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New Physics

"One must be prepared to follow up the consequence of theory,

and feel that one just has to accept the consequences

no matter where they lead."

Paul Dirac

"... all things physical are information-

theoretic in origin ..."

John A. Wheeler

We say that we �nd New Physics (NP) when either we �nd a phenomenon

which is forbidden by SM in principal - this is the qualitative level of NP -

or we �nd a signi�cant deviation between precision calculations in SM of an

observable quantity and a corresponding experimental value.

In 1900, the British physicist Lord Kelvin is said to have pronounced:

"There is nothing new to be discovered in physics now. All that remains is

more and more precise measurement." Within three decades, quantum

mechanics and Einstein's theory of relativity had revolutionized the �eld.
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If you are only a poet,

You are not even that.

(Piet Hein)

Åñëè òû âñåãî ëèøü ïîýò,

Ïîýò ëè òû, íàâåðíî íåò :)

(Ïèò Õåéí - Ãðàô Î'Ìàð)

I always knew that sooner or later p -

adic numbers will appear in Physics -

André Weil.

Mathematics is the queen of the sciences and

number theory is the queen of mathematics.

Carl Friedrich Gauss (1777�1855)

In the Universe, matter has manly two tipe geometric
structures, homogeneous isotropic, [Weinberg, 1972]
and hierarchical, Russian-Doll-Like structures, [Okun 1982]
.
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New Physics

The homogeneous structures are naturally described by real
numbers with an in�nite number of digits in the fractional
part and usual archimedean metrics.
The hierarchical structures are described with p-adic
numbers with an in�nite number of digits in the integer
part and non-archimedean metrics, [Koblitz, 1977].
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New Physics

A discrete, �nite, regularized, version of the homogenous
structures are homogeneous lattices with constant steps
and distance rising as arithmetic progression. The discrete
version of the hierarchical structures is hierarchical
lattice-tree with scale rising in geometric progression.

There is an opinion that present day theoretical physics
needs (almost) all mathematics, and the progress of
modern mathematics is stimulated by fundamental
problems of theoretical physics.
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Riemann Zeta Function

The Riemann zeta function ζ(s) is de�ned for complex
s = σ + it and σ > 1 by the expansion

ζ(s) =
∑
n≥1

n−s , Re s > 1,

= δ−sx

x

1− x
|x⇁1 =

1

Γ(s)

∫ ∞
0

ts−1e−δx t
x

1− x
|x⇁1

=
1

Γ(s)

∫ ∞
0

ts−1et∂τ
1

eτ − 1
|τ⇁0

=
1

Γ(s)

∫ ∞
0

ts−1dt

et − 1
, x = e−τ (1)
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Riemann Zeta Function

All complex zeros, s = α + iβ, of ζ(σ + it) function lie in
the critical stripe 0 < σ < 1, symmetrically with respect to
the real axe and critical line σ = 1/2. So it is enough to
investigate zeros with α ≤ 1/2 and β > 0. These zeros are
of three type, with small, intermediate and big ordinates.
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Riemann Zeta Function

The Riemann hypothesis states that the (non-trivial)
complex zeros of ζ(s) lie on the critical line σ = 1/2.
At the beginning of the XX century Polya and Hilbert made
a conjecture that the imaginary part of the Riemann zeros
could be the oscillation frequencies of a physical system (ζ
- (mem)brane).
After the advent of Quantum Mechanics, the Polya-Hilbert
conjecture was formulated as the existence of a self-adjoint
operator whose spectrum contains the imaginary part of the
Riemann zeros.
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Riemann Zeta Function

The Riemann hypothesis (RH) is a central problem in Pure
Mathematics due to its connection with Number theory
and other branches of Mathematics and Physics.
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Functional Equation for Zeta Function

The functional equation is

ζ(1− s) =
2Γ(s)

(2π)s
cos(

πs

2
)ζ(s) (2)

From this equation we see the real (trivial) zeros of zeta
function:

ζ(−2n) = 0, n = 1, 2, ... (3)

Also, at s=1, zeta has pole with reside 1.
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Functional Equation for Zeta Function

From Field theory and statistical physics point of view, the
functional equation (2) is duality relation, with self dual (or
critical) line in the complex plane, at s = 1/2 + iβ,

ζ(
1

2
− iβ) =

2Γ(s)

(2π)s
cos(

πs

2
)ζ(

1

2
+ iβ), (4)

we see that complex zeros lie symmetrically with respect to
the real axe.
On the critical line, (nontrivial) zeros of zeta corresponds
to the in�nite value of the free energy,

F = −T ln ζ. (5)
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Functional Equation for Zeta Function

At the point with β = 14.134725... is located the �rst zero.
In the interval 10 < β < 100, zeta has 29 zeros. The �rst
few million zeros have been computed and all lie on the
critical line. It has been proved that uncountably many
zeros lie on critical line.
The �rst relation of zeta function with prime numbers is
given by the following formula,

ζ(s) =
∏
p

(1− p−s)−1, Re s > 1. (6)
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Functional Equation for Zeta Function

Another formula, which can be used on critical line, is

ζ(s) = (1− 21−s)−1
∑
n≥1

(−1)n+1n−s

=
1

1− 21−s
1

Γ(s)

∫ ∞
0

ts−1dt

et + 1
, Re s > 0 (7)
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Supermatematics

The Riemann zeta function (RZF) can be interpreted in
thermodynamic terms as a statistical sum of a system with
energy spectrum: En = ln n, n = 1, 2, ... :

ζ(s) =
∑
n≥1

n−s = Z (β) =
∑
n≥1

exp(−βEn),

β = s, En = ln n, n = 1, 2, ... (8)
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Qvelementar particles

Let as consider the following formula

1

1− x
= (1 + x)(1 + x2)(1 + x4)..., |x | < 1. (9)

which can be proved as

pk ≡ (1 + x)(1 + x2)(1 + x4)...(1 + x2k) =
1− x2(k+1)

1− x
,

|pk | < c(1 + |x |2(k+1)

), lim
k→∞

pk = c = 1/(1− x). (10)
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Qvelementar particles

The formula reminds us the boson and fermion statsums

Zb =

√
x

1− x
, Zf =

1 + x√
x
, x = exp (−β~ω) (11)

and can be transformed in the following relation

Zb(ω) = Zf (ω)Zf (2ω)Zf (4ω)... (12)
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Qvelementar particles

Indeed, [Makhaldiani 2018]

Zb(ω) =

√
x

1− x
= xa/2Zf (ω)Zf (2ω)Zf (4ω)...,

a = 1 + (1 + 2 + 22 + ...)

= 1 +
1

1− 2
= 0, |2|2 = 1/2 < 1. (13)

By the way we have an extra bonus! We see that the fermi
content of the boson wears the p-adic sense. The prime
p = 2, in this case. Also, the vacuum energy of the
oscillators wear p-adic sense.
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Qvelementar particles

What about other primes p?
For the �nite �elds,

zn(p) = exp(2πin/p), n = 0, 1, ..., p − 1,
∑
n

zn = 0,

Zp(β) =

p−1∑
n=1

exp (−βEn/~), En = 2π~(n + a),

Zp(−i/p) = 0, p = 2, 3, 5, ...13...29...137... (14)
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Supermathematics

- Why supersymmetry is so universal?
- Supermathematics uni�es discrete and continual

aspects of mathematics.

Boson oscillator hamiltonian is

Hb = ~ω(b+b + bb+)/2 = ~ω(b+b + a), a = 1/2. (15)

corresponding energy spectrum Ebn and eigenfunctions
|nb > are

Hb|nb >= Ebn|nb >, Ebn = ~ω(nb + a), nb = 0, 1, 2, ..(16)
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Supermathematics

Fermion oscillator hamiltonian, eigenvectors and energies
are

Hf = ~ω(f +f − ff +)/2 = ~ω(f +f − a),
Hf |nf >= Efn|nf >,Efn = ~ω(nf − a), nf = 0, 1(17)

For supersymmetric oscillator we have

H = Hb + Hf , H |nb, nf >= ~ω(nb + nf )|nb, nf >,
|nb, nf >= |nb > |nf >, Enb,nf = ~ω(nb + nf ) (18)

For background-vacuum |0, 0 >, energy E0,0 = 0. For
higher energy states |n − 1, 1 >, |n, 0 >, En−1,1 = En,0.

Supersymmetry needs not only the same frequency for
boson and fermion oscillators, but also that 2a = 1.

Makhaldiani N.V. (mnv) 28 November 19 / 405



Supermathematics

A minimal realization of the algebra of supersymmetry

{Q,Q+} = H , {Q,Q} = {Q+,Q+} = 0, (19)

is given by a point particle dynamics in one dimension,
[Witten 1981]

Q = f (−iP + W )/
√
2,

Q+ = f +(iP + W )/
√
2,

P = −i∂/∂x (20)

where the superpotential W (x) is any function of x, and
spinor operators f and f + obey the anticommuting relations

{f , f +} = 1, f 2 = (f +)2 = 0. (21)
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Supermathematics

There is a following representation of operators f , f + and
σ by Pauli spin matrices

f =
σ1 − iσ2

2
=

(
0 0
1 0

)
, f + =

σ1 + iσ2

2
=

(
0 1
0 0

)
,

σ = σ3 =

(
1 0
0 −1

)
(22)
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Supermathematics

From formulae (19) and (20) then we have

H = (P2 + W 2 + σWx)/2. (23)

The simplest nontrivial case of the superpotential W = ωx
corresponds to the supersimmetric oscillator with
Hamiltonian

H = Hb + Hf , Hb = (P2 + ω2x2)/2, Hf = ωσ/2, (24)
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Toy - solution of the cosmological constant problem

The ground state energies of the bosonic and fermionic
parts are

Eb0 = ω/2, Ef 0 = −ω/2, (25)

so the vacuum energy of the supersymmetric oscillator is

< 0|H |0 >= E0 = Eb0 + Ef 0 = 0,
|0 >= |nb, nf >= |nb > |nf > . (26)
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Toy - solution of the cosmological constant problem

Let us see on this toy - solution of the cosmological
constant problem from the quantum statistical viewpoint.
The statistical sum of the supersymmetric oscillator is

Z (β) = ZbZf , (27)

where

Zb =
∑
n

e−βEbn = e−βω/2 + e−βω(1+1/2) + ...

= e−βω/2/(1− e−βω)

Zf =
∑
n

e−βEfn = eβω/2 + e−βω/2. (28)
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Toy - solution of the cosmological constant problem

In the low temperature limit,

Z (β) = 1 + O(e−βω), β = T−1, (29)

so cosmological constant

λ ∼ lnZ ∼ e−βω, βω ∼ 102 (30)

From observable values of β and the cosmological constant
we estimate ω.

T = 3K =
eV

3868
∼ 10−4eV , ω ∼ 10−2eV (31)

In terms of Planck units, the cosmological constant is on
the order of ΛL2

P ∼ 10−123.
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Negative Binomial Distribution

Negative binomial distribution (NBD) is de�ned as

P(n) =
Γ(n + r)

n!Γ(r)
pn(1− p)r ,

∑
n≥0

P(n) = 1, (32)

The Bose-Einstein distribution is a special case of NBD
with r = 1.
NBD provides a very good parametrization for multiplicity
distributions in e+e− annihilation; in deep inelastic lepton
scattering; in proton-proton collisions; in proton-nucleus
scattering. Hadronic collisions at high energies (LHC) lead
to charged multiplicity distributions whose shapes are well
�tted by a single NBD in �xed intervals of central
(pseudo)rapidity η.
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Multiplicative Properties of NBD and Corresponding Motion
Equations

A Bose-Einstein, or geometrical, distribution is a thermal
distribution for single state systems. An useful property of
the negative binomial distribution with parameters

< n >, k

is that it is (also) the distribution of a sum of k
independent random variables drawn from a Bose-Einstein
distribution with mean < n > /k ,

Pn =
1

< n > +1
(
< n >

< n > +1
)n

= (eβ~ω/2 − e−β~ω/2)e−β~ω(n+1/2), T =
~ω

ln <n>+1
<n>∑

n≥0
Pn = 1,

∑
nPn =< n >=

1

eβ~ω−1
, T ' ~ω < n >, < n >� 1,

P(x) =
∑
n

xnPn = (1+ < n > (1− x))−1. (33)
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Multiplicative Properties of NBD and Corresponding Motion
Equations

Indeed, for

n = n1 + n2 + ... + nk , (34)

with ni independent of each other, the probability
distribution of n is

Pn =
∑

n1,...,nk

δ(n −
∑

ni)pn1...pnk ,

P(x) =
∑
n

xnPn = p(x)k (35)
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Multiplicative Properties of NBD and Corresponding Motion
Equations

This has a consequence that an incoherent superposition of
N emitters that have a negative binomial distribution with
parameters k , < n > produces a negative binomial
distribution with parameters Nk ,N < n >.
So, for the GF of NBD we have (N=2)

F (k , < n >)F (k , < n >) = F (2k , 2 < n >) (36)

And more general formula (N=m) is

F (k , < n >)m = F (mk ,m < n >) (37)
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Multiplicative Properties of NBD and Corresponding Motion
Equations

We can put this equation in the closed nonlocal form

QqF = F q, (38)

where

Qq = qD , D =
kd

dk
+
< n > d

d < n >
=

x1d

dx1
+

x2d

dx2
(39)
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Multiplicative Properties of NBD and Corresponding Motion
Equations

Note that temperature de�ned in (33) gives an estimation
of the Glukvar temperature when it radiates hadrons. If we
take ~ω = 100MeV , to T ' Tc ' 200MeV corresponds
< n >' 1.5 If we take ~ω = 10MeV , to
T ' Tc ' 200MeV corresponds < n >' 20. A singular
behavior of < n > may indicate corresponding phase
transition and temperature. At that point we estimate
characteristic quantum ~ω.
We see that universality of NBD in hadron-production is
similar to the universality of black body radiation.
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Negative binomial distribution

Let us consider the negative binomial distribution (NBD)
for normed topological cross sections

σn
σ

= P(n) =
Γ(n + k)

Γ(n + 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k)

=
1

n

Γ(n + k)

Γ(n)Γ(k)
(1 +

k

< n >
)−n(1 +

< n >

k
)−k

=
1

n

Γ(n + k)

Γ(n)Γ(k)
(
< n >

< n > +k
)n(

k

k+ < n >
)k ,

=
1

n

Γ(n + k)

Γ(n)Γ(k)

( k
<n>)k

(1 + k
<n>)k+n

, (40)

where k > 0.
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Negative binomial distribution

The generating function for NBD is

F (h) = (1 +
< n >

k
(1− h))−k

= (1 +
< n >

k
)−k(1− ah))−k , /a =

< n >

< n > +k
.(41)

Indeed,

(1− ah))−k =
1

Γ(k)

∫ ∞
0

dttk−1e−t(1−ah)

=
1

Γ(k)

∫ ∞
0

dttk−1e−t
∞∑
0

(tah)n

n!

=
∞∑
0

Γ(n + k)an

Γ(k)n!
hn, (42)
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Negative binomial distribution

P(n) = (1 +
< n >

k
)−k

Γ(n + k)

Γ(k)n!
(
< n >

< n > +k
)n

=
kkΓ(n + k)

Γ(k)Γ(n + 1)
(< n > +k)−(n+k) < n >n

=
Γ(n + k)

Γ(n + 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k)

=
Γ(n + k)

Γ(n + 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k) (43)
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Negative binomial distribution

Note that KNO characteristic function (159) coincides with
the NBD generating function (41) when
t =< n > (h − 1), c = k
For negative (integer) values of k = −N , we have Binomial
GF

Fbd = (1 +
< n >

N
(h − 1))N = (a + bh)N ,

a = 1− < n >

N
, b =

< n >

N
,

Pbd(n) = C n
N(
< n >

N
)n(1− < n >

N
)N−n (44)
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Negative binomial distribution

In a sense we have a quantum spectrum for the parameter
k , which contains any positive real values and (�nite
number of states) the negative integer values, (0 ≤ n ≤ N)

Makhaldiani N.V. (mnv) 28 November 36 / 405



From Qlike to Zeta Equations

Let us consider the values q = n, n = 1, 2, 3, ... and take
sum of the corresponding equations (38), we �nd

ζ(−D)F =
F

1− F
(45)

In the case of the NBD we know the solutions of this
equation.
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From Qlike to Zeta Equations

Now we invent a Hamiltonian H with spectrum
corresponding to the set of nontrivial zeros of the zeta
function, in correspondence with Riemann hypothesis,

−Dn =
n

2
+ iHn, Hn = i(

n

2
+ Dn),

Dn = x1∂1 + x2∂2 + ... + xn∂n, H+
n = Hn =

n∑
m=1

H1(xm),

H1 = i(
1

2
+ x∂x) = −1

2
(xp̂ + p̂x), p̂ = −i∂x (46)

The Hamiltonian H = Hn is hermitian, its spectrum is real.
The case n = 1 corresponds to the Riemann hypothesis.
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From Qlike to Zeta Equations

The case n = 2, corresponds to NBD,

ζ(1 + iH2)F =
F

1− F
, ζ(1 + iH2)|F =

1

1− F
,

F (x1, x2; h) = (1 +
x1
x2

(1− h))−x2 (47)

Let us scale x2 → λx2 and take λ→∞ in (47), we obtain

ζ(
1

2
+ iH1(x))e−(1−h)x =

1

e(1−h)x − 1
,

1

ζ(1
2

+ iH(x))

1

eεx − 1
= e−εx , ε = 1− h,

H(x) = i(
1

2
+ x∂x) = −1

2
(xp̂ + p̂x), H+ = H (48)
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From Qlike to Zeta Equations

Let us take an eigenvector |n > with eigenvalue En of H ,
than

< n|ζ(
1

2
+ iH(x))e−(1−h)x >= ζ(

1

2
+ iEn(x)) < n|e−(1−h)x >

=< n| 1

e(1−h)x − 1
> (49)

For zeros of Zeta function, En, the eigenfunctions ful�ls the
following conditions

< n| 1

e(1−h)x − 1
>= 0, < n|e−(1−h)x >6= 0. (50)
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From Qlike to Zeta Equations

For eigenvalues of H , we have

H |n >= En|n >, H = i(
1

2
+ x∂x),

|n >∼ x sn, sn = −1
2
− iEn,

< n| 1

e(1−h)x − 1
>= ζ(

1

2
+ iEn)/(1− h)s ,

< n|e−(1−h)x >= Γ(
1

2
+ iEn)/(1− h)s . (51)
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From Qlike to Zeta Equations

ζ(−x1∂x1 − x2∂x2)F =
F

1− F
=

1

F−1 − 1
,

F (x1, x2) = (1 +
x1
x2

(1− h))−x2 (52)

For x2 →∞, after x1 → x/(1− h) we obtain

ζ(−x∂x)e−x =
1

ex − 1
, (53)

Makhaldiani N.V. (mnv) 28 November 42 / 405



From Qlike to Zeta Equations

After multiplication bouth sides on x s−1and integration by
parts we obtain known formula∫ ∞

0

dxx s−1ζ(−x∂x)e−x =

∫ ∞
0

dxe−xζ(1 + x∂x)x s−1

= ζ(s)Γ(s) =

∫ ∞
0

dxx s−1

ex − 1
(54)
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Zeta functions

Let us consider the following �nite approximation of the
Riemann zeta function

ζN(s) =
N∑

n=1

n−s =
1

Γ(s)

∫ ∞
0

dtts−1
e−t − e−(N+1)t

1− e−t

= ζ(s)−∆N(s), Re s > 1

ζ(s) =
1

Γ(s)

∫ ∞
0

dt
ts−1

et − 1
,

∆N(s) =
1

Γ(s)

∫ ∞
0

dt
ts−1e−Nt

et − 1
(55)
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Zeta functions

Another formula, which can be used on critical line, is

ζ(s) = (1− 21−s)−1
∑
n≥1

(−1)n+1n−s

=
1

1− 21−s
1

Γ(s)

∫ ∞
0

ts−1dt

et + 1
, Re s > 0 (56)
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Zeta functions

Corresponding �nite approximation of the Riemann zeta
function is

ζN(s) = (1− 21−s)−1
N∑

n=1

(−1)n−1n−s

=
1

1− 21−s
1

Γ(s)

∫ ∞
0

ts−1(1− (−e−t)N)dt

et + 1
= ζ(s)−∆N(s),

∆N(s) =
1

Γ(s)

∫ ∞
0

dt
ts−1(−e−t)N)

et + 1
∼ ±N−s (57)

at a (nontrivial) zero of the zeta function, s0,
ζN(s0) = −∆N(s0). In the integral form, dependence on N
is analytic and we can consider any complex valued N .
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Zeta functions

It is interesting to see dependence (evolution) of zeros with
N . For the simplest nontrivial integer N = 2,

ζ2(s) = (1− 21−s)−1(1− 2−s)

=
1− 2−s

1− 21−s
=

2s − 1

2s − 2
=

2s−1/2 − 1/
√
2

2s−1/2 −
√
2

(58)

we have zeros at sn = 2πin/ ln 2, n = 0,±1,±2, ...
2π/ ln 2 = 9.06, so, in the interval Imsn ∈ (0, 100) we have
10 nontrivial zeros. The �rst nontrivial zero of the zeta
function, by Mathematica, is: s1 = 1/2 + i14.1347. The
last zero in the interval Imsn ∈ (0, 100) is:
s29 = 1/2 + i98.8312.
Another �nite approximation of the zeta function is

ζpN(s) =
N∏

n=1

(1− p−sn )−1 =
N∏

n=1

ζpn(s), ζpn(s) = (1− p−sn )−1(59)

where pN is N-th prime number.
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Recent paper From Qlike to Zeta Equations

Now let me present a recent paper: Pushpa Kalauni,
Kimball A Milton, Supersymmetric quantum mechanics and
the Riemann hypothesis,
https://arxiv.org/abs/2211.04382v1
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New physics

Axion-like particles (ALPs) a are very light, neutral, spin
zero bosons predicted by many theories which try to extend
and complete the standard model of elementary particles.
ALPs interact primarily with two photons and can generate
photon-ALP oscillations in the presence of an external
magnetic �eld. E�ective interaction is given by the
following term

La =

∫
dDxatrGµνGµν =

∫
dDxtr∂µajµ,

jµ = εµνρσAν(∂ρAσ + 2/3AρAσ) (60)

It contributs in neutron electric dipol moment and is
restricted as θ < 10−9.

Makhaldiani N.V. (mnv) 28 November 49 / 405



Additive and multiplikative integrals with some applications

Let us solve the folloving matrix linear �rst order equation

ψ̇ = Aψ,

ψ(t) = U(t)ψ(0), U(t) = P exp(

∫ t

0

dτA(τ)) (61)

Neither the Schrödinger equation nor the quantum wave
function are fundamental structures. Rather, they both
originate from a pre-quantum operator algebra.

