 
tershed. The value of the threshold is found as the minimum among the gray values of 168 
the original or filtered image belonging to the corresponding watershed lines. Such oper- 169 
ation helps to prevent or at least to minimize the false segmentation appearing due to the 170 
presence of wrong maxima in the gradient image. We propose to add the following steps 171 
to the conventional WS method according to the proposed LTWS: labeling of pores seg- 172 
mented by the conventional WS, for each labeled pore (catchment basin) compute the 173 
threshold as minimum value of the original image at the corresponding watershed line or 174 
simply at the pore’s boundary, binarization of each labeled pore using the calculated 175 
threshold and final compilation of all segmented pores in a one binary image (or 3D binary 176 
data). 177 

3. The segmentation test 178 

We have tested the presented segmentation techniques on the set of artificial images 179 
with different quality. The original (gray-tone ground truth) image represents the distri- 180 
bution of four different phases (Figure 2). One of them with zero intensity corresponds to 181 
pores. We have used two different subsets: one is with flat background, another one with 182 
a parabolic background shape, which has a minimum at the image center. All images were 183 
corrupted by the blurring and noise using built-in plugins of the ImageJ [21]. The follow- 184 
ing variants of image corruptions were used. First variant coded as s4_n_s2 represents the 185 
corruption of the original gray-tone image by gaussian blurring with the sigma parameter 186 
of 4, gaussian noise with a mean of zero and standard deviation of 75, and gaussian blur- 187 
ring with the sigma parameter of 2. Second variant coded as s6_n_s2_n_s2 was obtained 188 
by  gaussian blurring with the sigma parameter of 6, twice application of the sequence of 189 
gaussian noise with a mean of zero and standard deviation of 75, and gaussian blurring 190 
with the sigma parameter of 2. 191 

Pore segmentation of the test images was performed using marker-based WS, the 192 
proposed extension LTWS and medium based (window of 150 pixels) enhanced contrast 193 

image, which was thresholded at the minimum gray level of 𝜅𝑚(𝑓) = 0. Marker images 194 
were obtained using the global threshold t. We have slightly modified the conventional 195 
WS by changing the output to max (WS , 𝑚𝑎𝑟𝑘𝑒𝑟 𝑖𝑚𝑎𝑔𝑒). Such modification is necessary, 196 
when the marker image overstep the corresponding watershed line, otherwise, the WS 197 
fails. We denoted the WS without this modification, as WS*. 198 

Table 1. Jaccard index 𝐽(𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒) calculated for the binary images of the 199 
segmented pores shown in Figure 5. 200 

Method s4_n_s2 Method s6_n_s2_n_s2 Method bck+s4_n_s2 Method bck+s6_n_s2_n_s2
WS, t = 50 0.75 WS, t = 52 0.52 WS, t = 50 0.58 WS, t = 60 0.52 
WS, t = 80 0.50 WS, t = 69 0.47 WS, t = 70 0.63 WS, t = 80 0.46 

LTWS, t = 50 0.78 LTWS, t = 52 0.57 LTWS, t = 50 0.58 LTWS, t = 60 0.52 
LTWS, t = 80 0.55 LTWS, t = 69 0.65 LTWS, t = 70 0.66 LTWS, t = 80 0.56 𝜅௠(𝑓) = 0 0.79 𝜅௠(𝑓) = 0 0.61 𝜅௠(𝑓) = 0 0.67 𝜅௠(𝑓) = 0 0.60 

 201 
The results of pore segmentation in the tested images are shown in Figure 2. Quanti- 202 

tative assessment of the difference between the ground truth and the segmented images 203 

was performed using the Jaccard index [22] (see Table 1) defined as 𝐽(𝐴, 𝐵) = |஺∩஻||஺∪஻|, where 204 

A and B are the binary images. Jaccard index is the well-known measure of the similarity 205 
of two finite sets. By a definition, 0 ≤ 𝐽(𝐴, 𝐵) ≤ 1, where 0 means that A and B have no 206 
matches and 1 means a perfect match. According to Figure 2 and Table 1 the proposed 207 
extension LTWS showed itself as a more reliable technique, than the conventional WS. 208 
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Independently on the input image quality or the background, the LTWS tends to preserve 209 
the shape of the pores, while the conventional WS provides more oversized pores with a 210 
tendency to the pore shape deformation. Moreover, the quality of the WS strongly de- 211 
pends on the marker image, i.e., on the threshold level that we have chosen to binarize the 212 
input image. In turn, the LTWS shows the stable results for all marker images, and did 213 
not fail even for the worst quality image of our set. However, the best Jaccard index in 214 
most cases was obtained for the images binarized using the global threshold of the en- 215 
hance contrast image (Table 1). As it is seen in Figure 5, this technique is close to the best 216 
results obtained using the watershed-based methods. It also tends to preserve the shape 217 
of pores and almost independent on the quality of the test images. 218 