Makhaldiani N.V. (mnv) 28 November 50 / 405



Renormdynamics, Holography principle and AdS/CFT
correspondence

Most fundamintal string theory model - bosonic string
model in the most general embeding space - Minkovsky
sphace needs - predicts D = 26 dimensional embeded -
balck space. Next step toward interecting string theory,
strings in external - bakground �elds - string σ−models.
Renormdinamic motion equatins for external �elds -
"coupling constants" are
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The propagation of strings in nontrivial spacetime
backgrounds is of interest because one expects string
consistency conditions to restrict the possible backgrounds
and so give information on possible compacti�cations,
cosmologies, etc. Spacetime backgrounds in which strings
may consistently propagate correspond to conformally
invariant non-linear signal models and the condition of
conformal invariance can be expressed as a �eld equation
for the background spacetime.
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Holography principle or AdS/CFT correspondence

According to the holography principle , quantum gravity
and string theory on certain manifolds with boundary can
be studied in terms of a conformal �eld theory on the
boundary. The holography principle postulates the
existence of strong ties between certain �eld theories on a
d + 1 dimensional manifold Md+1-bulk space and d
dimensional manifold Nd -boundary respectively.
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Holography principle or AdS/CFT correspondence

The holography principle was originally suggested by `t
Hooft in order to reconcile unitarity with gravitational
collapse. In this case M is a black hole and N is the event
horizon. Thus the bulk space should be imagined as (a part
of) space�time. There are other models where the
boundary can play the role of space�time with the bulk
space involving an extra dimension (e. g. the
renormalization group scale) and a Kaluza�Klein type
reduction, and brane world scenarios where one models our
universe as a brane in higher dimensional space�time, with
gravity con�ned to the brane. In condenced matter
physics,e.g. graphen 2-dimensional boundary and QED 3+1
dimensional correspondence.
In the Maldacena's conjecture Md+1is the anti de Sitter
space AdSd+1, Nd its conformal boundary. On the
boundary one considers the large N limit of a conformally
invariant theory in d dimensions, and on the bulk space
supergravity and string theory.
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Idential particles, charge conservation, extended particles

Feynman, I know why
there are identical particles -

Wheeler

According to Wheeler, elementary particles are identical
becaus there are just one particle which lives in the bulk
and traverce our Univerce in di�erent points. If so we will
have charge nonconservation, as pair of particle and
antiparticle may appeare not simaltinuously.
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Idential particles, charge conservation, extended particles

If we have string in the bulk, then particle and antiparticle
born in one point and we have electric charge conservation.
If we have a membrane in the bulk, we may observe
production of corresponding string and so on. E.g. ball
lightning may be indication on four dimensional particle in
the bulk.
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Superdynamics

The equation of state in nuclear physics relates the energy
density with the pressure and is the main ingredient in the
understanding of neutron stars as well as heavy ion
collisions.
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Superdynamics

Only nuclear physics has provided experimental support for
the usefulness of superalgebras in Nature. The theory is
based on the superalgebra SU(6/M) in which the 3-
dimensional rotation group which assigns spins to nuclear
states is embedded. This provides a classi�cation scheme
for many low lying nuclear states of several even-even
(bosonic) and even-odd (fermionic) nuclei in the
platinum-gold region. The classi�cation in a single irrep. of
SU(6/M) predicts: an energy formula for parterns of many
nuclear levels, relations among decay rates of excited states
and relations between nucleon-transfer reactions among
such nuclei. Superalgebras have thus provided a rather
general approach for correlating and organizing nuclear
data as well as making many testable predictions.
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Higher spin dynamics theory and experiment

Spin�orbit coupling is a relativistic e�ect that connects the
spin angular momentum of the charge carrier with the
electrostatic potential of its environment. Thus, it can be
and has been used for spin manipulation. The fact that
relativistic e�ects are larger in heavy atoms (such as Au)
than in lighter ones (such as Ag) results from the steeper
potential gradients at the nucleus when the atomic number
Z is large.
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Integrable systems

A standart model of predator-prey interactions, the
Lotka-Volterra model (LVM) is de�ned by the following
system of equations

ẋn = anxn + xnknmxm, 1 ≤ n,m ≤ N (62)

The most famous special case of Lotka-Volterra system is
the KM system (also known as the Volterra system) de�ned
by

ẋn = xn(xn+1 − xn−1), x0 = 0, xN+1 = 0, (63)

which was �rst solved by Kac and van-Moerbeke, using a
discrete version of inverse scattering due to Flaschka.
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Integrable systems

In the paper, the following three dimensional LVM were
considared

ẋ1 = x1(rx2 + sx3),
ẋ2 = x2(tx3 − rx1),
ẋ3 = x3(−sx1 − tx2), (64)

After change of sign s → −s we put the system in the form

ẋ1 = rx1(x2 − s/rx3),
ẋ2 = tx2(x3 − r/tx1),
ẋ3 = sx3(x1 − t/sx2), (65)
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Integrable systems

We discuss integrable dynamical systems

ẋn = vn(x), n = 1, 2, ...,N (66)

in the standard con�guration space RN . Suppose that we
have managed to �nd a pair of matrices, L and A (the
so-called Lax pair), whose elements depend on the
dynamical variables x so that equations (433) are
equivalent to the matrix equation

L̇ = [L,A] = LA− AL (67)
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Integrable systems

This form of writing the equations of motion will be called
a Lax representation. It follows from (67) that L(t)
undergoes a similarity transformation

L(t) = U−1L(0)U(t), U(t) = etAU(0) (68)

Therefore, the eigenvalues of L(t) are time-independent
and so are integrals of motion. Equivalently, the matrix
L(t) is isospectrally deformed with time. Instead of the
eigenvalues it is often more convenient to take their
symmetric functions as integrals of motion, for example,

Hn = tr(Ln)/n (69)
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Integrable systems

If in such a way one can �nd K functionally independent
integrals of motion and show that they are in involution,
then the system in question is completely integrable, when
N = 2M , K = M . When N − 1 ≥ K > M , the system is
superintegrable. From K = M + 1 to K = 2M − 1, we
might have a �ne structure of superintegrability. With only
one motion integral, Hamiltonian, we have an ergodic
system: trajectories cover energy shell homogeneously.
With more than one integrals of motion the energy shell
divides on invariant subspaces, on less ergodic structures.
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Integrable systems

Let us consider the following dynamical system

ȧn = ean+1 − ean−1, n ∈ Z, an ∈ C (70)

which can be presented as

L̇ = [L,A],
Lnm = ean/2δn,m+1 + eam/2δn+1,m,
Anm = (e(an+an−1)/2δn,m+2 − e(am+am−1)/2δn+2,m)/2,
Lnm = Lmn, Anm = −Amn,

Hn = trLn/n, Ḣn = 0, H1 = 0, H2 =
∑
n

ean (71)
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Integrable systems

Indeed, let as consider one nontrivial element of the matrix
equation,

L̇n,n−1 = ȧnean/2/2 = Ln,n+1An+1,n−1 − An,n−2Ln−2,n−1
= ean/2/2(ean+1 − ean−1) (72)
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Integrable systems

For the following deformed dynamical system

ȧn = γn(ean+1 − ean−1), n ∈ Z, an ∈ C (73)

which can be presented as

L̇ = [L,A],
Lnm = ean/2/γ1/2

n δn,m+1 + eam/2/γ1/2
m δn+1,m,

Anm = (e(an+an−1)/2γ1/2
n γ

1/2
n−1δn,m+2

−e(am+am−1)/2γ1/2
m γ

1/2
m−1δn+2,m)/2,

Lnm = Lmn, Anm = −Amn,

Hn = trLn/n, Ḣn = 0, H1 = 0, H2 =
∑
n

ean/γn(74)
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Integrable systems

After change of the variables an = γnbn, we see that the
deformed system is eqvivalent to the following system

ḃn = eγn+1bn+1 − eγn−1bn−1, n ∈ Z, bn ∈ C (75)
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Integrable systems

We may generate �nite dimensional sistems by imposing
periodic ocoditions: an+N = an. In the minimal nontrivial
case N = 3,

L =


0 ea2/2/γ

1/2
2 0 0

ea2/2/γ
1/2
2 0 ea3/2/γ

1/2
3 0

0 ea3/2/γ
1/2
3 0 ea1/2/γ

1/2
1

0 0 ea1/2/γ
1/2
1 0

(76)
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Integrable systems

L2 =


ea2
γ2

0 e(a2+a3)/2

(γ2γ3)1/2
0

0 ea2
γ2

+ ea3
γ3

0 e(a1+a3)/2

(γ1γ3)1/2

e(a2+a3)/2

(γ2γ3)1/2
0 ea3

γ3
+ ea1

γ1
0

0 e(a1+a3)/2

(γ1γ3)1/2
0 ea1

γ1

 (77)
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Integrable systems

L =

 0 ea2/2/γ
1/2
2 ea1/2/γ

1/2
1

ea2/2/γ
1/2
2 0 ea3/2/γ

1/2
3

ea1/2/γ
1/2
1 ea3/2/γ

1/2
3 0

 (78)
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Integrable systems

L2 =


ea1
γ1

+ ea2
γ2

e(a1+a3)/2

(γ1γ3)1/2
e(a2+a3)/2

(γ2γ3)1/2

e(a1+a3)/2

(γ1γ3)1/2
ea2
γ2

+ ea3
γ3

e(a1+a2)/2

(γ1γ2)1/2

e(a2+a3)/2

(γ2γ3)1/2
e(a1+a2)/2

(γ1γ2)1/2
ea1
γ1

+ ea3
γ3

 (79)
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Integrable systems

H3 = trL3/3 = 2
e(a1+a2+a3)/2

(γ1γ2γ3)1/2
, (80)

So, we have the following integral of motion

H = a1 + a2 + a3 = 2 log(H3(γ1γ2γ3)1/2/2) (81)

When an ∈ C,

H = a1 + a2 + a3 = H0 + 2πni ,
an = a + 2πi/3kn, H0 = 3a, k1 + k2 + k3 = n,
H0 = ±1⇒ a = ±1/3,
anm = an + am = A + 2πi/3(kn + km), A = 2a(82)
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Integrable systems

(L4)11 = (ea1/γ1 + ea2/γ2))2 + e(a1+a3)/(γ1γ3)
+e(a2+a3)/(γ2γ3)
(L4)22 = (ea2/γ2 + ea3/γ3))2 + e(a1+a2)/(γ1γ2)
+e(a1+a3)/(γ1γ3)
(L4)33 = (ea1/γ1 + ea3/γ3))2 + e(a1+a2)/(γ1γ2)
+e(a2+a3)/(γ2γ3)

trL4 = 2(
ea1

γ1
+

ea2

γ2
+

ea3

γ3
)2 = 2(trL2)2 (83)
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Integrable systems

A =

 0 A12 A13

−A12 0 A23

−A13 −A23 0


A12 = e(a1+a3)/2(γ1γ3)1/2

A13 = −e(a2+a3)/2(γ2γ3)1/2

A23 = e(a1+a2)/2(γ1γ2)1/2 (84)

e.g.

L̇12 = ȧ2ea2/γ1/2 = L13A32 − A13L32

= γ
1/2
2 ea2(ea3 − ea1) (85)
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Integrable systems

For N = 4,

L =


0 ea2/2/γ

1/2
2 0 ea1/2/γ

1/2
1

ea2/2/γ
1/2
2 0 ea3/2/γ

1/2
3 0

0 ea3/2/γ
1/2
3 0 ea4/2/γ

1/2
4

ea1/2/γ
1/2
1 0 ea4/2/γ

1/2
4 0

(86)

H2 = trL2/2 =
4∑

n=1

ean/γn (87)
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Integrable systems

L =


0 L12 0 L14

L12 0 L23 0
0 L23 0 L34

L14 0 L34 0

 (88)

L2 =


L2
11 0 L2

13 0
0 L2

22 0 L2
24

L2
13 0 L2

33 0
0 L2

24 0 L2
44

 (89)
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Integrable systems

L2
11 =

ea1

γ1
+

ea2

γ2
,

L2
13 =

e(a2+a3)/2

(γ2γ3)1/2
+

e(a1+a4)/2

(γ1γ4)1/2
,

L2
22 =

ea2

γ2
+

ea3

γ3
,

L2
24 =

e(a1+a2)/2

(γ1γ2)1/2
+

e(a3+a4)/2

(γ3γ4)1/2
,

L2
33 =

ea3

γ3
+

ea4

γ4
,

L2
44 =

ea1

γ1
+

ea4

γ4
(90)
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Integrable systems

trL3 = 0,
trL4 = tr(L2)2

= (L2
11)2 + (L2

13)2

+(L2
22)2 + (L2

24)2

+(L2
33)2 + (L2

13)2

+(L2
44)2 + (L2

24)2 (91)
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Integrable systems

For N = 4, from motion equations we �nd the following
integrals of motion

a1

γ1
+

a3

γ3
= H1,

a2

γ2
+

a4

γ4
= H2 (92)

and Nambu-Poisson representation

ȧn = {an,H1,H2,H3} = fnmkl
∂H1

∂am

∂H2

∂ak

∂H3

∂al
,

fnmkl = ρεnmkl , ρ = γ1γ2γ3γ4,

H1 =
a1

γ1
+

a3

γ3
, H2 =

a2

γ2
+

a4

γ4
,

H3 = ea1/γ1 + ea2/γ2 + ea3/γ3 + ea4/γ4 (93)

Makhaldiani N.V. (mnv) 28 November 79 / 405



Integrable systems

For even values N = 2M , from motion equations we have
the following two motion integrals

H1 = a1/γ1 + a3/γ1 + ... + a2M−1/γ2M−1,
H2 = a2/γ2 + a4/γ4 + ... + a2M/γ2M (94)
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Integrable systems

We may put a0 = aN+1 = −∞ and consider corresponding
open chane dynamical system

ȧ1 = γ1ea2,
ȧn = γn(ean+1 − ean−1), 2 ≤ n ≤ N − 1, an ∈ C,
ȧN = −γN−1eaN−1 (95)
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Integrable systems

For N = 3, we have the following motion equations and
integrals

ȧ1 = γ1ea2,
ȧ2 = γ2(ea3 − ea1),
ȧ3 = −γ3ea2,
H1 = a1/γ1 + a3/γ3,
H2 = ea1/γ1 + ea2/γ2 + ea3/γ3 (96)
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Integrable systems

We may solve the system (98) as

a3 = γ3(H1 − a1/γ1),
a2 = ln(γ3(H2 − ea1/γ1 − ea3/γ3),∫ a1(t)

a1(t0)

da/f (a) = t − t0,

f (a) = γ1γ2(H2 − ea/γ1 − eγ3(H1−a/γ1)/γ3) (97)
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Integrable systems

For N = 4, we have the following motion equations and
integral

ȧ1 = γ1ea2,
ȧ2 = γ2(ea3 − ea1),
ȧ3 = γ3(ea4 − ea2),
ȧ4 = −γ4ea3,
H = ea1/γ1 + ea2/γ2 + ea3/γ3 + ea4/γ4 = H1 + H2,
H1 = a1/γ1 + a3/γ3,
H2 = a2/γ2 + a4/γ4, (98)
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Integrable systems

ea2 = ȧ1/γ1, ea3 = −ȧ4/γ4,
ea1 = ea3 − ȧ2/γ2 = −ȧ4/γ4 − ȧ2/γ2 = −Ḣ2,
ea4 = ea2 + ȧ3/γ3 = ȧ1/γ1 + ȧ3/γ3 = Ḣ1,
ea4 − ea1 = Ḣ = 0
a4 = a1 + 2nπi ,
a3 = a2 + ln(γ1/γ4) + (2n + 1)πi ,
H = (1/γ1 + 1/γ4)ea1 + (1/γ2 − γ1/γ3/γ4)ea2,
ea2 = H/(1/γ2 − γ1/γ3/γ4)
−(1/γ1 + 1/γ4)/(1/γ2 − γ1/γ3/γ4)ea1 = f (a1)(99)
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Integrable systems

Now we have solution as∫ a1

a1(0)

da

f (a)
= t,

a2 = ln f (a1),
a3 = a2 + ln(γ1/γ4) + (2n + 1)πi
a4 = a4 = a1 + 2nπi (100)
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Feynman integrals

Feynman integrals enter the evaluation of many physical
observable quantities in particle physics, gravitational
physics, statistical physics, and solid-state physics.
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Polylogarithms

The polylogarithm (PL) function is de�ned by a power
series in z , which is also a Dirichlet series in s:

Lis(z) =
∑
k≥1

zk

k s
, Li1(z) = ln

1

1− z
=

∫ z

0

dt

1− t
(101)

This de�nition is valid for arbitrary complex order s and for
all complex arguments z with |z| < 1; it can be extended to
|z | ≥ 1 by the process of analytic continuation. (Here the
denominator ns is understood as exp(s ln(n)). The special
case s = 1 involves the ordinary natural logarithm,
Li1(z) = − ln(1− z), while the special cases s = 2 and
s = 3 are called the dilogarithm (also referred to as
Spence's function) and trilogarithm respectively.
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Polylogarithms

The name of the function comes from the fact that it may
also be de�ned as the repeated integral of itself:

Lis+1(z) =

∫ z

0

dt

t
Lis(t),

Li2 =

∫ z

0

dt

t
Li1(t) =

∫ z

0

dt

t
ln

1

1− t
(102)

For nonpositive integer orders s, the polylogarithm is a
rational function.
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Multiple polylogarithms (MPLs)

MPLs are a class of special functions de�ned by

G (a1, ..., an; x) =

∫ x

1

dt

t − a1
G (a2, ..., an; t), G (; x) = 1.(103)

In the special case where all the ai 's are zero, we have

G (0, ..., 0; x) =
1

n!
lnn x (104)
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New Physics

Recently CDF collaboration has published
[Aaltonen et al. (CDF) 2022] new measured value of the
W-boson mass

mW = 80.4335± 0.0094GeV (105)

which is in excess of the SM prediction
[G.Patrignani et al. (Particle Data Group) 2016]

mSMW = 80.375± 0.006GeV (106)

at 7σ level. A lot of explanations of this result has
appeared.
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New Physics

Assuming that the measurement at CDF II is correct, we
discuss the possibility to explain the anomaly in the
constituent Higgs (125 GeV), W(80 GeV) and Z(91 GeV)
model. Nearly a decade after the discovery of the Higgs
boson at LHC, the true shape of the Higgs sector is still
unknown. On the other hand, the Higgs sector is often
extended from the minimal form in the standard model
(SM) for models beyond the SM (BSM), which can explain
neutrino oscillations, dark matter and baryon asymmetry of
the Universe. Therefore, unveiling the structure of the
Higgs sector is quite important to narrow down BSM
scenarios.
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New Physics

The W boson anomaly is a signature of BSM scenarios.
Given the sizable di�erence in the W mass, the new physics
scale needs to be not too far above the TeV scale.
Moreover, the new physics could be at the electroweak
scale if generating this discrepancy via loops. Direct new
physics searches at the LHC and other experiments will
certainly reveal or rule out the new physics model
candidates. The electroweak precision program and the
Higgs precision program will also further extract the
possible imprints of new physics.
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New Physics

We propose milimal supersimmetric constituent model with
scalar φ and fermion ψ supermultiplet (φ, ψ) with valense
mass m ∼ 40 Gev. In this model, W is ψ̄ψ vector bound
state and H is three φ bound state.
In the SM and its extensions the W-boson mass can be
evaluated from

m2
W (1−m2

W /m2
Z ) = a(1 + δ) = A, a =

πα√
2GF

(107)

where GF is the Fermi constant, α is the �ne structure
constant, and δ represents the sum of all non-QED loop
diagrams to the muon-decay amplitude which itself depends
on MW as well.
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New Physics

We can solve the equation (107) as

m2
W = (1±

√
1− 4A/m2

Z )m2
Z/2,

A/m2
Z < 1/4, m2

Z > 4A. (108)

To the observed value of the mW corrseponds

m2
W = (1−∆)m2

Z = m2
Z − A + ...,

∆ = 1− m2
W

m2
Z

= 0.223 (109)

The second solution is

m2
W 2 = ∆m2

Z = A + ..., mW 2 =
√

∆mZ = 43.0 GeV(110)
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New Physics

The neutrino ν was proposed in December 1930 by Pauli in
order to explain the continuous energy-spectrum of the
electrons measured in β-decays. Pauli named these
particles neutrons because of their uncharged nature.
However, after the discovery of the heavier and uncharged
particle by Chadwick in 1932, Fermi changed this name to
the neutrino.
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Time Inversion and Spin

Let us consider the following discrete dynamics:

Sn+1 + Sn−1 = Φ(Sn), (111)

which is obviously a (discrete) time (n) invertible in this
implicit form. In the explicit form

Sn+1 = F (Sn, Sn−1) = Φ(Sn)− Sn−1 (112)

it is not obviously time invertible. If we take two step time
lattice-make simplest discrete RD step and from one
component-scalar S(n) construct two component-spinor
Ψ(n), we obtain explicit time invertible dynamics

Ψn+1 = Ω(Ψn), Ψn+1 =

(
Sn+2

Sn+1

)
, Ψn =

(
Sn

Sn−1

)
(113)
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Time Inversion and Spin

This dynamical mechanism of origin spin which
connects time inversion symmetry and the spin was
invented when was constructed the theory of quanputers
[Makhaldiani, 2011.2].
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Higgs particles

This mechanism indicates that with time inversion
symmetry we can have only composed scalar �elds. With
the discovery of the Higgs particle with mass 125 GeV , a
nice number mW /mH ' 2/3 appear, which, at least for me,
indicates for composed nature of W and H , with a same
mass of about 40 GeV two and three valence constituents
correspondingly. The fermion constituents ψa

n of W and
scalar constituents ϕa

n of H compose scalar super multiplet
(ϕa

n, ψ
a
n) with a �avor index n and color index a. Another

notation is (h, sh)-(He, She:).
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Composite Higgs Particles

If we extrapolate the SM value of α−1(mZ ) to electron
masse scale, we �nd α−1(me) = 137.0
Coupling constant uni�cation at α−1u = 29.0 and scale
1016GeV in MSSM [Makhaldani, 2014] has a relict on the
SM scale: α−12 (m) = 29.0 at m = 41GeV .
The 40 GeV constituents may be good candidates in dark
matter particles.
Recent (missing) discovery of the second Higgs particle
with mass MH = 750GeV indicates an interesting
structures. It is curious that MH/mh = 750/125 = 6!
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New Physics

Super QCD is a supersymmetric gauge theory which
resembles quantum chromodynamics (QCD) but contains
additional particles and interactions which render it
supersymmetric. The most commonly used version of super
QCD is in 4 dimensions and contains one Majorana spinor
supercharge.
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Monopole mechanism of con�nement and (multi)particle
production

Let me draw the following scenario of con�nement and
particle production in QCD. In classical gluodynamics (in
the simplest case, A0 = 0 and �nite energy assumption)
particle-like solutions, monopoles, can not be due to scale
(conformal) invariance. For nontrivial asymptotic A0, we
may have monopole states. In quantum gluodynamics we
have not conformal invariance beyond the renormdynamic
�xed points and monopoles can exist. In (one coupling
constant) quantum gluodynamics we have the trivial
ultraviolet �xed point at g = 0 and nontrivial infrared �xed
point at some g = gc .
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Monopole mechanism of con�nement and (multi)particle
production

The Higher energy multiparticle production processes follow
the following scenario: higher energy quarks and gluons
(perturbatively) produce lower energy gluons and quarks
until the intermediate energy-scale where running coupling
constant reach the selfdual (�xed) value beyond of which
monopoles start to produce. Later at the valence quark
energies-scales, (at which αs = 2,) monopoles become
unstable and decay into hadrons.
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Con�nement, Space Dimension and Supersymmetry

With exact SUSY we have co�nement by dimentional
counting: superspace dimension is zero on the hadronic
scale, hadrons are pointlike, color is con�ned inside hadrons.
For SM QCD this picture indicates that at the hadronic
scale we have e�ective SQCD, which contains scalar quarks.
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Sonoluminescence and cumulative e�ect

Sonoluminescence refers to that remarkable phenomenon in
which a small bubble of air injected into a container of
water and suspended in a node of a strong acoustic
standing wave emits light. More precisely, if it is driven
with a standing wave of about 20,000 Hz at an
overpressure of about 1 atm, the bubble expands and
contracts in concert with the wave, from a maximum radius
R ∼ 10−3 cm to a minimum radius of r ∼ 10−4 cm. Note
that R/r ∼ 10 one order of magnitude as in QCD with size
for hadrons R ∼ 10−13 cm and perturbative size r ∼ 10−14

cm. Exactly at minimum radius roughly 1 million optical
photons are emitted, for a total energy liberated of 10 MeV.

Makhaldiani N.V. (mnv) 28 November 105 / 405



Sonoluminescence and cumulative e�ect

Acoustic cavitation-the formation and implosive collapse of
bubbles-occurs when a liquid is exposed to intense sound.
Cavitation can produce the emission of light, or
sonoluminescence. The concentration of energy during the
collapse is enormous: the energy of an emitted photon can
exceed the energy density of the sound �eld by about
twelve orders of magnitude, and it has long been predicted
that the interior bubble temperature reaches thousands of
degrees Kelvin during collapse.
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Geometrization of the hadrodynamics

Color con�nement constitutes for quarks and gluons
something like an event horizon which they can never cross.
Signals transmitted to the outside world from inside such a
horizon cannot contain information and must thus be of
thermal nature.
We consider multihadron production in high energy
collisions as the QCD counterpart of Hawking-Unruh
radiation, encountered in black holes and for accelerated
observers. This is shown to provide a common origin for
thermal multihadron production.

Makhaldiani N.V. (mnv) 28 November 107 / 405



Geometrization of the hadrodynamics

Fundamental constituents of QCD, quarks and gluons, are
colored, and by color con�nement they are not allowed to
exist as individual entities in the world we can observe, a
single quark or gluon can never be observed as an isolated
object, in contrast to a single proton or electron, for
example. Other case where things remain in principle
beyond our reach are given by black holes.
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Strong interaction black holes

A black hole is the �nal stage of a neutron star after
gravitational collapse [Fang, Ru�ni 1983]. It has a mass M
concentrated in such a small volume that the resulting
gravitational �eld con�nes all matter and even photons to
remain inside the 'event horizon' R of the system: no
causal connection with the outside world is possible. Could
it be that a hadron, containing colored constituents that
cannot get out, is something like a black hole of strong
interaction physics?
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Strong interaction black holes

In general relativity, forces are assumed to modify the
underlying space-time manifold. The space-time metric of
this manifold is given by

ds2 = qdt2 − q−1dr 2 − r 2dΩ2 (114)

with r and Ω specifying the spatial part, and t the time; for
�at space, we have q = 1. The event horizon of a
(spherical) black hole is determined by the point at which
this metric is so deformed that space and time interchange,
i.e., the point at which q = 0.
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Strong interaction black holes

For gravitation, the Einstein equations give

q = 1− 2GM

r
(115)

which leads to the Schwarzschild radius of a black hole,

R = 2GM (116)

where G = 6.7× 10−39GeV−2 is the gravitational constant
and M the mass of the system. It is instructive to consider
the Schwarzschild radius of a typical hadron, assuming a
mass m ∼ 1 GeV,

Rh = 1.3× 10−38GeV−1 = 2.7× 10−52cm (117)
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Strong interaction black holes

To become a gravitational black hole, the mass of the
hadron would thus have to be compressed into a volume
more than 10100 times smaller than its actual volume (with
a radius of about 1 fm).
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Strong interaction black holes

On the other hand, if instead we increase the interaction
strength from gravitation to strong interaction [Satz 2012],
we gain in the resulting 'strong' Schwarzschild radius Rs a
factor αs/Gm2, where αs is the dimensionless strong
coupling and Gm2 the corresponding dimensionless
gravitational coupling for the case in question. This leads to

Rs =
2αs

m
(118)

which for the limiting value of the strong coupling, αs = 3,
gives Rs = 1.2 fm
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Strong interaction black holes

In other words, the con�nement radius of a hadron is about
the size of its 'strong' Schwarzschild radius, so that we
could picture quark con�nement as the strong interaction
version of the gravitational con�nement in black holes.
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Strong interaction black holes

Hawking predicted that when quantum matter e�ects are
taken into account, a stationary black hole emits thermal
radiation with the Planckian power spectrum characteristic
of a perfect black-body at a �xed temperature. A radiating
black hole is non-stationary as it loses energy and the
horizon continuously shrinks.
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Hierarchy Problem

The socalled hierarchy problem - in other words, our
di�culty in answering the question of why the
characteristic scale of gravity, MP ∼ 1019 GeV, is 16 orders
of magnitude larger than the Electro-Weak scale, MEW ∼ 1
TeV - could be solved by assuming the existence of extra
dimensions in the Universe
[ Antoniadis, Arkani-Hamed, Dimopoulos and Dvali 1998].
In this idea the traditional picture of Planck-length-sized
additional spacelike dimensions (lP ' 10−33 cm) was
abandoned, and the extra dimensions could have a size as
large as 1 mm.
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Hierarchy Problem

The upper bound on the size of the proposed Large Extra
Dimensions actually matched the smallest length scale
down to which the force of the gravitational interactions,
and thus their 1/r 2 dependence, had been measured. If
extra dimensions of that size did exist, gravitational
interactions would have a completely di�erent dependence
on r in scales smaller than 1 mm.
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Hierarchy Problem

On the other hand, electromagnetic, weak and strong
forces are indeed sensitive to the existence of extra
dimensions. If, for example, gauge bosons were allowed to
propagate in the extra-dimensional spacetime, their
interactions would be modi�ed beyond any acceptable
phenomenological limits unless the size of the extra
dimensions was smaller than 10−16 cm.
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Hierarchy Problem

This problem was resolved under the assumption that all
particles experiencing this type of interactions, in other
words, all ordinary matter, is restricted to live on a
(3+1)-dimensional hypersurface, a 3- brane, that has a
width along the extra dimensions of, at most, the above
order. The 3-brane, playing the role of our four-dimensional
world, is then embedded in the higher-dimensional
spacetime, usually called the bulk, in which only gravity can
propagate.
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Hierarchy Problem

This is analog of the graphen electrodynamics where
electromagnetic forsies propagate in (3+1)-dimensional
hypersurface but graphen electrons are con�ned in the
graphen (2+1)-dimensional hypersurface.
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Hierarchy Problem

Planck scale, MP , is only an e�ective energy scale derived
from the fundamental higher-dimensional one, Mp, through
the following relation

M2
P = M2

p(M1R1)n1...(MkRk)nk , lP << R1 << ... << Rk ,
n1 + ... + nk = n. (119)

From the above, it becomes clear that, if the volume of the
compact space, V ∼ Rn1

1 ...R
nk
k , is large, i.e if

R1, ...,Rk >> lP , then the (4 + n)- dimensional Planck
mass, Mp, will be much lower than the 4-dimensional one,
MP . If one chooses Mp = MEW , then the above expression
provides a relation between the scale of gravity and the
scale of particle interactions. In the regime
Rk−p−1 < r < Rk , the extra dimensions 'open up' and
Newton's law for the gravitational interactions is modi�ed
assuming a 1/r 2+n1+...+nk−p dependence on the radial
separation between two massive particles. In simplest case,
k = 1, n1 = n, we have one step change of dimension with
scale.

Makhaldiani N.V. (mnv) 28 November 121 / 405



Primordial black holes

Primordial black holes (PBH) is a hypothetical black holes
that formed soon after the Big Bang (BB). In the early
universe, high densities and heterogeneous conditions could
have led su�ciently dense regions to undergo gravitational
collapse, forming black holes. The existence of PBH �rst
proposed by Zel'dovich and Novikov in 1966 and the theory
behind their origins was �rst studied in depth by Stephen
Hawking in 1971. Since primordial black holes did not form
from stellar gravitational collapse, their masses can be far
below stellar mass (2× 1030 kg).
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Primordial black holes

In the path-integral approach to the quantization of gravity
one considers expressions of the form

Z (g , φ) =

∫
dgdφe iA (120)

where dg is a measure on the space of metrics g ; dφ is a
measure on the space of matter �elds φ, and A(g , φ) is the
action. In this integral one must include not only metrics
which can be continuously deformed into the �at-space
metric but also homotopically disconnected metrics such as
those of black holes.
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Primordial black holes

The formation and evaporation of macroscopic black holes
gives rise to e�ects such as baryon nonconservation and
entropy production. One would therefore expect similar
phenomena to occur on the elementary-particle level
Quantum mechanical e�ects cause black holes to create and
emit particles as if they were hot bodies with temperature

TBH ' 10−6
M�
M

K ◦ (121)

This thermal emission leads to a slow decrease in the mass
of the black hole and to its eventual disappearance: any
primordial black hole of mass less than about 1015g would
have evaporated by now.
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Primordial black holes

There is a Generalized Second Law: S + A/4 never
decreases, where S is the entropy of matter outside black
holes and A is the sum of the surface areas of the event
horizons.
This shows that gravitational collapse converts the baryons
and leptons in the collapsing body into entropy. We
suppose that it may takes plase also the inverse process of
criation of the leptons and baryons from primordial BH in
Heavy Ion collitions.
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Primordial black holes

Black holes are well-understood general-relativistic objects
when their mass MBH far exceeds the fundamental
(higher-dimensional) Planck mass (MP >> TeV ). As MBH

approaches MP , the BHs become 'stringy' and their
properties complex.
When we will ignore this obstacle and estimate the
properties of light BHs by simple semiclassical arguments,
strictly valid for MBH >> MP , because of the unknown
stringy corrections, results are approximate estimates.
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The production and decay of Schwarzschild black holes

Consider two partons with the center-of-mass (c.m.) energy
MBH moving in opposite directions. Semiclassical reasoning
suggests that, if the impact parameter is less than the
(higher-dimensional) Schwarzschild radius, a BH with the
mass MBH forms. Therefore the total cross section can be
estimated from geometrical arguments.
As the collision energy increases, the resulting BH gets
heavier and its decay products get colder.
The wavelength λ = 2π/TH corresponding to the Hawking
temperature is larger than the size of the black hole.
Therefore, the BH acts as a point radiator and emits
mostly s waves.
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The production and decay of Schwarzschild black holes

This indicates that it decays equally to a particle on the
brane and in the bulk, since it is sensitive only to the radial
coordinate and does not make use of the extra angular
modes available in the bulk. Since there are many more
particles on our brane than in the bulk, this has the crucial
consequence that the BH decays visibly to standard model
(SM) particles.
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The production and decay of Schwarzschild black holes

In order to �nd the average multiplicity of particles
produced in the process of BH evaporation, we note that
the BH evaporation is a blackbody radiation process, with
the energy �ux per unit of time given by Planck's formula

df

dx
∼ x3

ex + q
, x =

E

TH
(122)

where q is a constant, which depends on the quantum
statistics of the decay products (q = −1 for bosons, 1 for
fermions, and 0 for Boltzmann statistics).
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The production and decay of Schwarzschild black holes

The spectrum of the BH decay products in the massless
particle approximation is given by

dN

dE
∼ x2

ex + q
(123)

For averaging the multiplicity

< N >=<
MBH

E
>= a

MBH

TH
,

a =
I (1)

I (2)
, I (n) =

∫ ∞
0

xndx

ex + q
(124)
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Negative binomial distribution

The multiplicity of charged particle production is considered
the key to understanding the particle production
mechanism. The probability P(n) of obtaining n charged
particles in the �nal state is related to the particle
production mechanism. It obeys Poisson distribution if the
particles are produced in a �nal-state independent way.
Negative binomial distribution (NBD) provides the best
description of the high energy multiparticle production
processes, has very clear physical interpretation and
corresponds to the independently radiating primordial black
holes (PBH and monopole) intermadiate states.
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Quantum �eld theory

As a concrete model, we take a relativistic scalar �eld
model with lagrangian (see e.g. [Makhaldiani, 1980])

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − g

n
ϕn, µ = 0, 1, ...,D − 1(125)

In the case

n =
2D

D − 2
(126)

the coupling constant g is dimensionless, and the model is
renormalizable. We take an euklidian form of the QFT
which uni�es quantum and statistical physics problems.
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Quantum �eld theory

The main objects of theory are Green functions -
correlation functions - correlators,

Gm(x1, x2, ..., xm) =< ϕ(x1)ϕ(x2)...ϕ(xm) >

= Z−10

∫
dϕ(x)ϕ(x1)ϕ(x2)...ϕ(xm)e−S(ϕ) (127)

where dϕ is an invariant measure

d(ϕ + a) = dϕ. (128)
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Quantum �eld theory

For gaussian actions,

S = S2 =

∫
dxdyφ(x)A(x , y)φ(y) = ϕ · A · ϕ (129)

the QFT is solvable,

Gm(x1, ..., xm) =
δm

δJ(x1)...J(xm)
lnZJ |J=0,

ZJ =

∫
dϕe−S2+J·ϕ = exp(

1

4

∫
dxdyJ(x)A−1(x , y)J(y))

= exp(
1

4
J · A−1 · J) (130)

Non trivial problem is to calculate correlators for non
gaussian QFT
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Renormdynamics

In quantum perturbation calculations
[Bogoliubov and Shirkov 1959], we �nd the following
corrections to the classical lagrangian

∆L = (z − 1)
1

2
∂µϕ∂

µϕ− (zm − 1)
m2

2
ϕ2 − (zg − 1)

g

n
ϕn(131)

Corrected, e�ective, lagrangian becomes

L + ∆L = z
1

2
∂µϕ∂

µϕ− zm
m2

2
ϕ2 − zg

g

n
ϕn (132)
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Renormdynamics

We can restore the (classical) form of the lagrangian, by
corresponding renormalization (compensating)
transformations,

ϕ⇒ z−1/2ϕ = ϕ̄
m2 ⇒ z−1m zm2 = m̄2

g ⇒ z−1g zn/2g = ḡ (133)

So, if we order the quantum correction in some discrete (or
continual) way, we can include them step by step, which
will be equivalent to the corresponding evolution equations
for constants and �elds [Wilson, Kogut 1974].
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Renormdynamics

These equations de�ne the evolution from classical theory
to quantum one. The quantum corrections often are ill
de�ned, singular or divergent, so we need some
regularization. For some �eld theory models, e.g. Youkawa
nuklon-mezon model, quantum corrections invent new
structures, in the case, mezon sel�nterection, so quantum
theory has an extended structure
[Bogoliubov and Shirkov 1959].

Makhaldiani N.V. (mnv) 28 November 137 / 405



Renormdynamics

In this way, we can generate from classical Fermi like
models the standard model of particle physics. If the
structure elements of a (quantum)�eld theory model is
�nite, we have a renormalizable model, we may have also
an in�nite number of structure elements, in the case of a
quantum gravity model e.g.
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Renormdynamics

In the in�nitezimal form we have the following
renormdynamic motion equations

ϕ̇ ≡ µd

dµ
ϕ̄|µ=µ0 = (

µ∂

∂µ
+ β(g)

∂

∂g
+ η(g)

m∂

∂m
)ϕ

≡ Dϕ = −1
2
γ(g)ϕ,

ṁ = η(g)m, η(g) =
1

2
(γ(g)− γm(g)),

µd

dµ
ḡ |µ=µ0 ≡

d

dt
g = ġ = β(g), β(g) =

n

2
γ(g)− γg(g),

t = ln(
µ

µ0
) (134)
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Renormdynamics

For correlators, renormdinamic equations are

(D +
n

2
γ(g))Gn = 0, DMn =

n

2
γ(g)Mn,

Mn = (G2)−nGn (135)

For renorminvariant quantities - renomintegrals of motion I ,

İ = DI = 0, (136)
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Renormdynamics

Solution to the renormdynamic equation for coupling
constant, ḡ , is given in the implicit form by the following
integral ∫ ḡ

g

dg

β(g)
= ln

µ̄

µ
≡ t (137)

The mass parameter running is given as

m = m̄ exp(−
∫ µ̄

µ

dµ

µ
η(g(µ))) (138)
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Renormdynamics

The correlator (renorm)dynamics is given as

Gn(p; g ,m, µ) = exp(
n

2

∫ µ̄

µ

dµ

µ
γ(g(µ))) · Gn(p; ḡ , m̄, µ̄)(139)

As an example in perturbative calculations, let us consider
the simplest nonlinear scalar �eld model ϕ3,
[Kazakov, Lomidze, Makhaldiani, Vladimirov 1974,
Collins 1984]. In d−dimensional space-time, we have the
following exact β−function

β(d , g) = (
d

2
− 3)g + β(g) (140)
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Renormdynamics

In one-loop approximation

β(g) = − 3

256π3
g 3 + O(g 5) (141)

For every value of the coupling constant, g(µ), in
dimension

dc = 6− 2β(g)/g , (142)

we have self-similar fractal structure.
Fore small g , in dimensions d < 6, we have asymptotic
freedom, g(µ)→ 0, when t = lnµ/µ0 →∞,

g(µ) = (
µ

µ0
)(d/2−3)g0. (143)
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Renormdynamics

In dimension d = 6 and one-loop approximation,

g(µ)−2 = g(µ0)−2 + a ln
µ

µ0
, a =

3

128π3
(144)
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Renormdynamics

In the region of d > 6 and small g , we have UV �xed point,

β(d , gc) = 0, g 2
c =

256π3

3
(

d

2
− 3), d = 6 + 2ε,

ε < 4.10−4, gc < 1 (145)

So, according to the perturbation theory, a fractal lives in
dimension d = 6 + 10−3
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Nambu - Poisson formulation of Renormdynamics

In the case of several integrals of motion, Hn, 1 ≤ n ≤ N ,
we can formulate Renormdynamics as Nambu - Poisson
dynamics (see e.g. [Makhaldiani 2007])

ϕ̇(x) = [ϕ(x),H1,H2, ...,HN ], (146)

where ϕ is an observable as a function of the coupling
constants xm, 1 ≤ m ≤ M .
In the case of Standard model [Weinberg 1995], we have
three coupling constants, M = 3.
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Renormdynamics of observable quantities in high energy
physics

Let us consider one particle semiinclusive distribution

F (p, n) =
dσn

d̄p

=
1

(n − 1)!

∫ n−1∏
i=1

d̄p′iδ(p1 + p2 − p − Σn−1
i=1 p′i)

·|Mn+2(p1, p2, p, p
′
1, p
′
2, ..., p

′
n−1; g(µ),m(µ)), µ)|2,

d̄p ≡ d3p

E (p)
, E (p) =

√
p2 + m2. (147)
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Renormdynamics of observable quantities in high energy
physics

From the renormdynamic equation

DMn+2 =
γ

2
(n + 2)Mn+2, (148)

we obtain

DF (p, n) = γ(n + 2)F (p, n),
DF (p) = γ(< n > +2)F (p),
D = γ(< nk+1(p) > − < nk(p) >< n(p) >),
DCk = γ < n(p) > (Ck+1 − Ck(1 + k(C2 − 1)))

F (p) ≡ dσ

d̄p
=
∑
n

dσn

d̄p
, < nk(p) >=

∑
n nkdσn/d̄p∑
n dσn/d̄p

Ck =
< nk(p) >

< n(p) >k
(149)
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Universal scaling relations for multi particle cross sections

From dimensional considerations, the following combination
of cross sections must be universal function
[Koba, Nielsen, Olesen 1972]

< n >
σn
σ

= Ψ(
n

< n >
), (150)

a similar relation for the inclusive cross sections is
[Matveev, Sisakian, Slepchenko 1976].

< n(p) >
dσn

d̄p
/

dσ

d̄p
= Ψ(

n

< n(p) >
) (151)
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Universal scaling relations for multi particle cross sections

Indeed, let us de�ne n−dimension of observables
[Makhaldiani, 1980]

[n] = 1, [σn] = −1, σ = Σσn, [σ] = 0, [< n >] = 1,(152)

so, the following expression does not depend on any
dimensional quantities and must have a corresponding
universal form

Pn =< n >
σn
σ

= Ψ(
n

< n >
). (153)
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Universal scaling relations for multi particle cross sections

Let us �nd an explicit form of the universal functions from
renormdynamic equations. From the de�nition of the
moments we have

Ck =

∫ ∞
0

dxxkΨ(x), (154)

so they are independent from di�erent parameters,

DCk = 0⇒ Ck+1 = (1 + k(C2 − 1))Ck ⇒
Ck = (1 + (k − 1)(C2 − 1))...(1 + 2(C2 − 1))C2(155)
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Universal scaling relations for multi particle cross sections

Now we can invert momentum transform and �nd (see
[Makhaldiani, 1980] and appendix ) universal functions
[Ernst, Schmitt 1976],
[Darbaidze, Makhaldiani, Sisakian, Slepchenko 1978].

Ψ(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1Cn =

cc

Γ(c)
zc−1e−cz ,

C2 = 1 +
1

c
(156)
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Universal scaling relations for multi particle cross sections

The value of parameter c can be measured from the
dispersion low,

D =
√
< n2 > − < n >2 =

√
C2 − 1 < n >=

1√
c
< n >(157)

which is in accordance with n−dimension counting.
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1/ < n > correction to the scaling function

We can calculate also 1/ < n > correction to the scaling
function (see appendix)

< n >
σn
σ

= Ψ = Ψ0(
n

< n >
) +

1

< n >
Ψ1(

n

< n >
),

Ck = C 0
k +

1

< n >
C 1
k ,

C 0
k =

∫ ∞
0

dxxkΨ0(x), C 1
k =

∫ ∞
0

dxxkΨ1(x),

Ψ1(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1C 1

n

=
C 1
2 c2

2
(z − 2 +

c − 1

cz
)Ψ0 (158)
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Characteristic function for KNO

The characteristic function we de�ne as

Φ(t) =

∫ ∞
0

dxetxΨ(x) = (1− t/c)−c , t < c (159)

For the moments of the distribution, we have

Φ(k)(0) = Ck = (−c)(−c − 1)...(−c − k + 1)(−1/c)k

=
Γ(c + k)

Γ(c)ck
(160)

Note that it is an in�nitely divisible characteristic function,
i.e.