We note that the conventional watershed without our modification WS* already 219 
failed on the first test image (Figure 2). It happened because the operation of minima im- 220 
position using the marker image that oversteps the actual watershed line suppressed the 221 
corresponding local maxima in the gradient image. 222 

 223 
 224 
 225 
 226 
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 227 

Figure 2. The results of pore segmentation test. Notations: bck – nonlinear background; s4_n_s2 and 228 
s6_n_s2_n_s2 denote the sequence of gaussian blur (s) and gaussian noise (n) added to the test im- 229 
age, see text for details; t denotes the threshold used for obtaining the marker image. 230 

4. Application to the neutron tomography of MKP cements 231 

4.1. Experimental 232 

Four magnesium potassium phosphate MKP cement samples were studied using the 233 
neutron tomography method. All samples have been prepared following exactly the same 234 
formulation: MgO (10 g) + KH2PO4 (35 g) + Fly ash (45 g) + 2% Boric acide (0.9 g) + 2% 235 
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LiNO3 (0.9 g) + Sand (45 g) + 17 ml D2O. There are labeled as MKP_1, MKP_2 and 236 
MKP+Al_1, MKP+Al_2, which additional contain of 1.75 g of aluminum platelets. The 237 
samples have a parallelepiped shape with a height of about 5 cm and width of 1 cm. More 238 
information about cement sample preparation and chemical aspects were presented pre- 239 
viously [23]. 240 

The neutron tomography experiments were performed at the neutron radiography 241 
and tomography facility placed on beamline 14 of the IBR-2 high-flux pulsed reactor [24]. 242 
The neutron flux at the sample position is ~ 5.5×106 n×cm-2×s-1. A set of neutron radiog- 243 
raphy images has been collected by the detector system based on high sensitivity camera 244 
with HAMAMATSU CCD chip (2048x2048 pixels). A field of view of 10.5 × 10.5 cm2 was 245 
used for MKP_1 and MKP_2 samples, while for MKP+Al_1 and MKP+Al_2 a larger field 246 
of view of 12 × 12 cm2 was used. The neutron tomography experiments were performed 247 
with a rotation step of 0.5°, corresponding to the 360 measured radiography projections. 248 
The exposure time for one projection was 20 s, image acquisition and sample rotation took 249 
additionally about 20 s per image, so the resulting measurements lasted for about 4 h for 250 
each of the cement samples. The distance between the center of rotation of the sample and 251 
the scintillator screen was about 60 mm. The spatial resolution capabilities of the neutron 252 
tomography facility have some restrictions on the minimum size of a resolved item up to 253 
~ 135 µm. The imaging data were noise-filtered and then corrected by the camera dark 254 
current image and normalized to the image of the incident neutron beam. Stripes removal 255 
and tomographic reconstruction were performed using SYRMEP Tomo Project software 256 
[25]. In particularly, wavelet-fourier filtering technique [26] was used for sinogram filter- 257 
ing and tomographic reconstruction was performed using simultaneous algebraic recon- 258 
struction technique [27]. 259 

Virtual 3D models of cement samples obtained from tomographic reconstruction 260 
(Figure 3) depict the spatial distribution of neutron attenuation coefficient expressed in 261 
cm-1 units. The observed uneven distribution of the intensity in the gray-tone data is re- 262 
lated to the presence of phases with different neutron attenuation coefficient. The highest 263 
attenuation corresponds to the regions enriched with B, H, Li elements with high absorp- 264 
tion or scattering cross-sections of thermal neutrons [28]. The regions with lowest attenu- 265 
ation are corresponded to the pores. In the slices shown in Figure 3, it is clearly seen the 266 
complex distribution of the attenuation coefficient depicting different phases including 267 
pores and products of chemical reactions during the cement hardening. However, the cal- 268 
culated histograms of the attenuation coefficient over the 3D data sets have two major 269 
peaks (Figure 3). The one of them is the background and pores, while the second peak is 270 
the cement matrix and other solid phases. The large valley of the non-zero values between 271 
them corresponds to the smooth boundaries (with relatively small gradients) between 272 
phases in the reconstructed data. 273 