Φ(t) = (Φn(t))n, Φn(t) = (1− t/c)−c/n (161)
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Characteristic function for KNO

If we calculate observable(mean) value of x , we �nd

< x >= Φ′(0) = nΦ(0)n
′ = n < x >n,

< x >n=
< x >

n
(162)

For the second moment and dispersion, we have

< x2 >= Φ(2)(0) = n < x2 >n +n(n − 1) < x >2
n,

D
2 =< x2 > − < x >2= n(< x2 >n − < x >2

n) = nD2
n

D
2
n =

D
2

n
=

D
2

< x >
< x >n (163)
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Characteristic function for KNO

In a sense, any Hamiltonian quantum (and classical) system
can be described by in�nitely divisible distributions, because
in the functional integral formulation, we use the following
step

U(t) = e−itH = (e−i
t
NH)N (164)
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Closed equation of renormdynamics for the generating
function of the observables

Let us consider a generating function of the topological
crossections

F (h, g ,m, µ) = Σn≥2hnσn,

σn =
1

n!

dn

dhn
F |h=0,

σ = F |h=1, < n >=
d

dh
ln F |h=1, ... (165)
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Closed equation of renormdynamics for the generating
function of the observables

It is natural that for the generating function we have closed
renormdynamic equation [Makhaldiani, 1980]

(D − γ(
h∂

∂h
+ 2))F = 0,

F (h, g ,m, µ) = F (h̄, ḡ , m̄, µ̄) exp(2

∫ µ̄

µ

dµ

µ
γ(ḡ(µ))),

h̄ = h exp(

∫ µ̄

µ

dµ

µ
γ(ḡ(µ))), m̄ = m exp(

∫ µ̄

µ

dµ

µ
η(ḡ(µ))),∫ ḡ

g

dg

β(g)
= ln

µ̄

µ
(166)
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Characteristic function for KNO

Let us �nd generating function in the case of KNO scaling.
From the de�nition of Generating function and using
topological cross section from KNO, we �nd

F (h) =
∑
n

hn σ

< n >
Ψ(

n

< n >
) =

σ

< n >

∑
Ψ(

n

< n >
)hn

=
σ

< n >
Ψ(

δ

< n >
)

h2

1− h
,

δ ≡ h
d

dh
, qδf (h) = f (qh), (167)

Makhaldiani N.V. (mnv) 28 November 160 / 405



Characteristic function for KNO

No we can �nd more concrete form of the generation
function, with the explicit form of KNO function,

(
δ

< n >
)c−1 exp(−c

δ

< n >
)

h2

1− h
= (

δ

< n >
)c−1

q2h2

1− qh

=
1

< n >c−1
1

Γ(1− c)

∫ ∞
0

dt

tc
q2h2e−2t

1− qhe−t
, (168)
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Characteristic function for KNO

so

F (h)KNO =
cc

Γ(c)

σ

< n >c

1

Γ(1− c)

∫ ∞
0

dt

tc
q2h2e−2t

1− qhe−t
,

q = exp(− c

< n >
) (169)

Indeed, if we expend end than integrate under this formula,
we hind

F (h) =
cc

Γ(c)

σ

< n >c

∑
n≥2

hnnc−1 exp(− c

< n >
n) (170)

which corresponds to the considered explicit form of the
KNO function.
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Equilibrium state of hadronic matter

For high energy and temperature the states of hadronic
matter is distributed according to the Boltsman low

P(E ) = ρ(E )e−βE = e−βF , β−1 = T ,
F = E − TS , S = ln ρ(E ) (171)

For point particle systems the density of states rise with
energy as E a. For extended particle systems, with
combinatorial degeneracy of the states

ρ(E ) ∼ E−beβHE (172)

and we have maximal value of the temperature,
T < TH = βH

−1−the Hagedorn temperature.
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Information entropy and its generalizations

It is interesting to consider the information entropy as a
model of hadron production

S1 = −Σkpk ln pk (173)

and its q-deformations

Sq =
1

q − 1
(1−

N∑
k=1

pq
k ) =

N∑
k=1

1/N − pq
k

q − 1
(174)

When q 7→ 1 the deformed entropy reduce to the previous
expression.
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Information entropy and its generalizations

Particulary interesting may be the prime number values of
the deformation parameter q = p = 2; 3; 5; ...29; ...137; ...
It is interesting to consider also small values of the
deformation parameter, 0 < q = 1/p < 1. We can take as
probability spectrum e.g.

pk =
1− q

1− qN
qk , q = e−aE (175)
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Stoney's and Planck's Fundamental Constants

In the 1870's G.J. Stoney [Stoney, 1881], the physicist who
coined the term "electron" and measured the value of
elementary charge e, introduced as universal units of
Nature for L,T ,M :

ls =
e

c2

√
G , ts =

e

c3

√
G , ms =

e√
G

(176)

Makhaldiani N.V. (mnv) 28 November 166 / 405



Stoney's and Planck's Fundamental Constants

M. Planck introduced [Planck, 1899] as universal units of
Nature for L, T, M:

mp =

√
hc

G
=

ms√
α
, lp =

h

cmp
=

ls√
α

= 11.7ls ,

tp =
lp
c

=
ts√
α

(177)
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Stoney's and Planck's Fundamental Constants

Let us derive [Makhaldiani 2021] the Stoney's units using
Newton and Coulomb laws and Einstein's formula

Vn = G
m2

s

ls
= Vc =

e2

ls
⇒ ms =

e√
G
,

msc
2 =

e2

ls
⇒ ls =

e2

msc2
=

e

c2

√
G ,

ts =
ls
c

=
e

c3

√
G (178)
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Stoney's and Planck's Fundamental Constants

Using the Planck's formula E = hν = h/tp we derive the
Planck's units,

Vn = G
m2

p

lp
=

h

tp
=

hc

lp
⇒ mp =

√
hc

G
,

mpc2 =
hc

lp
⇒ lp =

h

cmp
=

√
hG

c3
,

tp =
lp
c

=

√
hG

c5
(179)

Makhaldiani N.V. (mnv) 28 November 169 / 405



Stoney's and Planck's Fundamental Constants

Note that

mpc2 − e2

ls
= 0; G

m2
s

ls
− e2

ls
= 0,

m2
p = 137m2

s , l2p = 137l2s , t2p = 137t2s (180)

So, planbrane=137stonbrane; the Planck's constant is
derivable from elementary charge and light velocity:

h =
e2

cα
(181)

Makhaldiani N.V. (mnv) 28 November 170 / 405



Fundamental Constants and Deformations of Theories

Stoney's fundamental constants are more fundamental just
because they are less than Planck's constants :) Due to the
value of α−1 = 137, we can consider relativity theory and
quantum mechanics as deformations of the classical
mechanics when deformation parameter c = 137 (in units
e = 1, ~ = 1) and ~ = 137 (in units e = 1, c = 1),
correspondingly. These deformations have an analytic sense
of p-adic convergent series.
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Base of the Babylonians Number System

The Babylonians used a base 60 number system which is
still used for measuring time - 60 seconds in a minute, 60
minutes in an hour - and for measuring angle - 360 degrees
in a full turn. The base 60 number system has its origin in
the ration of the Sumerian mina (m) and Akkadian shekel
(s), m/s ' 60 = 3 · 4 · 5.
We also can consider base 137 system for fundamental
theories.
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Base of the Fundamental Number System

For the nuclear physics strong coupling phenomena
description we may take as a base p = 13.
For the hadronic physics, valence scale QCD, and graphen
strong coupling phenomena description we may take as a
base p = 2.
For the weak coupling physics SM mZ scale and MSSM
uni�cation scale phenomena description we may take as a
base p = 29.
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Number of the Fundamental Constants

There are di�erent opinions about the number of
fundamental constants [Du�, Okun, Veneziano, 2001].
According to Okun, there are three fundamental
dimensionful constants in Nature: Planck's constant, ~; the
velocity of light, c ; and Newton's constant, G .
According to Veneziano, there are only two: the string
length Ls and c .
According to Du�, there are not fundamental constants at
all.
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Fundamental Constants and Deformations of Theories

The number 137 has a very interesting geometric sense,

137 = 112 + 42, (182)

so,
√
137 is the hypotenuse length of a triangle with other

sides of lengths 11 and 4.
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Number of the Fundamental Constants

Usually Ls = lp, so, the fundamental area is
L2
s = 137l2s = |(4ls + i11ls |2.

If z1 = 4 + i11, z2 = 11 + i4, |z1 − z2| =
√
72 + 72 =√

98 =
√
100− 2 = 10(1− 1/100 + O(10−4)) =

10− 1/10 + O(10−3). The vertices zn = ±4± i11 and
±11± i4 on the complex plane form an octagon with sides
of length 8 and almost 10. If we cover the surface with such
octagon we obtain �gures of size 10 before the correction
becomes of size 1ls . Note that lp = 11.7ls This hints about
microscopic origin - structure of quantum theory.
The value ss = l2s− Stoney area - stonbrane, is more like on
a fundamental area :)
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Number of the Fundamental Constants

R =
7√

2 cos(2π/5)
=

7
√
2

(
√
5− 1)/2

= 16.0177,

100

2π
= 15.9115, 5× 8 + 10× (10− 1/10) = 140− 1 = 139(183)

Figure: αs as a function of x = µr ∈ (0.01, 1.0)
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Scale Dependent Number of Fundamental Constants

In mathematics we have two kind of structures, discrete
and continuous one. If a physical quantity has discrete
values, it might have no dimension. If the values are
continuous - the quantity might have a dimension, a unit of
measure. These structures may depend on scale, e.g. on
macroscopic scale condensed state of matter (and time) is
well described as continuous medium, so we use
dimensional units of length (and time).
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Scale Dependent Number of Fundamental Constants

On the scale of atoms, the matter has a discrete structure,
so we may count lattice sites and may not use a unit of
length. If at small (e.g. at Plank) scale space (and/or
time) is discrete, then we do not need a unit of length
(time) for measuring, there is a fundamental length and we
can just count.
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Hamiltonization of the general dynamical systems

Let us consider a general dynamical system described by
the following system of the ordinary di�erential equations
[Arnold, 1978]

ẋn = vn(x), 1 ≤ n ≤ N , (184)

ẋn stands for the total derivative with respect to the
parameter t.
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Hamiltonization of the general dynamical systems

When the number of the degrees of freedom is even, and

vn(x) = εnm
∂H0

∂xm
, 1 ≤ n,m ≤ 2M , (185)

the system (184) is Hamiltonian one and can be put in the
form

ẋn = {xn,H0}0, (186)

where the Poisson bracket is de�ned as

{A,B}0 = εnm
∂A

∂xn

∂B

∂xm
= A

←
∂

∂xn
εnm

→
∂

∂xm
B , (187)

and summation rule under repeated indices has been used.
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Hamiltonization of the general dynamical systems

Let us consider the following Lagrangian

L = (ẋn − vn(x))ψn (188)

and the corresponding equations of motion

ẋn = vn(x), ψ̇n = −∂vm
∂xn

ψm. (189)

The system (189) extends the general system (184) by
linear equation for the variables ψ.
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Hamiltonization of the general dynamical systems

The extended system can be put in the Hamiltonian form
[Makhaldiani, Voskresenskaya, 1997]

ẋn = {xn,H1}1, ψ̇n = {ψn,H1}1, (190)

where �rst level (order) Hamiltonian is

H1 = vn(x)ψn (191)

and (�rst level) bracket is de�ned as

{A,B}1 = A(

←
∂

∂xn

→
∂

∂ψn
−

←
∂

∂ψn

→
∂

∂xn
)B . (192)

Makhaldiani N.V. (mnv) 28 November 183 / 405



Hamiltonization of the general dynamical systems

Note that when the Grassmann grading [Berezin, 1987] of
the conjugated variables xn and ψn are di�erent, the
bracket (192) is known as Buttin bracket[Buttin, 1996].
In the Faddeev-Jackiw formalism [Faddeev, Jackiw, 1988]
for the Hamiltonian treatment of systems de�ned by
�rst-order Lagrangians, i.e. by a Lagrangian of the form

L = fn(x)ẋn − H(x), (193)

motion equations

fmnẋn =
∂H

∂xm
, (194)

for the regular structure function fmn, can be put in the
explicit Hamiltonian (Poisson; Dirac) form
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Hamiltonization of the general dynamical systems

ẋn = f −1nm

∂H

∂xm
= {xn, xm}

∂H

∂xm
= {xn,H}, (195)

where the fundamental Poisson (Dirac) bracket is

{xn, xm} = f −1nm , fmn = ∂mfn − ∂nfm. (196)
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Hamiltonization of the general dynamical systems

The system (189) is an important example of the �rst order
regular hamiltonian systems. Indeed, in the new variables,

y 1
n = xn, y

2
n = ψn, (197)

lagrangian (188) takes the following �rst order form

L = (ẋn − vn(x))ψn ⇒
1

2
(ẋnψn − ψ̇nxn)− vn(x)ψn

=
1

2
y a
nε

abẏ b
n − H(y)

= f a
n (y)ẏ a

n − H(y), f a
n =

1

2
y b
n ε

ba,H = vn(y 1)y 2
n ,

f ab
nm =

∂f b
m

∂y a
n

− ∂f a
n

∂y b
m

= εabδnm (198)
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Canonical Quantization of the general dynamical systems

Corresponding motion equations and the fundamental
Poisson bracket are

ẏ a
n = εabδnm

∂H

∂y b
m

= {y a
n ,H}, {y a

n , y
b
m} = εabδnm. (199)

To the canonical quantization of this system corresponds

[ŷ a
n , ŷ

b
m] = i~εabδnm, ŷ 1

n = y 1
n , ŷ 2

n = −i~
∂

∂y 1
n

(200)

In this quantum theory, classical part, motion equations for
y 1
n , remain classical.
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Nambu dynamics

Nabu � Babylonian God
of Wisdom and Writing.

The Hamiltonian mechanics (HM) is in the fundamentals of
mathematical description of the physical theories
[Faddeev, Takhtajan, 1990]. But HM is in a sense blind;
e.g., it does not make a di�erence between two opposites:
the ergodic Hamiltonian systems (with just one integral of
motion) [Sinai, 1993] and (super)integrable Hamiltonian
systems (with maximal number of the integrals of motion).
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Nambu dynamics

Nabu mechanics (NM) [Nambu, 1973, Whittaker, 1927] is
a proper generalization of the HM, which makes the
di�erence between dynamical systems with di�erent
numbers of integrals of motion explicit (see,
e.g.[Makhaldiani 2007] ).
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Nambu dynamics

In the canonical formulation, the equations of motion of a
physical system are de�ned via a Poisson bracket and a
Hamiltonian, [Arnold, 1978]. In Nambu's formulation, the
Poisson bracket is replaced by the Nambu bracket with
n + 1, n ≥ 1, slots. For n = 1, we have the canonical
formalism with one Hamiltonian. For n ≥ 2, we have
Nambu-Poisson formalism, with n Hamiltonians,
[Nambu, 1973], [Whittaker, 1927].
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Nambu dynamics, system of three vortexes

The system of N vortexes can be described by the following
system of di�erential equations,
[Aref, 1983, Meleshko,Konstantinov, 1993]

żn = i
N∑

m 6=n

γm
z∗n − z∗m

, 1 ≤ n ≤ N , (201)

where zn = xn + iyn are complex coordinate of the centre of
n-th vortex.
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Nambu dynamics, system of three vortexes

For N = 3, and the quantities

u1 = ln|z2 − z3|2,
u2 = ln|z3 − z1|2,
u3 = ln|z1 − z2|2 (202)

the system reduce to the following system

u̇1 = γ1(eu2 − eu3),
u̇2 = γ2(eu3 − eu1),
u̇3 = γ3(eu1 − eu2), (203)
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Nambu dynamics, system of three vortexes

The system (203) has two integrals of motion

H1 =
3∑

i=1

eui

γi
,H2 =

3∑
i=1

ui

γi

and can be presented in the Nambu�Poisson form,
[Makhaldiani, 1997,2]

u̇i = ωijk
∂H1

∂uj

∂H2

∂uk
= {xi ,H1,H2} = ωijk

euj

γj

1

γk
,

where

ωijk = εijkρ, ρ = γ1γ2γ3
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Nambu dynamics, system of three vortexes

and the Nambu�Poisson bracket of the functions A,B ,C
on the three-dimensional phase space is

{A,B ,C} = ωijk
∂A

∂ui

∂B

∂uj

∂C

∂uk
. (204)

This system is superintegrable: for N = 3 degrees of
freedom, we have maximal number of the integrals of
motion N − 1 = 2.
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Toward the Finite Uni�ed Field Theory

The reduction of the dimensionless couplings in GUTs is
achieved by searching for RD integrals of
motion-renormdynamic invariant (RDI) relations among
them holding beyond the uni�cation scale. Finiteness
results from the fact that there exist RDI relations among
dimensional couplings that guarantee the vanishing of all
beta-functions in certain GUTs even to all orders. In this
case the number of the independent motion integrals N is
equal to the number of the coupling constants.
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Toward the Finite Uni�ed Field Theory

Note that in superintegrable dynamical systems the number
of the integrals is ≤ N − 1, so the RD of the �nite �eld
theories is trivial, coupling constants do not run, they have
�xed values, the renormdynamics is more than
superintegrable, it is hyperintegrable. Developments in the
soft supersymmetry breaking sector of GUTs and FUTs lead
to exact RDI relations, i.e. reduction of couplings, in this
dimensionful sector of the theory, too. Based on the above
theoretical framework phenomenologically consistent FUTs
have been constructed.
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Toward the Finite Uni�ed Field Theory

The main goal expected from a uni�ed description of
interactions by the particle physics community is to
understand the present day large number of free parameters
of the SM in terms of a few fundamental ones. In other
words, to achieve reduction of couplings at a more
fundamental level.
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Nambu dynamics, extended quantum mechanics

As an example of the in�nite dimensional Nambu-Poisson
dynamics, let me conside the following extension of
Schrödinger quantum mechanics [Makhaldiani, 2000]

iVt = ∆V − V 2

2
, (205)

iψt = −∆ψ + Vψ. (206)
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Nambu dynamics, extended quantum mechanics

An interesting solution to the equation for the potential
(205) is

V =
4(4− d)

r 2
, (207)

where d is the dimension of the spase. In the case of d = 1,
we have the potential of conformal quantum mechanics.
The variational formulation of the extended quantum
theory, is given by the following Lagrangian

L = (iVt −∆V +
1

2
V 2)ψ. (208)
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Nambu dynamics, extended quantum mechanics

The momentum variables are

Pv =
∂L

∂Vt
= iψ,Pψ = 0. (209)

As Hamiltonians of the Nambu-theoretic formulation, we
take the following integrals of motion

H1 =

∫
ddx(∆V − 1

2
V 2)ψ,

H2 =

∫
ddx(Pv − iψ), H3 =

∫
ddxPψ. (210)
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Extended quantum mechanics

We invent unifying vector notation,
φ = (φ1, φ2, φ3, φ4) = (ψ,Pψ,V ,Pv). Then it may be
veri�ed that the equations of the extended quantum theory
can be put in the following Nambu-theoretic form

φt(x) = {φ(x),H1,H2,H3}, (211)

where the bracket is de�ned as

{A1,A2,A3,A4} = iεijkl

∫
δA1

δφi(y)

δA2

δφj(y)

δA3

δφk(y)

δA4

δφl(y)
dy

= i

∫
δ(A1,A2,A3,A4)

δ(φ1(y), φ2(y), φ3(y), φ4(y))
dy

= idet(
δAk

δφl
). (212)
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Nambu dynamics, M theory

The basic building blocks of M theory are membranes and
M5−branes. Membranes are fundamental objects carrying
electric charges with respect to the 3-form C -�eld, and
M5-branes are magnetic solitons. The Nambu-Poisson
3-algebras appear as gauge symmetries of superconformal
Chern-Simons nonabelian theories in 2 + 1 dimensions with
the maximum allowed number of N = 8 linear
supersymmetries.
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Nambu dynamics, M theory

The Bagger and Lambert [Bagger, Lambert, 2007] and,
Gustavsson [Gustavsson, 2007] (BLG) model is based on a
3-algebra,

[T a,T b,T c ] = f abc
d T d (213)

where T a, are generators and fabcd is a fully anti-symmetric
tensor.
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Nambu dynamics, M theory

Given this algebra, a maximally supersymmetric
Chern-Simons lagrangian is:

L = LCS + Lmatter ,

LCS =
1

2
εµνλ(fabcdAab

µ ∂νAcd
λ +

2

3
fcdag f g

efbAab
µ Acd

ν Aef
λ )

Lmatter =
1

2
B Ia
µ BµI

a − B Ia
µ DµX I

a

+
i

2
ψ̄aΓµDµψa +

i

4
ψ̄bΓIJX I

c X J
d ψaf abcd

− 1

12
tr([X I ,X J ,XK ][X I ,X J ,XK ]),

I = 1, 2, ..., 8, (214)
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Nambu dynamics, M theory

where Aab
µ is gauge boson, ψa and X I = X I

aT a matter
�elds. If a = 1, 2, 3, 4, then we can obtain an SO(4) gauge
symmetry by choosing fabcd = f εabcd , f being a constant.
It turns out to be the only case that gives a gauge theory
with manifest unitarity and N = 8 supersymmetry.
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Nambu dynamics, M theory

The action has the �rst order form so we can use previous
formalism. The motion equations for the gauge �elds

f nm
abcd Ȧcd

m (t, x) =
δH

δAab
n (t, x)

, f nm
abcd = εnmfabcd (215)

take canonical form

Ȧab
n = f abcd

nm

δH

δAcd
m

= {Aab
n ,A

cd
m }

δH

δAcd
m

= {Aab
n ,H},

{Aab
n (t, x),Acd

m (t, y)} = εnmf abcdδ(2)(x − y) (216)
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Nambu-Poisson dynamics of an extended particle with spin
in an accelerator

The quasi-classical description of the motion of a relativistic
(nonradiating) point particle with spin in accelerators and
storage rings includes the equations of orbit motion

ẋn = fn(x), fn(x) = εnm∂mH , n,m = 1, 2, ..., 6;
xn = qn, xn+3 = pn, εn,n+3 = 1, n = 1, 2, 3;

H = eΦ + c
√
℘2 + m2c2, ℘n = pn −

e

c
An (217)

and Thomas-BMT equations
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Nambu-Poisson dynamics of an extended particle with spin
in an accelerator

[Tomas, 1927, Bargmann, Michel,Telegdi, 1959 ] of
classical spin motion

ṡn = εnmkΩmsk = {H1,H2, sn}, H1 = Ω · s, H2 = s2,
{A,B ,C} = εnmk∂nA∂mB∂kC ,

Ωn =
−e

mγc
((1 + kγ)Bn − k

(B · ℘)℘n

m2c2(1 + γ)

+
1 + k(1 + γ)

mc(1 + γ)
εnmkEm℘k) (218)
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Nambu-Poisson dynamics of an extended particle with spin
in an accelerator

where, parameters e and m are the charge and the rest
mass of the particle, c is the velocity of light,
k = (g − 2)/2 quanti�es the anomalous spin g factor, γ is
the Lorentz factor, pn are components of the kinetic
momentum vector, En and Bn are the electric and magnetic
�elds, and An and Φ are the vector and scalar potentials;

Bn = εnmk∂mAk , En = −∂nΦ− 1

c
Ȧn,

γ =
H − eΦ

mc2
=

√
1 +

℘2

m2c2
(219)
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Nambu-Poisson dynamics of an extended particle with spin
in an accelerator

The spin motion equations we put in the Nambu-Poisson
form. The general method of Hamiltonization of the
dynamical systems we can use also in the spinning particle
case. We put this formalism in the ground of the optimal
control theory of the accelerators.
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Hamiltonian extension of the spinning particle dynamics

Let us invent uni�ed con�guration space
q = (x , p, s), xn = qn, pn = qn+3, sn = qn+6, n = 1, 2, 3;
extended phase space, (qn, ψn) and hamiltonian

H = H(q, ψ) = vnψn, n = 1, 2, ...9; (220)

motion equations

q̇n = vn(q),

ψ̇n = −∂vm
∂qn

ψm (221)

where the velocities vn depends on external �elds as in
previous section as control parameters which can be
determined according to the optimal control criterium.
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Electric Dipole Moments (EDM) of Protons and Deuterons

EDM are one of the keys to understand the origin of our
Universe [Sakharov, 1967]. Andrei Sakharov formulated
three conditions for baryogenesis:
1. Early in the evolution of the universe, the baryon
number conservation must be violated su�ciently strongly,
2. The C and CP invariances, and T invariance thereof,
must be violated, and
3. At the moment when the baryon number is generated,
the evolution of the universe must be out of thermal
equilibrium.
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Electric Dipole Moments (EDM) of Protons and Deuterons

CP violation in kaon decays is known since 1964, it has
been observed in B-decays and charmed meson decays. The
Standard Model (SM) accommodates CP violation via the
phase in the Cabibbo-Kobayashi-Maskawa matrix.
CP and P violation entail nonvanishing P and T violating
electric dipole moments (EDM) of elementary particles
~d = d~s.
Although extremely successful in many aspects, the SM has
at least two weaknesses: neutrino oscillations do require
extensions of the SM and, most importantly, the SM
mechanisms fail miserably in the expected baryogenesis
rate.
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Electric Dipole Moments (EDM) of Protons and Deuterons

Simultaneously, the SM predicts an exceedingly small
electric dipole moment of nucleons
10−33 < dn < 10−31e · cm, way below the current upper
bound for the neutron EDM, dn < 2.9× 10−26e · cm. In
the quest for physics beyond the SM one could follow either
the high energy trail or look into new methods which o�er
very high precision and sensitivity. Supersymmetry is one of
the most attractive extensions of the SM and
S. Weinberg emphasized [Weinberg, 1993]: "Endemic in
supersymmetric (SUSY) theories are CP violations that go
beyond the SM. For this reason it may be that the next
exciting thing to come along will be the discovery of a
neutron (1932) electric dipole moment."
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Electric Dipole Moments (EDM) of Protons and Deuterons

The SUSY predictions span typically
10−29 < dn < 10−24e · cm and precisely this range is
targeted in the new generation of EDM searches
[Roberts, Marciano, 2010]. There is consensus among
theorists that measuring the EDM of the proton, deuteron
and helion is as important as that of the neutron.
Furthermore, it has been argued that T-violating nuclear
forces could substantially enhance nuclear EDM
[Flambaum, Khriplovich, Sushkov, 1986]. At the moment,
there are no signi�cant direct upper bounds available on dp

or dd .
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Electric Dipole Moments (EDM) of Protons and Deuterons

Non-vanishing EDMs give rise to the precession of the spin
of a particle in an electric �eld. In the rest frame of a
particle

ṡn = εnmk(Ωmsk + dmEk), Ωm = −µBm, (222)

where in terms of the lab frame �elds

Bn = γ(B l
n − εnmkβmE l

k),
En = γ(E l

n + εnmkβmB l
k) (223)

Now we can apply the Hamiltonization and optimal control
theory methods to this dynamical system.
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Digest of Quanputing

The idea of computations on quanputers is in �nding of the
needed (value of the) state (wave function ψ(t, x)) from
the initial, easy constructible, state (ψ(0, x),) which is
superposition of di�erent states, including interesting one,
with the same weight. During the computation the weight
of the interesting state is growing till the value when we
can guess the solution of the problem and then test it,
which is much more easier then to �nd it.
Let us consider the following nonlinear evolution equation

iVt = ∆V − 1

2
V 2 + J , (224)

extended Lagrangian and Hamiltonian

L =

∫
dxD(iVt −∆V +

1

2
V 2 − J)ψ,

H =

∫
dxD(∆V − 1

2
V 2 + J)ψ (225)
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Digest of Quanputing

and corresponding Hamiltonian motion equations

iVt = ∆V − 1

2
V 2 + J = {V ,H},

iψt = −∆ψ + Vψ = {ψ,H},
{V (t, x), ψ(t, y)} = δD(x − y) (226)

The solution of the problem is given in the form

|T ) = U(T )|0), ψ(t, x) =< x |t), U(T ) = Pexp(−i

∫ T

0

dtH(t))(227)

Under the programming of the quanputer we understand
construction of the potential V , or the corresponding
Hamiltonian. For the given potential, we calculate
corresponding source J .
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Digest of Quanputing

The discrete version of the system can be put in the form

Sm(n + 1) = Φn(S(n)) + Jm(n),

Ψm(n − 1) = Amk(S(n))Ψk(n), Amk(S(n)) =
∂Φk(S(n))

∂Sm(n)
(228)

or, in the regular case, when the matrix A is regular,
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Digest of Quanputing

we obtain explicit form of the corresponding discrete
dynamics

Sm(n + 1) = Φn(S(n)) + Jm(n),
Ψm(n + 1) = A−1mk(S(n + 1))Ψk(n), (229)

Now the state vector S(n) and wave vector Ψm(n) may
correspond not only to the discrete values of the potential
V (n,m) = Sm(n), and wave function ψ(n,m)
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GRID and Quanputing

As an example of GRID we take LHC Computing Grid. The
LHC Computing Grid (LCG), is an international
collaborative project that consists of a grid-based computer
network infrastructure incorporating over 170 computing
centers in 36 countries. It was designed by CERN to handle
the prodigious volume of data produced by Large Hadron
Collider (LHC) experiments. The Large Hadron Collider at
CERN was designed to prove or disprove the existence of
the Higgs boson, an important but elusive piece of
knowledge that had been sought by particle physicists for
over 40 years. A very powerful particle accelerator was
needed, because Higgs bosons might not be seen in lower
energy experiments, and because vast numbers of collisions
would need to be studied. Such a collider would also
produce unprecedented quantities of collision data requiring
analysis. Therefore, advanced computing facilities were
needed to process the data.
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GRID and Quanputing

A design report was published in 2005. It was announced to
be ready for data on 3 October 2008. It incorporates both
private �ber optic cable links and existing high-speed
portions of the public Internet. At the end of 2010, the
Grid consisted of some 200,000 processing cores and 150
petabytes of disk space, distributed across 34 countries.
The data stream from the detectors provides approximately
300 GByte/s of data, which after �ltering for "interesting
events", results in a data stream of about 300 MByte/s.
The CERN computer center, considered "Tier 0" of the
LHC Computing Grid, has a dedicated 10 Gbit/s connection
to the counting room. The project was expected to
generate 27 TB of raw data per day, plus 10 TB of "event
summary data", which represents the output of calculations
done by the CPU farm at the CERN data center.
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GRID and Quanputing

This data is sent out from CERN to eleven Tier 1 academic
institutions in Europe, Asia, and North America, via
dedicated 10 Gbit/s links. This is called the LHC Optical
Private Network. More than 150 Tier 2 institutions are
connected to the Tier 1 institutions by general-purpose
national research and education networks. The data
produced by the LHC on all of its distributed computing
grid is expected to add up to 10-15 PB of data each year.
Today, without big e�orts, we can modify (some)
GRID elements in time-invertible form. After
development of the quanputer technologies, we
can modify (some) GRID elements in quanputer
forms.
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Social pro�t of big collaborations

Nowadays there are several big collaborations in science,
e.g. LHC. Scienti�c value of LHC depends on three
components, the highest quality of accelerator, highest
quality of detectors and distributed data processing. The
�rst two components need good mathematical and physical
modeling. Third component and the collaboration as a
social structure are not under (anther) the control by
scienti�c methods and corresponding modeling. By
de�nition, scienti�c collaborations (SC) have a main
scienti�c aim: to obtain answer on the important scienti�c
question(s) and maybe gain extra scienti�c bonus: new
important questions and discoveries. SC is more open
information system than e.g. �nance or military systems.
So, it is possible to describe and optimize SC by scienti�c
methods. Pro�t from scienti�c modeling of SC maybe also
for other information systems and social structures.
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Reduction of the higher order dynamical system

Note that the procedure of reduction of the higher order
dynamical system, e.g. second order Euler-Lagrange motion
equations, to the �rst order dynamical systems, in the case
to the Hamiltonian motion equations, can be continued
using fractal calculus. E.g. �rst order system can be
reduced to the half order one,

D1/2q = ψ,D1/2ψ = p ⇔ q̇ = p. (230)
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Reduction of the higher order dynamical system

Another representation of the halforder derivative is

∂
1/2
t = ∂θ + θ∂t , ∂θθ + θ∂θ = 1, θ2 = 0 (231)

We may consider corresponding relativistic equation

E 1/2φ = H1/2φ, H1/2 = gnp1/2
n + bm1/2,

E 1/2 = (i∂t)
1/2 = a(∂θ + θ∂t)

p1/2
n = (−i∂xn)

1/2 = (∂θn + θn∂xn)/a, a = exp (iπ/4)
gngm + gmgn = γnδnm, bgn + gnb = 0,
b2 = 1, n = 1, 2, 3 (232)
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Reduction of the higher order dynamical system and SM
fermions

Dirac's equation

i∂tψ = (αnpn + βm)ψ = Hψ (233)

lies in the background structure of the SM. It is known that
the equation has problems with interpretation. E.g.

ẋk = i [H , xk ] = αk = v̂k ,
v 2 = 3 > 1, v =

√
< v 2 > =

√
3c (234)
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Reduction of the higher order dynamical system and SM
fermions

In (nonrelativistic, quantum) mechanics,

H =
p2

2m
, ẋ =

p

m
(235)

If we take

∂n = ∂θn − θnp2
n,

H = −i(αn(∂θn − θnp2
n)) + βm,

ẋk = [αn(∂θn − θnp2
n)) + iβm, xk ]

= vk = 2iαkθkpk (236)
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Reduction of the higher order dynamical system and SM
fermions

We may start also from nonlocal �rst order operator

E = ±
√

p2 + m2 (237)

and use previous tric as√
p2 + m2 = ∂θ + θ(p2 + m2),

ẋk = i [H , xk ] = ±2iθpk (238)
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Reduction of the higher order dynamical system and SM
fermions

For wave function ψ(t, x , θ) = ψ0 + θψ1(t, x),

i∂tψ = (∂θ + θ(p2 + m2))ψ,
i∂tψ0 = ψ1,
i∂tψ1 = (p2 + m2)ψ0,
ψ(t, x , θ) = ψ0 + θψ1(t, x)
= e iθ∂tψ0 = ψ0(t + iθ, x),
∂2
tψ0 = (∇2 −m2)ψ0 (239)
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q-interpolation

Dqf (x) =
f (x)− f (qx)

(1− q)x
|q→1 → f ′(x),

D−1f (x) =
f (x)− f (0)

2x
,

f (θ) = f0 + θf1, D−1f (θ) = f1, D−1 = ∂θ (240)
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Time observable - operator

There is the Dirac-Pauli argument of the absence of a good
time operator for the usual quantum dynamical systems.
The Dirac's part of the argument consists in the statement
that there is not a good momentum operator p̂ if
corresponding coordinate x̂ has restricted spectrum.
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Time observable - operator

Any good momentum observable permits to reach from the
state with coordinate x0 any stay with coordinate x ,

U(x − x0)ψ(x0) = ψ(x), x̂ψ(x) = xψ(x),
U(x) = exp(ix p̂), [x̂ , p̂] = i , (241)

In the coordinate representation: x̂ = x , p̂ = −i∂x . In
momentum representation: p̂ = p, x̂ = i∂p.
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Time observable - operator

If we suppose that there is a good time observable
t̂, [Ĥ , t̂] = i , than it permits from a given state
corresponding to a value of energy E0 to reach any state
with corresponding energy value E . But for usual systems
the spectrum is restricted from below by the ground state
energy, so there can not be a good time observable. This is
the Pauli's part of the argument.
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Time observable - operator

Let us consider rather general example of a dynamical
system with good time observable, the nonrelativistic
particle of mass m, neutron (1932) e.g., in the earth
gravitational �eld V = −mgz ,

H =
p2

2m
+ V (z), (242)

with corresponding motion equations

ż =
∂H

∂pz
=

pz

m
,

ṗz = −∂H

∂z
= mg ⇒ pz(t) = mgt + p0z ⇓ (243)
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Time observable - operator

t =
pz(t)− p0z

mg
⇒ t̂ =

p̂z(t)− p̂0z

mg
,

[Ĥ , t̂] = [V , pz(t)]/mg = i . (244)

So, dynamical systems with unbounded energy spectrum
may play role of the quantum clock with good time
observable.
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Standard model of the condensed matter theory

The Hubbard model, with Hamiltonian

H = H0 + λH1, H0 =
∑
ij

tijψ
+
iaψja,

H1 =
∑
i

(ψ+
iaψia)2 (245)

is the standard model of the condensed matter theory. The
tight binding coe�cients tij incorporate the physics of a
given material, which determine the crystal structure of the
ground state and the rest is supposed to be well
approximated by a choice of the on site Coulomb repulsion
λ.
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Standard model of the condensed matter theory

In the simplest Hubbard models the spin index a takes on
two values, representing the spin of electrons. Some
materials require more complicated multi-band Hubbard
models. The basic idea behind the Hubbard model is that
Coulomb forces are screened, with a screening length
shorter than the lattice spacing. With the exception of
phonons, low energy excitations are assumed to be
excitations of this low energy electron gas.
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Renormdynamics of QCD

... never exist by itself, but only
as primordial part of a lager body,

from which no force can tear it loose.
Titus Lucretius Carus: De rerum natura

∼55 B.C.

In the standard model of particle physics, the strong force
is described by the theory of quantum chromodynamics
(QCD). At ordinary temperatures or densities this force just
con�nes the quarks into composite particles (hadrons) of
size around 10−15 m = 1 femtometer = 1 fm
(corresponding to the QCD energy scale ΛQCD=200 MeV)
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Renormdynamics of QCD

and its e�ects are not noticeable at longer distances.
However, when the temperature reaches the QCD energy
scale (T of order 1012 kelvins) or the density rises to the
point where the average inter-quark separation is less than
1 fm (quark chemical potential µ around 400 MeV), the
hadrons are melted into their constituent quarks, and the
strong interaction becomes the dominant feature of the
physics.
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Renormdynamics of QCD

Such phases are called quark matter or QCD matter or
Gluquar. The strength of the color force makes the
properties of quark matter unlike gas or plasma, instead
leading to a state of matter more reminiscent of a liquid.
At high densities, quark matter is a Fermi liquid, but is
predicted to exhibit color superconductivity at high
densities and temperatures below 1012 K.
QCD is the theory of the strong interactions with, as only
inputs, one mass parameter for each quark species and the
value of the QCD coupling constant at some energy or
momentum scale in some renormalization scheme.
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Renormdynamics of QCD

This last free parameter of the theory can be �xed by
ΛQCD , the energy scale used as the typical boundary
condition for the integration of the Renormdynamic (RD)
equation for the strong coupling constant. This is the
parameter which expresses the scale of strong interactions,
the only parameter in the limit of massless quarks.
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Renormdynamics of QCD

While the evolution of the coupling with the momentum
scale is determined by the quantum corrections induced by
the renormalization of the bare coupling and can be
computed in perturbation theory, the strength itself of the
interaction, given at any scale by the value of the
renormalized coupling at this scale, or equivalently by
ΛQCD , is one of the above mentioned parameters of the
theory and has to be taken from experiment.
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Renormdynamics of QCD

The RD equations play an important role in our
understanding of Quantum Chromodynamics and the
strong interactions. The beta function and the quarks mass
anomalous dimension are among the most prominent
objects for QCD RD equations. The calculation of the
one-loop β-function in QCD has lead to the discovery of
asymptotic freedom in this model and to the establishment
of QCD as the theory of strong interactions
['t Hooft, 1972, Gross, Wilczek, 1973, Politzer, 1973].
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Renormdynamics of QCD

The MS-scheme ['t Hooft, 1973] belongs to the class of
massless schemes where the β-function does not depend on
masses of the theory and the �rst two coe�cients of the
β-function are scheme-independent.
The Lagrangian of QCD with massive quarks in the
covariant gauge is

L = −1
4

F a
µνF aµν + q̄n(iγD −mn)qn

− 1

2ξ
(∂A)2 + ∂µc̄a(∂µca + gf abcAb

µcc)

F a
µν = ∂µAa

ν − ∂νAa
µ + gf abcAb

µAc
ν,

(Dµ)kl = δkl∂µ − igtaklA
a
µ, (246)
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Renormdynamics of QCD

Aa
µ, a = 1, ...,N2

c − 1 are gluon; qn, n = 1, ..., nf are quark;
ca are ghost �elds; ξ is gauge parameter; ta are generators
of fundamental representation and f abc are structure
constants of the Lie algebra [ta, tb] = if abctc , we consider
an arbitrary compact semi-simple Lie group G. For QCD,
G = SU(Nc),Nc = 3.
The expression of the β-function can be obtained in the
following way.
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Renormdynamics of QCD

The canonical dimensions of the bare �elds and constants
in the d-dimensional space-time are

[m] = 1, [A] =
D − 2

2
, [Ψ] =

D − 1

2
,

[gb] = D − [A]− 2[Ψ] =
4− D

2
= ε,

D = 4− 2ε, [ab] = [g 2
b ] = 2ε, ab = µ2εZa,

0 = dab/dt = d(µ2εZa)/dt = µ2ε(εZa +
∂(Za)

∂a

da

dt
)

⇒ da

dt
= β(a, ε) =

−εZa
∂(Za)
∂a

= −εa + β(a),

β(a) = a2 d

da
(Z1) (247)
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Renormdynamics of QCD

where

β(a, ε) =
D − 4

2
a + β(a) (248)

is D−dimensional β−function and Z1 is the residue of the
�rst pole in ε expansion

Z (a, ε) = 1 + Z1ε
−1 + ... + Znε

−n + ... (249)

Since Z does not depend explicitly on µ, the β-function is
the same in all MS-like schemes, i.e. within the class of
renormalization schemes which di�er by the shift of the
parameter µ.
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Renormdynamics of QCD

The higher residue of the pole expansion can be de�ned
from (247),

0 = εZa +
∂(Za)

∂a

da

dt
= ε(a +

aZ1

ε
+

aZ2

ε2
+ ...)

+(1 +
(aZ1)′

ε
+

(aZ2)′

ε2
+ ...)(−εa + β(a))

= β − a(aZ1)′ + aZ1 +
1

ε
(aZ2 − a(aZ2)′ + β(aZ1)′) + ...⇒

β(a) = a2dZ1

da
; a2dZn+1

da
= β(a)

daZn

da
,

n = 0, 1, 2, ... (250)
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Renormdynamics of QCD

where Z0 = 1 and the last equation includes also the
previous one.

εZa + (Z + a
dZ

da
)(−εa + β(a)) = 0 ⇓

a
dZ

da
=

β

εa − β
Z ⇓

ln Z/Z0 =

∫ a

a0

da

a

β

εa − β
(251)
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Renormdynamics of QCD

RD equation, for the coupling constant a

ȧ = β1a + β2a2 + ... (252)

can be reparametrized,

a(t) = f (A(t)) = A + f2A2 + ...

+fnAn + ... =
∑
n≥1

fnAn,

Ȧ = b1A + b2A2 + ... =
∑
n≥1

bnAn, (253)
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Renormdynamics of QCD

ȧ = Ȧf ′(A) = (b1A + b2A2 + ...)
×(1 + 2f2A + ... + nfnAn−1 + ...)
= β1(A + f2A2 + ... + fnAn + ...)
+β2(A2 + 2f2A3 + ...) + ...
+βn(An + nf2An+1 + ...) + ...
= β1A + (β2 + β1f2)A2

+(β3 + 2β2f2 + β1f3)A3+
... + (βn + (n − 1)βn−1f2
+... + β1fn)An + ... (254)
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Renormdynamics of QCD

=
∑

nn1n2≥1
Anbn1n2fn2δn,n1+n2−1

=

m1...mk≥0∑
nm≥1

Anβmf m1

1

...f mk

k f (n,m,m1, ...,mk),

f (n,m,m1, ...,mk) =
m!

m1!...mk!
×δn,m1+2m2+...+kmk

δm,m1+m2+...+mk
, (255)
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Renormdynamics of QCD

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,
b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1

= β3 + 2(f 2
2 − f3)β1,

b4 = β4 + 3f2β3 + f 2
2 β2 + 2f3β2

−3f4b1 − 3f3b2 − 2f2b3, ...
bn = βn + ... + β1fn − 2f2bn−1
...− nfnb1, ... (256)

So, by reparametrization, beyond the critical dimension
(β1 6= 0) we can change any coe�cient but β1.
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Renormdynamics of QCD

We can �x any higher coe�cient with zero value, if we take

f2 =
β2

β1
, f3 =

β3

2β1
+ f 2

2 ,

... , fn =
βn + ...

(n − 1)β1
, ... (257)

In this case we have simple scale dynamics,

A = (µ/µ0)−2εA0 = e−2ετA0,
g = f (A(τ)). (258)
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Renormdynamics of QCD

In the critical dimension of space-time, β1 = 0, and we can
change by reparametrization any coe�cient but β2 and β3.
From the relations (256), in the critical dimenshion
(β1 = 0), we �nd that, we can de�ne the minimal form of
the RD equation

Ȧ = β2A2 + β3A3, (259)

e.g. b4 = 0 when

f3 =
β4

β2
+
β3

β2
f2 + f 2

2 , (260)

f2 remains arbitrary and we can make choice f2 = 0.
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Renormdynamics of QCD

We can solve (259) as implicit function,

uβ3/β2e−u = ceβ2t , u =
1

A
+
β3

β2
(261)

than, as in the noncritical case, explicit solution for a will
be given by reparametrization representation (253).
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Renormdynamics of QCD

If we know somehow the coe�cients βn, e.g. for �rst
several exact and for others asymptotic values
[Kazakov, Shirkov, 1980], than we can construct
reparametrization function (253) and �nd the dynamics of
the running coupling constant. This is similar to the
action-angular canonical transformation of the analytic
mechanics (see e.g. [Faddeev, Takhtajan, 1990]).
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Renormdynamics of QCD

For any multiplicative renormalized quantity
A,Ab = Z (ε, a)A,

Ȧ = −γ(ε, a)A, γ = Ż/Z ,

A = exp(−
∫ a

da
γ(ε, a)

−εa + β(a)
), (262)

for A = a, γ = ε− β(a)/a.
In �eld theory models usually consider small values of ε. In
statphysical models usually D = 3, 2, 1, so ε = 1/2, 1, 3/2.
Perturbative series of renormalization constants have good
analytic sense when 1/ε is p−adic number.
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Non perturbative extension of RD equation

From the relations (256), in the critical dimenshion
(β1 = 0), we �nd that, we can de�ne the minimal form of
the RD equation

Ȧ = β2A2 + β3A3, (263)

Let us solve this fundamental equation of RD

dA

β2A3(1/A + β3/β2)
= dt ⇒ d(1/A)1/A

1/A + β3/β2
= −β2dt ⇓

x − a ln(x + a) = −β2t + c ,
x = 1/A, a = β3/β2 (264)
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Non perturbative extension of RD equation

Nonperturbative extension means the following change

t = ln
p2

Λ2
→ tm = ln

p2 + m2

Λ2
,

dtm
dt

=
p2

p2 + m2
(265)

In the solution (264). Let us �ned corresponding RD
motion equation

ẋ(1− a

x + a
) = −β2

p2

p2 + m2
⇓

(266)
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Non perturbative extension of RD equation

Ȧ = (β2A2 + β3A3)
p2

p2 + m2
= { βpert , p2 � m2,

0, p2 � m2 ,

p2

p2 + m2
= 1− m2

Λ2
e(1/A−c)/β2(1/A + β3/β2)−β3/β

2

2(267)

In the one loop approximation, β3 = 0,

Ȧ = β2A2(1− m2

Λ2
e(1/A−c)/β2) (268)
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Beta function of supersymmetric QCD

The exact beta function of supersymmetric QCD was �rst
found in [Novikov, Shifman, Vainshtein, Zakharov 1983]

ȧ = −a2 β0

1− Ca
, β0 = 3C − TNf , C = C2/2,

T = 1/2, C2 =
N2 − 1

2N
(269)

Note that at a = ac = 1/C we have the infrared �xed
point.
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PHASE TRANSITIONS IN THE EXTENDED PARTICLE
SYSTEMS, HAGEDORN TEMPERATURE AND CRITICAL
DENSITY

Quarks and gluons can break free from their con�nement
inside protons and neutrons at a temperature of around
200MeV - the temperature of the universe a fraction of a
second after the Big Bang. We arrived at this �gure by
combining the results of supercomputer calculations and
heavy-ion collision experiments. It puts our knowledge of
quark matter on a �rmer footing. According to the Big
Bang model, the very early universe was �lled with
quark-gluon plasma, in which quarks and gluons (the
carriers of the strong nuclear force) existed as individual
entities. The strong force between quarks increases rapidly
with distance, which means that the quarks need large
amounts of energy to remain free - and therefore the plasma
can only exist at extremely high temperatures. When the
cosmos was only about a millionth of a second old, it had
cooled to the point where quarks and gluons combined to
form composite particles such as protons and neutrons.
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QCD at nonzero temperature and baryon chemical potential

QCD at nonzero temperature and baryon chemical
potential plays a fundamental role in the description of a
number of various physical systems. Two important ones
are neutron stars, which probe the low temperature and
intermediate baryon chemical potential domain, and heavy
ion collision experiments, which explore the region of the
high temperature and low baryon chemical potential. There
exist low-dimensional theories, such as (1+1)-dimensional
chiral Gross-Neveu (GN) type models, that possess a lot of
common features with QCD (renormalizability, asymptotic
freedom, dimensional transmutation, the spontaneous
breaking of chiral symmetry) and can be used as a
laboratory for the qualitative simulation of speci�c
properties of QCD at arbitrary energies. Besides
temperature and baryon density, there are additional
parameters, for instance, an isotopic chemical potential µI .
It allows to consider systems with isospin imbalance
(di�erent numbers of u and d quarks). It is realized, e.g., in
neutron stars, heavy-ion experiments, etc.
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QCD at nonzero temperature and baryon chemical potential