4.2. Pore segmentation results 274 

We performed the segmentation of neutron images using the same techniques used 275 
in the segmentation tests (see the Section 3). There are the global thresholding, the me- 276 
dium based (window of 100 pixels) enhanced contrast image thresholded at the minimum 277 
gray level (𝜅௠(𝑓) = 0), the conventional marker-based WS and the proposed extension 278 
LTWS. We used the same threshold for both conventional global threshold technique and 279 
for the marker image. However, the choice of the global threshold was not based on the 280 
histogram data (Figure 3). For this purpose, we performed the WS technique in 2D slices 281 
to the sample itself and found its boundaries. Following the idea of LTWS, we collected 282 
the minimum gray values at the watersheds for each of the 2D slices. The resulted histo- 283 
gram is shown in Figure 4. We obtained almost the same Gaussian-like distribution for all 284 
samples. Trying to preserve the maximum number of pores, we chose the global threshold 285 
as the maximum value over the obtained distributions among all samples. 286 

 287 
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 288 

Figure 3. Results of the tomographic reconstruction of studied cement samples: 3D models rendered 289 
in ImageJ [21], selected slices and the histograms of the neutron attenuation coefficient are shown. 290 
Color bars are presented in cm-1 units. 291 
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 292 

Figure 4. Distributions of the minimum gray values at the boundary between the samples and air 293 
calculated over the stack of the tomography slices. 294 

In Figure 5, it is shown the binary images with the segmented pores obtained by dif- 295 
ferent techniques. For all samples, we can see the noticeable difference between conven- 296 
tional WS and all other techniques. In case of MKP_2 sample WS has even failed and 297 
shown the obvious spurious segmentation. As it was expected, the LTWS method pro- 298 
vided more reliable results. In comparison to the results of the segmentation tests (Figure 299 
2), the difference between the binarized enhanced contrast data and the LTWS is some- 300 
what larger. 301 
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 302 

Figure 5. 3D models of spatial distribution of the segmented pores in the studied cement samples 303 
obtained by means of different segmentation techniques. The rendering was performed in ImageJ 304 
software [20]. 305 

The calculated porosities based on the obtained segmentations are listed in Table 2. 306 
It is evident that WS provides drastically different values than other methods, what may 307 
be explained by the wrong segmentation. However, the enhance contrast technique and 308 
the conventional global thresholding demonstrated almost the same results for the sam- 309 
ples porosity (Table 2), while the application of LTWS yielded almost the same porosity 310 
for all samples of about 0.4 %. 311 
 312 
 313 
 314 
 315 
 316 
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Table 2. Samples porosities (%) calculated from the binary images shown in Figure 5. 317 

Method MKP_1 MKP_2 MKP+Al_1 MKP+Al_2 
Global threshold 0.20 0.28 0.12 0.25 𝜅௠(𝑓) = 0 0.24 0.30 0.14 0.28 

WS 1.33 1.71 1.11 1.23 
LTWS 0.41 0.44 0.40 0.37 

 318 
Enhance contrast operators (Equation (5) and (7)) help to increase the phase-to-phase 319 

contrast and even can be used for the unsupervised binarization. However, we cannot 320 
declare the robustness of the corresponding segmentation results, because image binari- 321 
zation by using the global threshold cannot provide the segmentation without the poten- 322 
tial biases from the user’s choice or from the low quality of the image. Scale parameter n 323 
(Equation (5)) brings more variability into image processing, but does not resolve the am- 324 
biguity problem of the parameters choice. In contrast, the proposed LTWS technique relies 325 
only on the marker image and takes into account the information from both input grey- 326 
tone image and its gradient version. The results of tests (Figure 2) and application on the 327 
neutron images (Figure 5) have shown the encouraging results and potential of this tech- 328 
nique for pore segmentation in the low-quality data. 329 

5. Conclusions 330 

We have presented new techniques for the pore segmentation in the low-resolution 331 
images or tomography data. There are global thresholding of the enhanced contrast data 332 
and local threshold by the watershed (LTWS). The performed tests have demonstrated 333 
their possibilities and also their advantages over the conventional marker-based water- 334 
shed technique. The considered techniques were applied to the neutron tomography data 335 
of the MKP cement samples. The following comparison of the segmented data as well as 336 
of the calculated porosity of the cement samples confirmed the results of tests, showing 337 
the failing of the conventional watershed as compared to the proposed techniques. 338 
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