The thermodynamics of QCD is most conveniently
described by the grand canonical partition function
[Le Bellac 1996]

Z (α, β) = tre−αQ−βH =

∫
dAdq̄dq exp(−SA − Sq),

SA =

∫ β

0

dx0

∫
V

d3xtr(F 2
µν/2),

Sq =

∫ β

0

dx0

∫
V

d3x

Nf∏
f =1

q̄f (γµDµ −mf − α/βγ0)qf(270)
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QCD at nonzero temperature and baryon chemical potential

Another form of functional representation is

Z (α, β) = tre−αQ−βH =

∫
dAdq̄dq exp(−SA − Sq),

SA = β/α

∫ α

0

dx0

∫
V

d3xtr(F 2
µν/2),

Sq =

∫ α

0

dx0

∫
V

d3x

Nf∏
f =1

q̄f (γµDµ −mf − γ0)qf (271)

The charge density we may interpret as a second
hamiltonian: Q = H2, H1 = H and consider corresponding
classical Nambu's dynamics

Ȧ = {A,H1,H2} (272)

As a quantum Nambu's dynamics we consider above
functional representations.
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QCD at nonzero temperature and baryon chemical potential

The partition function depends on the external macroscopic
parameters V ,T , µ , as well as on the microscopic
parameters like masses and the coupling constant. Once the
partition function is known, thermodynamic properties such
as free energy, pressure, average particle numbers or the
thermal expectation value of an operator A readily follow,

F = −T ln Z , P = −∂F

∂V
, < Q >= −∂ ln Z

∂µ
(273)

Note that the functional form is a trace from evolution
operator in imaginary time. For real time the de�nition is
formal. Similarly, it is de�ned for imaginary chemical
potential iµ and for real µ the de�nition is formal. So it is
natural to consider Wick rotation for both parameters.Makhaldiani N.V. (mnv) 28 November 268 / 405



Renormdynamics of QCD

"...there will be no contradiction in our mind
if we assume that some natural forces are governed

by one special geometry, while other forces by another."
N. I. Lobachevsky

Dedicated to the memory
of V.N. Gribov

Quarkonium spectroscopy indicates that between valence
quarks inside hadrons, the potential on small scales has
D = 3 Coulomb form and at hadronic scales has D = 1
Coulomb one. We may add this two types of potentials and
form an e�ective potential in which at small scales
dominates D = 3 component and at hadronic scale -
D = 1, the Coulomb-plus-linear potential (the "Cornell
potential"[Eichten et al 1978]),

V (r) = −k

r
+

r

a2
= µ(x − k

x
), µ = 1/a = 0.427GeV , x = µr ,(274)

where k = 4
3
αs = 0.52 = x2

0 , x0 = 0.72 and
a = 2.34GeV−1 = 0.461fm ' 0.5fm, (fm =
10−13cm, GeV−1 = 0.197fm ' 0.2fm) were chosen to �t
the quarkonium spectra.
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Renormdynamics of QCD

From our point of view it is more natural to consider the
dimension D(r) of space of hadronic matter which is
dynamically changing with r and corresponding Coulomb
potential VD(r) ∼ r 2−D(r), where e�ective dimension of
space D(r) changes from 3 at small r to 1 at hadronic
scales ∼ 1fm. In this talk we will construct such a potential
and e�ective dimension as a functions of r ,
[Bure�s, Makhaldiani 2019 ]. Heavy quarkonium is a system
which can probe all scales of QCD. Hence heavy
quarkonium presents an ideal laboratory for testing the
interplay between perturbative and nonperturbative QCD
within a controlled environment.
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Coulomb problem in D-dimensions

We have the following expression for the solution of the
Poisson equation with point-like source in D-dimensional
space [Makhaldiani 2019]

∆ϕ = eδD(x),

ϕ(D, r) = − Γ(D/2)

2(D − 2)πD/2
er 2−D , V (D, r) = eϕ(D, r) = −α(D)r 2−D ,

α(D) =
e2Γ(D/2)

2(D − 2)πD/2
, V (3, r) = − e2

4πr
, V (4, r) = − e2

4π2r 2
. (275)

Indeed,∫
dDx∆ϕ = ΩDrD−1

d

dr

aD
rD−2

= −(D − 2)ΩDaD = e, a3 = − e

4π
,∫

dxDe−x
2

= (2π

∫ ∞
0

drre−r
2

)D/2 = πD/2 = ΩD

∫ ∞
0

drrD−1e−r
2

=
ΩD

2
Γ(D/2), ΩD =

2πD/2

Γ(D/2)
, aD = − e

(D − 2)ΩD
(276)
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Coulomb problem in D-dimensions

As de�ned so far, the coupling constant has a mass
dimension de = (D − 3)/2 = −ε. To work with a
dimensionless coupling constant e, we introduce the mass
scale µ. Then, the potential energy takes the following form

V (D, r) = − Γ(D/2)

2(D − 2)πD/2
e2µ2εr 2−D

= −α(D)(µr)2ε/r = −α(D)(x)2−Dµ. (277)
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Coulomb problem in D-dimensions and Renormdynamics of
QCD

Cornell potential contains QCD dynamics. We may
compare it with Coulomb potential with dynamical
dimension. Let us de�ne dimension of space from the
equality of (274) and (277)

k − x2

x3−D = α(D) =
e2Γ(D/2)

2(D − 2)πD/2
= αs

2Γ(D/2)

(D − 2)π(D−2)/2
, αs =

e2

4π
(278)

For any values of x and D

αs(D, x) =
π(D−2)/2

2Γ(D/2)
(D − 2)α, α =

k − x2

x3−D = (k − x2)xD−3(279)

At the point D = 1, x = x1

αs(1, x1) =
1

2π

(
1− k

x2
1

)
, x2

1 > x2
0 = k . (280)Makhaldiani N.V. (mnv) 28 November 273 / 405



Hamiltonian formulation of the space dimension dynamics

Let us consider simplest Hamiltonian dynamics

ẋ1 = {H , x1},
ẋ2 = {H , x2}, (281)

for dynamical variables (phase space) (x1, x2), Hamiltonian
H

H =
p2

2m
+ V (x) =

x2
1

2m
+ V (x2) (282)

and Poisson structure

{A,B} = fnm
∂A

∂xn

∂B

∂xm
= f12

(
∂A

∂x1

∂B

∂x2
− ∂A

∂x2

∂B

∂x1

)
.(283)

Instead of solving the system of motion equations, having
one integral of motion - Hamiltonian, we may �nd x1 from
the Hamiltonian, insert it in the motion equation for x2 and
solve it.
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Hamiltonian formulation of the space dimension dynamics

The variables x ,D and α are nonnegative, so it is natural
to introduce, free from this restriction, variables: t = ln x ,
x1 = lnαs and x2 = ln D. Then from (278) we obtain the
following Hamiltonian and motion equations

H(x1, x2, t) = x1 − V (x2, t)⇒ x1 = V (x2, t),

ẋ1 = f12
∂V

∂x2
,

ẋ2 = −f12, V (x2, t) = ln(
π(D−2)/2

2Γ(D/2)
(D − 2)

k − x2

x3−D ).(284)
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Hamiltonian formulation of the space dimension dynamics

We may also take x1 = α, then

x1 = V (t, x2) = (k − x2)xD−3 = (k − x2)xexp(x2)−3 = (k − e2t)et(e−t−3),

ẋ1 =
∂V

∂x2
= (k − x2)xex2−3 ln xex2 = (k − e2t)tet(e−t−3)e−t , f12 = 1,

α̇ = β = te−tα = β1α, β1 = ln
αe3t

k − e2t

ẋ2 = −1⇒ x2 = −t, D = 1/x

αs(D, x) =
π(D−2)/2

2Γ(D/2)
(D − 2)

k − x2

x3−D =
π(1/x−2)/2

2Γ(1/2x)
(1/x − 2)

k − x2

x3−1/x

=
π(1/x−2)/2

2Γ(1/2x)
(1/x − 2)(

√
k − x)

√
k + x

x3−1/x , (285)

Note that, x > 0 and αs ≥ 0 when
x < min(1/2,

√
k) = 1/2 or

x > max(1/2,
√

k) =
√

k = 0.72 and for
0.5 < x < 0.72, αs < 0, see �gures 1 and 2.
We may exclude the negative values by di�erent
µ : x1 = rµ1 = 1/2, x2 = rµ2 = 0.72, µ2/µ1 = 1.44
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Hamiltonian formulation of the space dimension dynamics

0.2 0.4 0.6 0.8 1.0

x=μr

0.1

0.2

0.3

0.4

αs (x)

Figure: αs as a function of x = µr ∈ (0.01, 1.0)

Makhaldiani N.V. (mnv) 28 November 277 / 405



Hamiltonian formulation of the space dimension dynamics

1 2 3 4 5

x=μr

0.02

0.04

0.06

0.08

αs (x)

Figure: αs as a function of x = µr ∈ (0.72, 5)
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Hamiltonian formulation of the space dimension dynamics

We may close the negative interval also taking√
k = 1/2⇒ αs = 3/16 = 0.1875

αs(D, x) =
π(D−2)/2

2Γ(D/2)
(D − 2)

k − x2

x3−D =
π(1/x−2)/2

2Γ(1/2x)
(1/x − 2)

k − x2

x3−1/x

=
π1/2x−1

Γ(1/2x)
(x − 1/2)2

x + 1/2

x4−1/x →
1

2πx2
, x � 1, (286)
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Hamiltonian formulation of the space dimension dynamics

1 2 3 4 5

0.05

0.10

0.15

Figure: αs as a function of x = µr ∈ (0.1, 5.0)
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Debye screening, modi�ed gluon propagator

It is known that the force between two charges, e and −e,
changes when the system is placed in a medium. In an
ionized plasma, the 1/r potential turns into Yukawa form -
Debye screening [Debye, Hückel 1923] (see also
[Dixit 1989])

V (r) = −αe−µr

r
= −α

r
− σr + ..., σ = αµ2/2 . (287)

In expanded form it reminds of the "Cornell
potential" (274)

V (r) = −k

r
+ σr , σ = 1/a2 (288)

but the sign of the string tension σ is opposite. The
positive sign corresponds to the con�ned phase, negative
sign to screened (decon�ned) phase.
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Debye screening, modi�ed gluon propagator

We can take (test) as a con�ning potential the following
one

V (r) = −α cosµr

r
= −µα cos(x)

x
= −α

r
+ σr + ...,

σ = αµ2/2, x = µr . (289)

5 10 15 20

-0.4

-0.2

0.2

0.4

Figure: Potential (289).
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Debye screening, modi�ed gluon propagator

The con�ning potential turns into a decon�ning one when
µ2 changes sign or when exchange particle becomes
tachyon.
In paper [Kharzeev, Levin 2015], by proper account of the
compact nature of SU(3) gauge group that gives rise to the
periodic θ-vacuum of the theory, the gluon propagator was
modi�ed as

G (p) = (p2 + χ/p2)−1 =
p2

p4 + χ
=

1

2
(

1

p2 + i
√
χ

+
1

p2 − i
√
χ

)(290)

which gives the potential (cf. Figure 6):

V (r) = −α coshµr cosµr

r
= −µα cosh x cos x

x
= µα(−1

x
+

x3

6
+ ...),

x = µr , µ = 4
√
χ/
√
2 (291)

where χ is the Yang-Mills topological susceptibility related
to the η′ mass by the Witten - Veneziano relation,

χ =
F 2
π

2Nf
(m2

η′ + m2
η − 2m2

K ) ' (180 MeV)4, µ = 4
√
χ/
√
2 = 127 MeV.(292)
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Debye screening, modi�ed gluon propagator

The topological susceptibility in this formula is the only
quantity which is by de�nition calculable in gluodynamics.
Early papers of its calculation are
[Di Vecchia, Fabricius, Rossi, Veneziano 1981 ,
Makhaldiani, Muller-Preussker 1983,
Fabricius, Rossi 1983 ], more recent
[Muller-Preussker 2015].
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Figure: Con�ning potential (291).
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Debye screening, modi�ed gluon propagator

Potential (291) is well motivated and con�ning. In the
minimum of the potential (291) bound states "bags" have
size of the order of 11fm,

7/µ = 7/0.127 GeV−1 = 11fm, GeV−1 ' 0.2fm , (293)

and can give rise to long lived states corresponding to
hadronic halos or galactic (in case of gravitational) halos
[Bure�s, Makhaldiani 2020 ].
We have shown that linearly rising potential corresponds to
D = 1. To the quadratic potential then corresponds
D = 0−�nite number of point particles - �nite number of
point set, and to the cubic potential - D = −1− the empty
space - empty set - vacuum state. We may extend Poisson
equation for the non positive integer dimensions of space
using fractal calculus.
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Debye screening and �nite temperature decon�nement

For heavy quark bound states in the framework of a
non-relativistic potential model, for charmonium (cc̄) and
bottonium (bb̄), the Hamiltonian is given by

H = 2m − 1

m
∆ + V (r ,T ) (294)

where m denotes the quark mass. For the interquark
potential V (r ,T ) we take the Cornell form

V (r , 0) = σ0r − α

r
(295)

where σ0 = 0.192GeV 2 and α = 0.471,
mc = 1.320GeV , mb = 4.746GeV , as determined in a
detailed in [Jacobs et al 1986];
The 1/r term in (295) contains both transverse string
motion, [Lüscher, Szymanzik, Weisz 1980] and the
perturbative one-gluon exchange contribution
[Joos, Montvay 1983]
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Debye screening and �nite temperature decon�nement

Strongly interacting matter of su�ciently high density
undergo a transition to a state of de con�ned quarks and
gluons. Decon�nement occurs when color screening shields
a given quark from the binding potential of any other
quarks or antiquarks. Bound states of very heavy quarks
have radii which are much smaller than those of the usual
mesons and nucleons; hence they can survive in a
decon�ned medium until the temperature or density
becomes so high that screening also prevents their tighter
binding. Color screening and decon�nement for heavy
quark resonances are therefore crucial for the experimental
investigation of quark plasma formation.
For the study of the decon�nement of heavy quarks at
some transition temperature, the following potential where
considered

V (r ,T ) =
σ0

µ
(1− exp (−µr))− α

r
exp (−µr)

= σr − α

r
+ ...,

σ = σ0 − αµ2/2. (296)

where µ = 1/λ(T ) is the inverse of the Debye screening
length λ, and the parameter α stands for the e�ective
running coupling.
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Debye screening and �nite temperature decon�nement

The speci�c screening factor for the linear part of the
potential is suggested by the Schwinger model
[Joos, Montvay 1983].
To apply these considerations to actual physical situations,
we need to know the speci�c dependence of µ(T ) on T . If
nuclear collisions produce strongly interacting matter, then
it is the temperature, not µ(T ), which can be empirically
determined. At T = 0, we have µ(0)=0 only in a world
without light quarks. In the presence of light quarks, the
binding of any quark-antiquark system is broken when its
binding energy exceeds that needed for the spontaneous
creation of a qq̄ state out of the vacuum. Hence µ(0) 6= 0.
The corresponding vacuum screening length is of the order
of one fermi. At the critical temperature Tc of
decon�nement string tension σ(Tc) = 0. Knowing
Tc , α(T ) and µ(T ) we cam �nd

σ0 = α(Tc)µ(Tc)2/2. (297)

We may consider the string tension as decon�nement phase
transition order parameter.
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Heavy ion collisions

Heavy ion collisions quickly form a droplet of quark�gluon
plasma (QGP)with a remarkably small viscosity,
The physics of heavy ion collisions ranges from highly
energetic quarks and gluons described by perturbative QCD
to a bath of strongly interacting gluons at lower energy
scales.
The running coupling possesses an infrared �xed point,
αS(0) = 8.92/Nc for all gauge groups SU(Nc),
[Busza, Rajagopal, W. van der Schee 2018]. Above one
GeV the running coupling rapidly approaches its
perturbative form. We will postulate that
αS(0) = 9.0/Nc = 3.0 when Nc = 3.

Makhaldiani N.V. (mnv) 28 November 289 / 405



Dark matter and energy

In the multiparticle production processes of high energy
particle physics there is a rule: the number of observed
(charged) particles multiply by factor 1.5 (=3/2). An
explanation of the rule is: if particle production is
dominated by strong interactions, produced neutral
particles has the same number as positive or negative
(which are equal) particles. This way we estimate the
number of "dark" neutral particles.
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Dark matter, dark energy and dimension dynamics

According to the contemporary observations there are extra
masses in the universe interacting with the usual matter
only gravitationally - dark matter. So in Newton's potential
in the place of usual mass m, we should put an e�ective
mass M ,

V = −GM

r
= −M

m

Gm

r
= −k(r)

Gm

r
(298)

This extra factor k(r) we may associate either to the
Newton's constant G or to the dimension of the space in
the Newton's potential in D-dimensions,

Vd = −k(x)
Gmµ

xD−2 =
Gmµ

xd−2 ,

x = µr , d = D − ε, ε =
ln k(x)

ln x
, D = 3. (299)

This case the e�ective dimension of the space d is less than
3 and we have extra bonuses: it is possible to explain the
observed acceleration of the matter on big scales and the
absence divergences on small scales. For signi�cant, e.g.
constant value of the ε, corresponds rising with
x , k(x) ∼ x ε.
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Dark matter, dark energy and dimension dynamics

Only motivation of DM remains just kinematic discrepancy.
If there were others, we could consider them as a "proofs"
:) First step: just add extra matter to the baryonic one,
solves discrepancy problem but has not explanation: rise
many other problems for candidates as a DM components.
From a minimalist point of view it seems proper not to
introduce any new DM but re parametrize the Newton
potential by introducing variable dimension of space. For
higher values of the DM factor K (r) will corresponds lower
values of the e�ective dimension d(r) = D − ε(r). From
the other side, if we have some de�cit as in 7Li lack
problem and/ore in ultracold neutrons in the neutron
life-time experiments, we may explain that by real DM
components and corresponding rising the dimension D(r)
in the region containing that lost matter.
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Cosmological constant and periodic structures of the
Universe

In the presence of a cosmological constant Λ, Einstein's
equations is

Rµν −
1

2
gµνR = 8πGN(Tµν −

1

2
gµνT µ

µ ) + Λgµν (300)

The Schwarzschild line element for realistic (small) values
of the cosmological constant is

ds2 = (1 + Λr 3/3− 2GNM

r
)dt2 − (1 + Λr 3/3− 2GNM

r
)−1dr 2 + r 2dΩ2(301)

we see that the Newton's potential is modi�ed by con�ning
potential of the same form as in the QCD case. As in
QCD, we may take as a modi�ed gravitational potential

V = −GNM cosµr coshµr

r
= −GNMµ cos x cosh x

x

= GNMµ(−1

x
+

x3

6
+ ...) = −GNM

r
+ Λr 3/6 + ...,

Λ = GNMµ4 (302)
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Cosmological constant and periodic structures of the
Universe

It is interesting when the cosmological constant correction
become of the order of the Newton potential,

q = x4/6 = Λr 3/6/(GNM/r) =
Λ

6GNM
r 4 ∼ 1,

x ∼ (6)1/4 = 1.565, r = 1.565/µ = 1.565/(0.32heV )
' 0.5h−1eV−1 = 2h−110−5cm. (303)

when M = 4πr 3ρ/3,

q =
Λ

8πGNρ
r ,Λ = ΩΛ

3H2
0

c2
, ΩΛ ' 0.7

H0 = 100h × km × s−1 ×Mpc−1, h ' 0.7,
Mpc = 106pc = 3.1× 1022m, pc = 3.1× 1016m

q ∼ 1 : r ∼ 8πGNρ

Λ
, (304)
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On the large scale periodic structure and model independent
evaluation of the number of periods of the Universe

Observations of the large scale structure of the universe
suggest inhomogeneities on scales between 100h−1 and
150h−1 Mpc (where h = 0.5− 1 is the Hubble constant in
units of 100 kms−lMpc−1; 1pc = 3.09× 1016m). A deep
redshift survey with a"pencil-beam"geometry of galaxies at
the galactic poles indicated strong clustering,with a
provocative regularity at 128h−1 Mpc
[Broadhurst et al 1990 ].
In our potential period is l = 2π/µ. If this period is equal
to the large scale period, we de�ne µ = 2π/l = 0.32heV .
We estimated the number of periods in the visible Universe
as 24 [Makhaldiani1992] which coincides with the e�ective
number of degrees of freedom of the fundamental bosonic
string. This hints on that the large scale periodic structure
is the relict of early time when the string model acts.
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Extended quantum mechanics and
conformal potential

In the extended quantum mechanics [Makhaldiani, 2000],
usual Schroedinger equation were completed by
corresponding motion equation for the potential V in the
following Hamiltonian system

iψt = −∆ψ + Vψ,

iVt = ∆V − 1

2
V 2 (305)

with a partial solution for the potential

V =
4(4− D)

r 2
. (306)

For dimension of space D > 4 we have attractive potential
with possibility of quantum-mechanical bound states. We
suppose that at small scales we have D−dimensional
Euclidean (or Riemannian) space with 1/r 2 potential. At
usual scales we observe three dimensional space, so extra
D − 3 dimensions are compacti�ed, e.g. as D − 3
dimensional torus TD−3 = (T1)D−3. In the minimal case,
D = 5 and we need two dimensional torus. The extra
dimension may be compacti�ed also in S2 sphere (SD−3

sphere). Note that the circle T1 is S1 sphere.
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Compacti�cation and Dimension dynamics

Let us take one of the dimensions y as circle with radius R .
This corresponds to the periodic structure with a point
charge sources at each point
yn = y + 2πRn, n = 0,±1,±2, ...

∆ϕ = e
∑
n

δD(x)δ(yn), ϕ(D, r , y) =
∑
n

ϕ(D, r , yn),

V (D, r , y) = −α(D + 1)
∞∑

n=−∞
(r 2 + (2πRn + y)2)(1−D)/2.(307)

When D = 3, the potential (307) can be writen in a closed
form [Bure�s, Siegl 2014]

V3(r , y) = −α(4)

2Rr

sinh(r/R)

cosh(r/R)− cos(y/R)
=

{
α(4)/(2Rr), r � R

α(4)/(r 2 + y 2), r , y � R
(308)

where α(4)/(2R) = α(3).
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Compacti�cation and Dimension dynamics

Alternatively, we can rewrite (308) as

V3(r , y) = −α(4)

4Rr

[
coth

(
r + iy

2R

)
+ coth

(
r − iy

2R

)]
,(309)

or, using

A−α = 1/Γ(α)

∫ ∞
0

dttα−1e−tA, (310)

by means of the Theta function as

V3(r , y) = −α(4)

∫ ∞
0

dte−tr
2

∞∑
−∞

e−t(2πRn+y)2

= −α(4)

∫ ∞
0

dte−tr
2
θ
(

iy
2πR , e

i

4R2t

)
2R
√
π
√

t
, (311)
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Dimension dynamics with one compact dimention

For y = 0, the potential takes the following simple form

V3(r , y = 0) = −α(4)

2Rr
coth

r

2R
. (312)

For y = π, we have

V3(r , y = π) = −α(4)

2Rr
tanh

r

2R
. (313)

From (308), we see that for big r , the e�ective dimension
of space is 3 and for small r is 4. For intermediate scales,
the e�ective dimension might change smoothly from 3 to 4.
Integrating by coordinate y (or angle ϑ, see appendix B )
we de�ne mean potential depending only on the variable r ,
[Bure�s, Siegl 2014]

V̄3(r) =
1

2π

∫ 2π

0

dθV3(r , θ) = − α4

2Rr
= −α3

r
. (314)
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Dimension dynamics with one compact dimension

As in the Cornell potential case, we de�ne the dimension
dynamics from equality between the Coulomb potentials
(277) and (308)

α(4)

2r

sinh(r/R)

cosh(r/R)− cos(y/R)
= α(D)(x)2−D ,

µ = 1/R , x = µr , r 2 = x2
1 + ... + x2

D . (315)

From this equality, the dynamical dimension of space
D(y , r) is de�ned as implicit function and needs numerical
solution. Alternatively we may de�ne y as explicit function
of r and D as

y = R arccos(cosh x − α4

2αD
xD−3 sinh x)

= R arccos(cosh x − A(D)xD−3 sinh x),

A(D) =
(D − 2)πD/2

4π2Γ(D/2)

e2
4

e2
D

, α(D) =
e2Γ(D/2)

2(D − 2)πD/2
.(316)

Makhaldiani N.V. (mnv) 28 November 300 / 405



Dimension dynamics with more than one compact dimension

If we have two circlular coordinates - torus, then

∆ϕ = e
∑
n,m

δD(x)δ(yn)δ(zm),

ϕ(D, r , y , z) =
∑
n,m

ϕ(D, r , yn, zm),

V (D, r , y , z) = −αD+2

∞∑
n,m=−∞

(r 2 + (2πR1n + y)2

+(2πR2m + z)2)−D/2 (317)
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Dimension dynamics with more than one compact dimension

For a point quark inside hadron of size R at a temperature
T we have

∆ϕ = e
∑

k,l ,n,m

δ(τk)δ(xl)δ(yn)δ(zm),

ϕ(0, τ, x , y , z) =
∑

k ,l ,n,m

ϕ(0, τk , xl , yn, zm),

V (0, τ, x , y , z) = −α4

∞∑
k ,l ,n,m=−∞

((2πk/T + τ)2

+(2πR1l + x)2 + (2πR2n + y)2 + (2πR3m + z)2)−1

= −α4

∫ ∞
0

dttB0(t, τ)B1(t, x)B2(t, y)B3(t, z),

B1(t, x) =
∞∑

n=−∞
e−t(2πR1n+x)2

= e−tx
2

θ(2iR1xt, 4πiR2
1 t), ..., R0 = 1/T (318)

where we have written the sums by means of the Theta
function.
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Dimension dynamics with more than one compact dimension

For the sake of completeness, let us state the general
expression for the potential in space RD × Td where
Td = S1 × · · · × S1 (d -times) is the d -dimensional torus.
D refer to the "big" dimensions x = (x1, . . . xD), whereas d
to the "small-compacti�ed" ones y = (y1, . . . yd). Then

∆ϕ = e
∑

n1,...,nd

δD(x)δ(y1,n1) . . . δ(yd ,nd ),

ϕ(D, d , r , y1, . . . , yd) =
∑

n1,...,nd

ϕ(D, d , r , y1,n1, . . . , yd ,nd ),

VD,d(r , y1, . . . , yd) =

∫ ∞
0

dtt
D+d−4

2 e−tr
2

Πd
i=1e−ty

2

i Bi(t, yi),

Bi(t, yi) =
∞∑

ni=−∞
e−t(2πRini+yi )

2

= e−ty
2

i θ(2iRiyit, 4πiR2
i t),(319)
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Dimension dynamics with more than one compact dimension

where we have again used (310) and written the sums in
the expressions for Bi by means of the Theta function.
Note that, B-factors in the integrand ∼ t−d/2 for small t,
so the integral is divergent when D ≤ 2. E.g. for total
dimension D + d = 4 and d = 2, the integral is divergent.
We may regularize the integral by restricting summation by
some N or consider analytic continuation D + d + ε in the
monomial factor of the integral. We may de�ne the same
conditions from direct form of the sum, before integral
transform. Divergent part of the sum is estimated by
integral ∫

ddxx2−D−d ∼
∫

dxx1−D ∼ x2−D (320)

which is divergent for D < 2. For D = 2, divergent part of
the sum is estimated by integral∫

ddxx−d ∼
∫

dx/x ∼ ln x (321)

which gives logarithmic divergence. In the world of
con�ning potentials, D ≤ 2, there are not in�nite size,
in�nite number of constituent - macroscopic systems.
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Variable mass and momentum-space formulations of
dimension dynamics

We may change long distance behaviour of the Coulomb
potential including a variable mass term

4V −m2V = −e2δD(x), δD(x) = (2π)−D
∫

dDpe ipx ⇓

V (r) = − e2

(2π)D

∫
dDp(p2 + m2)−1e ipx ∼ r 2−De−mr ∼ r 2−d ,

m⇒ m(r) = a ln(µr)/r , d = D + a. (322)

Note that the m2 term plays a role of potential. Comparing
this therm with the expression (306), we �nd corresponding
dimension dynamics: D(r) = 4− a2 ln2 µr/4, from which
we may estimate parton size r0 , from hadron size R ∼ 1
fm and condition D(r) = 0 : r0 = R exp(−4/a). The
parton size r0 ≤ 0.3 fm - valence quark size, so a ≤ 4.
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Fractal Calculus in Quantum Field theory
Applications

Matrix calculus in QFT perturbation theory [Isaev, 2003],
can be interpreted as operator Fractal calculus. Indeed,
with the following de�nitions

[x̂n, p̂m] = iδn,m, x̂n|x >= xn|x >,
p̂m|p >= pm|p >, < x |y >= δD(x − y) < x |p >=

1

(2π)D/2
exp(ipx),∫

dDp|p >< p| =

∫
dDx |x >< x | = 1, (323)

we have

G (x , y) =< x |p̂−2α|y >= A(α)(x − y)−2β,

β =
D

2
− α, A(α) =

Γ(β)

22απD/2Γ(α)
, (324)
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Fractal Calculus in Quantum Field theory
Applications

G (x , y) =
1

Γ(α)

∫ ∞
0

dttα−1 < x |e−tp̂2|y >

=
1

Γ(α)

∫ ∞
0

dttα−1
∫

dDp < x |p >< p|y > exp(−tp2)

=
Γ(D

2
− α)

Γ(α)22απD/2
(x − y)−2(D/2−α) (325)

In coordinate representation, p̂n = −i∂/∂xn, we have
D-dimensional fractal calculus.
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Fractal Calculus in Quantum Field theory
Applications

As an example, consider Coulomb potential, the solution of
the equation for potential of point source

∆φ = gδD(x) (326)

Note, that, ∆ = −p̂2,

ϕ(x) = −g < 0| 1
p̂2
|x >= −g

Γ(D
2
− 1)

4πD/2
1

|x |D−2
(327)

As another example, we take the following useful integral

G3(x , y) =

∫
dDz(x − z)−2α(z − y)−2γ

= A−1(β)A−1(δ)

∫
dDz < x |p̂−2β|z >< z |p̂−2δ|y >

=
A(β + δ)

A(β)A(δ)
(x − y)−2η,

β =
D

2
− α, δ =

D

2
− γ, η =

D

2
− (β + δ) = α + γ − D

2
(328)
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Theta functions

Theta functions is the analytic function θ(z , τ) in 2
variables de�ned by

θ(z , τ) =
∑
n∈Z

exp[iπ(τn2 + 2nz)] = 1 + 2
∑
n≥1

exp(iπτn2) cos(2πnz),(329)

where z ∈ C and τ ∈ H, the upper half plane Im τ > 0.
The series converges absolutely and uniformly on compact
sets.
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Integrals

Let us take the following integral

I (a) =

∫ π

0

dϑ

a2 + 1− 2a cos(ϑ)
=

π

|a2 − 1|
= { π/a2, a2 � 1

π, a2 � 1
(330)

Obviously, I (1) =∞, but

I (1) =
1

2

∫ π

0

dϑ

1− cos(ϑ)
=

1

4

∫ π

0

dϑ

sin2 ϑ
2

=
1

2

∫ 1

0

dx

(1− x2)3/2

=
1

4

∫ 1

0

dy

y 1/2(1− y)3/2
= B(1/2,−1/2) =

1

4

Γ(1/2)Γ(−1/2)

Γ(0)
= 0, ?!

B(α, β) =

∫ 1

0

dxxα−1(1− x)β−1 =
Γ(α)Γ(β)

Γ(α + β)
,Real α, β > 0. (331)
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Integrals

In our case a = exp(r/R) > 1. Let us take corresponding
integral,

I =
1

a

∫
dθ

b + 2 cos θ
=

1

ia

∫
dz

z2 + bz + 1

= I (z , a) =
1

ia(a − 1/a)
ln

z + a

z + 1/a
,

I (a) = I (−1, a)− I (1, a) =
1

ia(a − 1/a)
ln

(−1 + a)(1 + 1/a)

(−1 + 1/a)(1 + a)
=

π

a2 − 1
,

b = a + 1/a, z = e iθ. (332)

We may calculate the same integral by residue formula∮
dz

(z + a)(z + 1/a)
= 2πi{ 1/(−a + 1/a), |a| < 1

1/(−1/a + a), |a| > 1.
(333)

I (a) =
1

ia
2πi{ 1/(−a + 1/a), |a| < 1

1/(−1/a + a), |a| > 1.
} =

2π

|a2 − 1|
.(334)
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Integrals

Now,

I =

∫ 2π

0

dϑ

a2 + 1− 2a cos(ϑ)
= I (a) + I (−a)

=
2π

|a2 − 1|
=
π exp(−r/R)

sinh(r/R)
,

1

2π

∫ 2π

0

dϑ

cosh(r/R)− cos(ϑ)
=

2a

a2 − 1

=
1

sinh(r/R)
, a = exp(r/R). (335)
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Quarkonia

The rich structure of separated energy scales makes
quarkonium an ideal probe of con�nement and
decon�nement. The di�erent quarkonium radii provide
di�erent measures of the transition from a Coulombic to a
con�ned bound state. Di�erent quarkonia will dissociate in
a medium at di�erent temperatures, providing a
thermometer for the plasma.
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Hagedorn temperature and decoherence problem in
quanputers

Let us construct a model of a physical system with maximal
(Hagedorn) temperature TH = β−1H , T < TH . The system
consists from N identical (noninteracting) subsystems sn
each of which can be in p > 1 states with same energy ε.
So the number of states of the system with given energy
E = Nε is M = pN and corresponding entropy is
S = N ln p. To di�erent energies E corresponds di�erent
N = E/ε. The statistical sum of the system is

Z (β) =
∑
E

ρ(E )e−βE =
∑
N

e−(β−βH)εN , β > βH = ε ln p.(336)

Note that, for QCD TH ' 150 MeV. Quantum computers
(quanputers) will become commercial interesting for
systems with N > 100.
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Fractal Calculus (H) and Some Applications

Let us consider the integer derivatives of the monomials

dn

dxn
xm = m(m − 1)...(m − (n − 1))xm−n, n ≤ m,

=
Γ(m + 1)

Γ(m + 1− n)
xm−n. (337)

L.Euler (1707 - 1783) invented the following de�nition of
the fractal derivatives,

dα

dxα
xβ =

Γ(β + 1)

Γ(β + 1− α)
xβ−α. (338)

J.Liouville (1809-1882) takes exponents as a base functions,

dα

dxα
eax = aαeax . (339)
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Fractal Calculus (H) and Some Applications

The following Cauchy formula

I n0,x f =

∫ x

0

dxn

∫ xn−1

0

dxn−2...

∫ x2

0

dx1f (x1) =
1

Γ(n)

∫ x

0

dy(x − y)n−1f (y)(340)

permits analytic extension from integer n to complex α,

I α0,x f =
1

Γ(α)

∫ x

0

dy(x − y)α−1f (y) (341)
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Fractal Calculus (H) and Some Applications

J.H. Holmgren invented (in 1863) the following integral
transformation,

D−αc ,x f =
1

Γ(α)

x∫
c

|x − t|α−1f (t)dt. (342)

It is easy to show that

D−αc ,x xm =
Γ(m + 1)

Γ(m + 1 + α)
(xm+α − cm+α),

D−αc ,x eax = a−α(eax − eac), (343)

so, c = 0, when m + α ≥ 0, in Holmgren's de�nition of the
fractal calculus, corresponds to the Euler's de�nition, and
c = −∞, when a > 0, corresponds to the Liouville's
de�nition.
Holmgren's de�nition of the fractal calculus reduce to the
Euler's de�nition for �nite c , and to the Liouvill's de�nition
for c =∞,

D−αc ,x f = D−α0,x f − D−α0,c f ,
D−α∞,x f = D−α−∞,x f − D−α−∞,∞f ,
D−α−∞,x f = Dα

0,x f − D−α0,−∞f . (344)
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Fractal Calculus (H) and Some Applications

We considered the following modi�cation of the c = 0 case
[Makhaldiani, 2003],

D−α0,x f =
|x |α

Γ(α)

1∫
0

|1− t|α−1f (xt)dt, =
|x |α

Γ(α)
B(α, ∂x)f (x)

= |x |α Γ(∂x)

Γ(α + ∂x)
f (x), f (xt) = tx

d
dx f (x). (345)

As an example, consider Euler B-function,

B(α, β) =

∫ 1

0

dx |1− x |α−1|x |β−1 = Γ(α)Γ(β)D−α01 D1−β
0x 1

=
Γ(α)Γ(β)

Γ(α + β)
(346)
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Quantum �eld theory and Fractal calculus -
Universal language of fundamental physics

In QFT existence of a given theory means, that we can
control its behavior at some scales (short or large
distances) by renormalization theory [Collins 1984].
If the theory exists, than we want to solve it, which means
to determine what happens on other (large or short) scales.
This is the problem (and content) of Renormdynamics.
The result of the Renormdynamics, the solution of its
discrete or continual motion equations, is the e�ective QFT
on a given scale (di�erent from the initial one).
We can invent scale variable λ and consider QFT on
D + 1 + 1 dimensional space-time-scale. For the scale
variable λ ∈ (0, 1] it is natural to consider q-discretization,
0 < q < 1, λn = qn, n = 0, 1, 2, ... and p - adic,
nonarchimedian metric, with q−1 = p - prime integer
number.
The �eld variable ϕ(x , t, λ) is complex function of the real,
x, t, and p - adic, λ, variables. The solution of the UV
renormdynamic problem means, to �nd evolution from
�nite to small scales with respect to the scale time
τ = lnλ/λ0 ∈ (0,−∞). Solution of the IR renormdynamic
problem means to �nd evolution from �nite to the large
scales, τ = lnλ/λ0 ∈ (0,∞).
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Renormdynamic Functions (RDF)

We will call RDF functions gn = fn(t) which are solutions
of the RD motion equations

ġn = βn(g), 1 ≤ n ≤ N . (347)

In the simplest case of one coupling constant the function
g = f (t) is constant, g = gc when β(gc) = 0, or is
invertible (monotone). Indeed,

ġ = f ′(t) = f ′(f −1(g)) = β(g). (348)

Each monotone interval ends by UV and IR �xed points
and describes corresponding phase of the system.
Note that the simplest case of the classical dynamics, the
Hamiltonian system with one degree of freedom, is already
two dimensional, so we have no analog of one charge
renormdynamics.
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Renormdynamic Functions

The regular Hamiltonian systems of the classical mechanics
are de�ned on the even dimensional phase space, so there is
no analog of the three dimensional renormdynamics for the
coupling constants of the SM. The �xed points of
renormdynamics belong to a set of solutions of the
polynomial system of equations βn(g) = 0, 1 ≤ n ≤ N , in
the perturbative renormdynamics. Describing the solutions
is the task of contemporary algebraic and computational
geometry.
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Conformal Invariance and Classical Motion Equations

The quantitative values and qualitative content of the given
�eld theory depend on the scale (parameter, e.g.
µ−renormalization point, g = g(µ), A = A(µ)). In QCD
e.g. the e�ective action has the following form:

S(µ) =
1

g 2(µ)

∫
dDxL(A(µ)), (349)

variation with respect to the change of scale gives

δS = −2β(g)

gµ
δµS +

1

g 2

∫
dDx

δL
δA
δA (350)

and the following two statements are equivalent:

δS = 0, β(g) = 0⇔ δS = 0,
δL
δA

= 0. (351)

So, from renorminvariance of the e�ective action follows
that at the conformal symmetric points, the motion
equations for �elds are satis�ed. Generalization for the
several coupling constants and other models is obvious.
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Conformal Invariance and Classical Motion Equations

In string theory, the connection between conformal
invariance of the e�ective theory on the parametric world
sheet and the motion equations of the �elds on the
embedding space is well known [Ketov, 2000]. A more
recent topic in this direction is AdS/CFT Duality
[Maldacena, 1999]. In this approach for QCD coupling
constant the following expression was obtained
[Brodsky, de Tèramond, Deur, 2010]

αAdS(Q2) = α(0)e−Q
2/4k2. (352)

A corresponding β-function is

β(αAdS) =
dαAdS

ln Q2
= −Q2

4k2
αAdS(Q2) = αAdS(Q2) ln

αAdS(Q2)

α(0)
≤ 0(353)

So, this renormdynamics of QCD interpolates between the
IR �xed point α(0), which we take as α(0) = 2, and the
UV �xed point α(∞) = 0.
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Low Energy QCD Coupling Constant

For the QCD running coupling considered in
[Diakonov, 2003]

α(q2) =
4π

9 ln(
q2+m2

g

Λ2 )
, (354)

where mg = 0.88GeV , Λ = 0.28GeV , the β−function of
renormdynamics is

β(α) = −α
2

k
(1− c exp(−k

α
)),

k =
4π

9
= 1.40, c =

m2
g

Λ2
= ek/α = (3.143)2 = 9.88,(355)

for a nontrivial (IR) �xed point we have

αIR = k/ ln c = 0.61 (356)

For α(m) = 2, at valence quark scale m we predict the
gluon (or valence quark) mass as

mg = Λe
k

2α(m) = 1.42Λ = mN/3, Λ = 220MeV . (357)

Equality of the gluon and quark masses indicates on
e�ective IR supersymmetry in QCD.
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Valence Quark Coupling Constant

It is nice to have a nonperturbative β−function like (355),
but it is more important to see which kind of
nonperturbative corrections we need to have a
phenomenological coupling constant dynamics.
It was noted [Voloshin, Ter-Martyrosian, 1984] that in
valence quark parametrization αs(m) = 2, at a valence
quark scale m.
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Point charge potentials, matter-antimatter dominance
mechanism and dark energy

Let us consider a potential V and corresponding force F of
an elementary charge e in a scalar �eld ϕ generated in
D−dimensional euclidian space by corresponding point
charge-source g de�ned as a solution of the following
equation

∆Dϕ = gδD(x),∫
dxD∆Dϕ =

∫
dSD−1∇ϕ = ΩDrD−1ϕ′(r) = g ⇓

ϕ(r) = − 1

(D − 2)ΩD

g

rD−2
, D 6= 2

D = 2 : 2πrϕ′(r) = g ⇒ ϕ(r) =
g

2π
ln

r

r0
,

VD = − 1

(D − 2)ΩD

eg

rD−2
, FD = −∇VD = − eg

ΩDrD−1
, Ω3 = 4π

V2 =
eg

2π
ln

r

r0
, F2 = − eg

2πr
(358)
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Point charge potentials, matter-antimatter dominance
mechanism and dark energy

For Newton potentials charges e, g play pole of masses,
they are, by de�nition and in correspondence with
observations, positive and for D ≥ 2 we have attraction of
masses. For D < 2 we have attraction and con�nement.
From Newton potential we obtain the Coulomb one if we
take imaginary masses m = ie±.
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Determinant of the Vandermonde matrix

In polynomial approximation of a function
f (x) ' PN(x) = a0 + a1x + ... + aNxN ,

a0 + a1x0 + a2x2
0 + ... + aNxN

0 = f (x0) = f0,
a0 + a1x1 + a2x2

1 + ... + aNxN
1 = f (x1) = f1,

...,
a0 + a1x1 + a2x2

N + ... + aNxN
N = f (xN) = fN ,(359)

the coe�cients an, n = 0, 1, ...,N are de�ned as a
solutions of the linear system of equations

VA = F , AT = (a0, a1, ..., aN), FT = (f0, f1, ..., fN),

V =


1 x0 x2

0 ... xN
0

1 x1 x2
1 ... xN

1

1 x2 x2
2 ... xN

2

. . . . .
1 xN x2

N ... xN
N

 (360)
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Determinant of the Vandermonde matrix

Determinant of the Vandermonde matrix
∆N =

∏
N≥m>n≥0(xm − xn), (∆0 = 1, by de�nition).

Indeed,

∆1 = x1 − x0, (361)

∆2 = det

 1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

 = det

 1 x0 x2
0

0 x1 − x0 x2
1 − x2

0

0 x2 − x0 x2
2 − x2

0


= (x1 − x0)(x2 − x0)det

(
1 x1 + x0
1 x2 + x0

)
= (x2 − x1)(x2 − x0)(x1 − x0),

∆N = (xN − xN−1)...(xN − x0)∆N−1 =
∏

1≤n≤N

Zn,

Zn = (xn − xn−1)...(xn − x0) (362)

There are two exceptional (simplest) case for discrete
values of x: when xn = pn, n = 0, 1, 2, ...,N , and
xn = x0 + nh, n = 0, 1, 2, ...,N .
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Determinant of the Vandermonde matrix

In the �rst, geometric progression, case

Zn = (pn − pn−1)(pn−1 − pn−2)...(pn − 1)

= p(1+2+...+n−1)(p − 1)n
pn − 1

p − 1

pn−1 − 1

p − 1
...

p − 1

p − 1

= pn(n−1)/2(p − 1)n[n]p!, [n]p =
pn − 1

p − 1
, ∆1 = Z1 = (p − 1),

∆2 = (p2 − p)(p2 − 1)(p − 1) = p(p − 1)3(p + 1)
= Z2Z1 = p(p − 1)2(p + 1)(p − 1),

∆N =
∏

1≤n≤N

Zn = pa(p − 1)b
∏

1≤n≤N

[n]p!, (363)
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Determinant of the Vandermonde matrix

a =
1

2

N∑
0

n(n − 1) =
1

2
(

N∑
0

xn)(2)|x=1 =
1

2

(1 + ε)N+1 − 1

ε
|ε=0

=
1

2
(N + 1 +

(N + 1)N

2
ε +

(N + 1)N(N − 1)

3!
ε2 + ...)(2)|ε=0

=
(N + 1)N(N − 1)

6
,

b =
N∑
0

n = N(N + 1)/2,

∆2 = p(p − 1)3(p + 1), a = 1, b = 3. (364)

For p � 1,

[n]p ' pn−1, [n]p! ' pn(n−1)/2,

∆N ' p2a+b = pc , c =
N(N + 1/2)(N + 1)

3
=

N∑
1

n2,

∆1 ' p, ∆2 ' p5. (365)

Makhaldiani N.V. (mnv) 28 November 331 / 405



Determinant of the Vandermonde matrix

For p � 1,∆N ' (−1)bpa, a = N(N2 − 1)/6, b =
N(N + 1)/2, [n]p ' 1, ∆2 ' −p. Having expression for
∆N in p, it is ease to obtain corresponding expression in
arithmetic progression case by putting p = 1 + h :
∆N(h) = hb

∏N
1 n!, b = N(N + 1)/2,∆2 = 2h3. We

obtain the same result by direct calculation:
Zn = h × 2h × ...× nh = hnn!, ∆N(h) =

∏
Zn.
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Finite Sums

We consider a novel method to generate a polynomial
expression for each of the Euler sums,

Ek =
N∑

n=1

nk , k ∈ Z +(k = 0, 1, 2, ...) (366)

One of the way of calculation of the sum

Ek(N) =
Nk+1

k + 1
+ Pk(N), Pk = xkNk + xk−1Nk−1 + ... + x0(367)

we show by explicit calculation of E2.
For particular values N = 1, 2 and 3, we have

x2 + x1 + x0 = 1− 1/3 = 2/3,
4x2 + 2x1 + x0 = 5− 8/3 = 7/3,
9x2 + 3x1 + x0 = 14− 27/3 = 5 (368)

Subtracting from the second equation the �rst and from
third the second, we obtain
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Finite Sums

3x2 + x1 = 5/3,
5x2 + x1 = 8/3 (369)

than we have

2x2 = 1⇒ x2 = 1/2 ⇓
x1 = 5/3− 3x2 = 1/6⇒ x0 = 2/3− x1 − x2 = 2/3− 1/6− 1/2 = 0,⇓
E2(N) = N3/3 + N2/2 + N/6
= N(N + 1)(2N + 1)/6 = N(N + 1/2)(N + 1)/3 (370)

Note that, the right hand side have a sense also for N ≤ 0
and has zeros at N = 0,−1/2,−2.
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Finite Sums

For general case Ek(N) we have

xk(N) = detVl(N)/detWk(N),

detWk(N) = det


1 N1 . Nk

1

1 N2 . Nk
2

. . . .
1 Nk+1 . Nk

k+1

 ,

detVl(N) = det


1 N1 . Nk

1

1 N2 . Nk
2

Ēl(N1) Ēl(N2) . Ēl(Nk+1)
1 Nk+1 . Nk

k+1

 , X =


x0
x1
.

xk



Ēk(Nl) = Ek(Nl)−
Nk+1
l

k + 1
, E =


Ēk(N1)
Ēk(N2)

.
Ēk(Nk+1)

 ,

WX = E , X = W−1E (371)
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Finite Sums

As a numbers Nn we can take any di�erent integers, but
the simplest choice is: Nn+1 = Nn + 1, N1 = 1, as in
considered explicit calculation for E2. In this case,
Ek(N + 1) = Ek(N) + (N + 1)k .
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Finite Sums from Generating Function

We propose the following compact form for Ek

Ek(N) =
dk

dxk
P(x ,N)|x⇒0 ≡ DkP = P (k)(0,N),

P(x ,N) =
N∑

n=1

enx =
e(N+1)x − ex

ex − 1
(372)

We take also the following slightly simpler form of P(x ,N),
for k = 1, 2, 3, ...

P(x ,N) =
N∑

n=0

enx =
e(N+1)x − 1

ex − 1
(373)
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Finite Sums from Generating Function

As an example, let us calculate E1(N),

E1(N) =
(N + 1)e(N+1)x

ex − 1
− (e(N+1)x − 1)ex

(ex − 1)2

=
(N + 1)e(N+1)x(ex − 1)− (e(N+1)x − 1)ex

(ex − 1)2
⇓

(N + 1)(1 + (N + 1)x ...)(x + x2

2
...)− ((N + 1)x + (N+1)2x2

2
...)(1 + x ...)

(x + ...)2

= (N + 1)2 + (N + 1)/2− (N + 1)− (N + 1)2/2 = N(N + 1)/2 (374)
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Finite Sums from Generating Function

We can present the derivative operator in the complex
integral form

f (k)(0) =
k!

2πi

∮
dzf (z)

zk+1
(375)

In this form the calculation gives

S(1,N) =
1

2πi

∮
dz

z2

(N + 1)z + (N + 1)2z2/2

z + z2/2

=
1

2πi

∮
dz

z2

(N + 1) + (N + 1)2z/2

1 + z/2

=
1

2πi

∮
dz

z

(N + 1)

z
(1− z/2) + (N + 1)2/2

= N(N + 1)/2 (376)

By this example we see that the second form of calculation
is easier.
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Path integral formulation of the quantum and classical
dynamics

After formulation of the mathematical framework of
quantum mechanics (QM), operatorial formulation of QM,
Koopman and von Neumann gave operatorial approach to
classical Hamiltonian mechanics [Koopman 1931],
[von Neumann 1932]. After Wiener introduction of the
functional integrals, Dirac and Feynman gave formal
functional integral formulation of the quantum theory
[Feynman, Hibbs 1965]. Recently Gozzi invented functional
integral formulation of the classical theory [Deotto, Gozzi].
The path-integral formulation of Hamiltonian classical
mechanics.
For supersymmetric gauge theories stochastic quantization
appears to have one de�nite advantage: since a gauge
�xing term is unnecessary, supersymmetry will not be
broken at any step. This holds both for the Abelian and
non-Abelian case. It appears at the moment as if stochastic
regularization is the only viable candidate for a
regularization scheme which manifestly conserves both
supersymmetry, chiral symmetry and gauge invariance.
However, supersymmetry is related to stochastic
quantization also at a much deeper level. As an example,
even purely scalar �eld theories will, when quantized
stochastically, display a 'hidden' supersymmetry. This issue,
is intimately connected with the existence of a so-called
'Nicolai map' for supersymmetric �eld theories
[Nicolai 1980].
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Path integral formulation of the quantum and classical
dynamics

Parisi-Sourlas 'dimensional reduction' of scalar �eld theories
in external random �elds [Parisi, Sourlas 1979], is closely
related to both supersymmetry and stochastic quantization.
This becomes apparent when one establishes the
connection to the Nicolai map.
The phenomenon of dynamical 'dimensional reduction' was
�rst noted within the context of critical phenomena
associated with spin systems in random external �elds.
Systems very close to such a situation can in fact be created
and studied in the laboratory. From renormalization group
theory, the detailed long-distance behaviour of, for example,
Ising spin systems can, su�ciently close to a critical point,
be understood from the behaviour of a scalar �eld theory

S =

∫
dDx(

1

2
ϕ(−∂2 + m2)ϕ + V (ϕ)), V (ϕ) = aϕ3 + gϕ4(377)
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Path integral formulation of the quantum and classical
dynamics

We start in the simplest possible way by considering the
Langevin equation associated with a point particle being
subjected to random background noise. This corresponds
to the very real physical problem of the Brownian motion of
a (classical) particle in a heat bath. Surprisingly, this
problem turns out to be equivalent to a supersymmetric
quantum mechanical problem. Let us now see why. The
Langevin equation for the particle reads

dx

dt
≡ ẋ = −δS

δx
+ η(t) (378)

where x represents the space coordinate of the particle.
Expectation values are, as usual, evaluated as the path
integral

< x(t1)... x(tn) >=

∫
dη x(t1)... x(tn) exp(−1

4

∫
dtη(t)2)(379)

over a Gaussian noise, i.e.

< η(t1)η(t2) >= 2δ(t1 − t2) (380)
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Path integral formulation of the quantum and classical
dynamics

we now attempt to make a change of variables: η → x .
This involves the Jacobian

det(δη(t)/δx(t ′)) = det((d/dt + V ′)δ(t − t ′)) (381)

where we have introduced V = δS/δx .
For partition function Z ,

Z =

∫
dη exp(−1

4

∫
dtη(t)2)

=

∫
dηdxdet(d/dt + V ′)δ(ẋ + V − η(t)) exp(−1

4

∫
dtη(t)2)

=

∫
dxdet(d/dt + V ′) exp(−1

4

∫
dt(ẋ + V )2)

=

∫
dxdψd ψ̄ exp(−S),

S =

∫
dt(

1

4
(ẋ + V )2 − ψ̄(d/dt + V ′)ψ) (382)

This system is recognized as Witten's example of
supersymmetric quantum mechanics.
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Analytic functions and massless particles

The theory of analytic functions of a complex variable
occupies a central place in analysis. Riemann considered
the unique continuation property to be the most
characteristic feature of analytic functions. GPF do possess
the unique continuation property, and each class of GPF
has almost as much structure as the class of analytic
functions. In particular, the operations of complex
di�erentiation and complex integration have meaningful
counterparts in the theory of GPF and this theory
generalizes not only the Cauchy-Riemann approach to
function theory but also that of Weierstrass. Such
functions were considered by Picard and by Beltrami, but
the �rst signi�cant result was obtained by Carleman in
1933, and a systematic theory was formulated by Lipman
Bers [Bers 1952] and Ilia Vekua (1907-1977) [Vekua 1962].
For more resent results see [Giorgadze 2011].
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Analytic functions and massless particles

Analytic function f = u + iv satisfy the partial di�erential
equation ∂z f = 0, where complex di�erential operators are
de�ned as

∂z =
∂

∂z
:=

1

2
(∂x + i∂y), ∂z =

∂

∂z
:=

1

2
(∂x − i∂y) (383)

Generalized analytic functions f = u + iv satisfy the
following generalized Cauchy-Riemann equation
[Vekua 1962]

∂z f = Af + Bf̄ + J , A = A0 + iA1, B = B0 + iB1, J = j1 + ij2(384)

or in terms of the real u and imaginary v components
canonical form of the elliptic systems of partial di�erential
equations of the �rst order

ux − vy = au + bv + j1, a = A0 + B0, b = −A1 + B1,
uy + vx = cu + dv + j2, c = A1 + B1, d = A0 − B0,(385)

or in matrix form

Dψ = Eψ + J , D =

(
∂x −∂y
∂y ∂x

)
= ∂x − iσ2∂y ,

E =

(
a b
c d

)
, ψ =

(
u
v

)
, J =

(
j1
j2

)
. (386)
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Analytic functions and massless particles

In the classical sense by a solution of the system of
equations (395) we understand a pair of real continuously
di�erentiable functions u(x , y), v(x , y) of the real
variables x and y which satisfy this system everywhere in a
domain G . Such solutions, however, exist only for a
comparatively narrow class of equations.
The formal solution of the canonical equation for GPF
(395) is

ψ = ψ0 + RJ , R = (D − E )−1, (D − E )ψ0 = 0. (387)

Let us introduce a length parameter l = h−1, which is of
order of the source J size, xn → lxn. Then, for the resolvent
R , we will have the longwave and shortwave expansions,

RLW := (lD − E )−1 = −E−1
∑
n≥0

ln(DE−1)n,

RShW := (lD − E )−1 = hD−1
∑
n≥0

hn(ED−1)n,(388)
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Analytic functions and massless particles

E−1 =

(
d −b
−c a

)
/∆E , ∆E = ad − bc ,

D−1 = ∆−1D

(
∂x ∂y
−∂y ∂x

)
= ∆−1D (∂x + iσ2∂y), ∆D = ∂2

x + ∂2
y(389)

There is a fairly complete theory of generalized analytic
functions; it represents an essential extension of the
classical theory preserving at the same time its principal
features [Vekua 1962].
From the previous consideration it is natural to make the
following four dimensional extention

D = ∂x − iσ2∂y ⇒ D4 = ∂t − iσn∇n = −i(∂τ + σn∇n) = −iD13,

D−1 = ∆−14 (∂t + iσn∇n), ∆4 = ∂2
t + ∆3, ∆3 = ∂2

x + ∂2
y + ∂2

z , t = iτ

D−113 = ∆−113 (∂τ − σn∇n), ∆13 = ∂2
τ −∆3,

σnσm = δnm + iεnmkσk (390)
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Analytic functions and massless particles

In matrix form

D4 =

(
∂t − i∂z −i∂x − ∂y
−i∂x + ∂y ∂t + i∂z

)
= 2

(
∂ζ −∂η̄
∂η ∂ζ̄

)
,

ζ = t + iz , η = y + ix ,

D13 =

(
∂τ + ∂z ∂x − i∂y
∂x + i∂y ∂τ − ∂z

)
= 2

(
∂− ∂ς
∂ς̄ ∂+

)
,

∆4 = 4(∂2
ζζ̄ + ∂2

ηη̄), ∆13 = 4(∂2
−+ − ∂2

ςς̄),
± = τ ± z , ς = x + iy , (391)

In the Minkowski spacetime for analytic functions in matrix
form D13ψ = 0 or in components

∂−u + ∂ςv = 0, ∂+v + ∂ς̄u = 0⇒ (∂2
−+ − ∂2

ςς̄)un = 0,
u1 = u, u2 = v (392)

In euclidian space D4ψ = 0,

∂ζu − ∂η̄v = 0, ∂ζ̄v + ∂ηu = 0⇒ (∂2
ζζ̄ + ∂2

ηη̄)un = 0,(393)
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Analytic functions and massless particles

So, un are harmonic or wave functions.

∂−u + ∂ςv = au + bv + j1,
∂+v + ∂ς̄u = cu + dv + j2, (394)

or in matrix form

Dψ = Eψ + J , D =

(
∂− ∂ς
∂ς̄ ∂+

)
= ∂τ + σn∇n,

E =

(
a b
c d

)
, ψ =

(
u
v

)
, J =

(
j1
j2

)
. (395)

It is curious to imagine that Hamilton knew about neutrinos
equation a hundred years before Weil :) In the extended
version, to the E−terms corresponds neutrinos mass.
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Analytic functions and massless particles

Now SM is well established theory of fundamental physics
with several indications, aesthetical and theoretical, on
father developments, on physics beyond SM (BSM), on new
physics. One well established step toward BSM is neutrino
masses. In SM the neutrinos are massless. In SM we have
three type of lefthanded neutrinos νn, n = e, µ, τ which
interacts weakly with corresponding leptons, lepton number
is conserved. Corresponding part of the SM lagrangian is

l̄nγ
µν ′nWµ + ν̄ ′(γ∂ −M)ν ′, ν̄ ′ = (ν̄ ′e ν̄

′
µν̄
′
τ) (396)

where M is a 3× 3 matrix in �avor space. If the matrix is
nondiagonal, we diagonalize it by an unitary transformation:

ν̄(γ∂ −M)ν = ν̄n(γ∂ −mn)νn,
U−1MU = diag(m1,m2,m3), νn = U−1nk ν

′
k ,

l̄nγ
µν ′nWµ = l̄nγ

µUnkνkWµ (397)
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Analytic functions and massless particles

If the Koide formula works for lepton masses, may be it
works also for neutrino masses. If the lepton masses are an
unique solution of the Koide formula, than neutrino masses
are proportional to the lepton masses:
mn = qMn, n = e, µ, τ.
(Super)symmetry, stochastic dynamics and kaleidoscope
e�ect. Time re�ection invariance and dynamical origin of
spin.
The meromorphic functions form a �eld, in fact a �eld
extension of the complex numbers.
Weyl proposed the following 2-component equations for the
zero mass spin 1/2 particles in 1929,

(∂0 − sn∂n)W = 0, W = (u, v)t (398)

for the wave functions of the
left-neutrino-right-antineutrino pairs. At that time they
were rejected by Pauli because of their lack of invariance
with respect to space inversion. Indeed, it was always a
basic principle that the wave equations should be invariant
under all Lorentz transformations, not just those in the
connected component. In particular, invariance under space
inversion, also called parity conservation, was demanded.
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Analytic functions and massless particles

In the mid 1950s, in experiments performed by Wu
following a famous suggestion by Yang and Lee that the
neutrinos did not have the parity conservation property, it
was found that the neutrinos emitted during beta decay
had a preferred orientation. Experimental evidence further
indicated that the spin is always antiparallel to the
momentum for the neutrinos so that the neutrinos are
always left-handed. After Wu's experiment, Landau and
Salam proposed that the Weyl equation for the left-handed
neutrino-right-handed antineutrino pairs be restored as the
equation satis�ed by the neutrino. It is this equation that
now governs massless particles, not only in Minkowski
spacetime but also in curved spacetime.
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Life sciences and biological dynamical systems

Complex cell-biology phenomena of life sciences can be
explained by understanding of their (quantum) molecular
structures.
All matter is made of atoms. The most basic phases of
matter are solid, liquid and gas. By a naive classi�cation
argument, a solid holds its shape and volume, a liquid takes
the shape of its container but retains a �xed volume, and a
gas expands to any size, taking both the shape and the
volume of the container. There are many more phases of
matter which evade the standard criteria of classi�cation.
The distinction between phases of matter depends crucially
on the length-scale and time-scale of consideration. A large
variety of di�erent materials, with completely di�erent
microscopic features can be described by theories that �ow
down to the same low-energy descriptions. These
low-energy descriptions are solely determined by a small
subset of (relevant) operators and by a speci�c set of
preserved and spontaneoulsy broken symmetries.
Symmetries are the key-elements to understand the
di�erent standard phases of matter.
The proper and modern formal language to describe and
understand the di�erent phases of matter is that of
e�ective �eld theory (EFT).

Makhaldiani N.V. (mnv) 28 November 353 / 405



Life sciences and biological dynamical systems

Phases of condensed matter always spontaneously break
the Poincare group simply because their equilibrium states
selects a preferred reference frame, i.e. the frame in which
the sample of matter is stationary. The classi�cation of the
di�erent phases is in 1-to-1 correspondence with the
classi�cation of the possible symmetry-breaking patterns of
the Poincare group. At zero temperature, the standard �eld
theory methods are available and the formal construction
has been presented in [Nicolis et al, 2015] and re�ned using
the coset techniques in [Nicolis et al, 2014]. In this
low-energy description the fundamental dynamical degrees
of freedom are the Goldstone bosons corresponding to the
speci�c symmetry breaking pattern (e.g. the phonons in a
solids [Leutwyler 1997]). Heavier massive modes are
integrated out and they do not appear in the EFT
description. The case of soft explicit breaking, gives rise to
pseudoGoldstone modes with a parametrically small mass
gap (e.g. pions).
Drawback is the impossibility of computing any transport
coe�cients (or in the EFT language, Wilson coe�cients).
As a concrete example, EFT methods can yield the
dispersion relations of the phonons in a solids but they will
never give you any information about their speeds. It is
interesting problem e.g. to calculate speed of the light in
graphen.
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Life sciences and biological dynamical systems

More severe di�culty arises when trying to extend the EFT
methods to describe �nite-temperature systems. Standard
action principles and �eld theory formulations do not allow
for dissipation, which is an important feature of all �nite
temperature systems, e.g. �uids. Two tools acquired a
predominant role in this direction: holography
[Baggioli 2019] and Schwinger-Keldysh (SK) techniques
[Kamenev 2011]. When spacetime symmetries are broken,
extraneous Goldstones can be removed with so-called
Inverse Higgs e�ect, thus allowing for fewer Goldstones
than broken generators [Ivanov and Ogievetskii 1975],
[Brauner and Watanabe 2014].
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Life sciences and biological dynamical systems

Living organisms are open physical systems which utilize
the availability of free energy to maintain homeostasis,
respond to stimuli, adapt to their environment, grow,
reproduce, and to evolve [Oparin 1957]. All of these
biological functions are implemented by the largescale
participation and interaction of proteins. The high
versatility of protein functions is achieved by linear
polymerization of 20 di�erent standard amino acids into
polypeptide chains. The linear sequence of amino acids in
polypeptides is a primary structure. The primary structure
folds into two main types of hydrogen-bonded secondary
structures, α-helices and β-sheets [Pauling 1951].
The essential biological processes that sustain life are
catalyzed by protein nanoengines, which maintain living
systems in far-from-equilibrium ordered states. A novel
mechanism for the localization and transport of vibrational
energy in protein was proposed by A.S. Davydov in 1973
[Davidov 1973]: The localization of Amide-I (or CO
stretching) vibrational energy in protein arises through
interaction of the Amide-I mode with lattice distortion,
charge transport and biological applications are also
considered.
For the precision investigation of the quantum models we
need quantum computing - quanputing.
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Mathematical Immunology

Mathematics is the universal language for expressing causal
and functional relationships between observations. Its
mainstream developments have been inspired by the needs
of Physics, Chemistry and Engineering. For the twenty-�rst
century, it is widely expected that Biology becomes a
frontier for Mathematics.
The immune system is primarily about host survival of
infections and for this we also need to understand the
biology of the system. Understanding the cellular and
molecular mechanisms that control the ability of the
immune system to mount a protective response against
pathogen-derived foreign antigens, but avoid a pathological
response to self-antigens, is a central problem in
immunology. A dynamical systems paradigm has to be
developed and enter everyday immunological research. This
requires the integration of mathematical methods to
complement experimentation with the aim to represent,
interpret and predict the observable characteristics of
infections.
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Mathematical Immunology

The challenge is to establish an interdisciplinary dialogue
between mathematicians and experimentalists so that
experimentation and mathematical modelling becomes an
iterative process that boosts the di�erent disciplines. The
generated models that inevitably present simpli�cations of
the underlying biological complexity must not lose touch
with reality and generate testable predictions that drive, for
example, perceptions of pathogen�host interactions. Such
consistent models that provide a basis for quantitative
analysis and predictions raises challenges for applied
mathematicians related to the formulation of genuine
approaches for representing the phenotypic complexity,
spatial heterogeneity, hierarchical organization and control
principles inherent to the infectious disease courses and
outcomes.
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Chronic forms of diseases

A mathematician, working on the problems of optimizing
the treatment of chronic forms of diseases, need creative
contacts with immunologists, geneticist, biologists, and
clinicians. The reaction of immune system to infection are
the main problem in practical immunology. Understanding
of regularities in immune response provides the researchers
and clinicians new powerful tools for the stimulation of the
immune system in order to increase its e�ciency in the
struggle against antigen invasion.
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Standart model of virus dynamics

The standard model for the (three species) virus dynamics
is de�ned, [Nowak et al 1996], as the following system,

ṁ = −am + bnv ,
ṅ = c − dn − bnv ,
v̇ = km − ev , (399)

where m, n and v are, respectively, the numbers of infected
cells, uninfected cells and the number of free virus particles
(virons) in a �xed volume compartment; infected cells die at
a rate am; the uninfected cells are produced at a constant
rate c and die at a rate dn; virons infect uninfected cells at
a rate proportional to the product of their numbers, bnv ;
infected cells produce free virus at a rate km; free virus
particles are removed from the system at a rate ev .Makhaldiani N.V. (mnv) 28 November 360 / 405



Covid treatment of chronic disease

From the third equation of the system (399) we may de�ne
m
as a function of v ,

m = (v̇ + ev)/k (400)

Taking sum of the �rst and second equations, we �nd the
following equation

(m + n). = c − (am + dn), (401)

with the solution when d = a,

|c − ax(t)| = e−at |c − ax0|,
m + n = x = c/a + e−at |c/a − x0|, x > c/a,

= c/a − e−at |c/a − x0|, x < c/a (402)

Note that when v = 0 and m = 0 the solution describs
healthy cell dynamics near �xed value n = c/a.
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Covid treatment of chronic disease

We may take, e.g.

v(t) = v0 sin(πt/T ), 0 ≤ t ≤ T (403)

and �nd the time tH when m = 0,

tH = (1− arctan(
π

eT
)/π)T , T/2 < tH < T ,

n(tH) = x(tH), v(tH) = v0 sin(πtH/T ) = v0
πeT√

π2 + e2T 2
(404)

Parameters for a typical HIV virus infection process are:

a = 0.5, b = 2× 10−7, c = 105, d = 0.1, k = 100, e = 5(405)

These parameters have units of inverse days: 1/d .
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Covid and traditional clothing

During covid, masks, helmets and overalls are worn in
public places (doctors in the red zones). In the spring
comes pollinosis, or seasonal allergic rhinoconjunctivitis, a
seasonal disease caused by an allergic reaction to plant
pollen. The disease is sometimes called hay fever, although
hay is not a signi�cant factor in the genesis of the disease,
and fever is not characteristic of this pathology. At the
beginning of the 19th century, it was believed that the
cause of hay fever was freshly cut grass, which then went to
make hay, hence the name of the disease. Means of
protection against covid and their modi�cations can also
protect against hay fever. Where the face and other parts
of the body are traditionally hidden, masks and overalls can
be worn under traditional clothing. So to say hay fever
underwear.
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Higgs Harticles

This mechanism indicates that with time inversion
symmetry we can have only composed scalar �elds. With
the discovery of the Higgs particle with mass 125 GeV , a
nice number mW /mH ' 2/3 appear, which, at least for me,
indicates for composed nature of W and H , with a same
mass of about 40 GeV two and three valence constituents
correspondingly. The fermion constituents ψa

n of W and
scalar constituents ϕa

n of H compose scalar super multiplet
(ϕa

n, ψ
a
n) with a �avor index n and color index a. Another

notation is (h, sh)-(He, She:).
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Con�nement, Space Dimension and Supersymmetry

With exact SUSY we have co�nement by dimentional
counting: superspace dimension is zero on the hadronic
scale, hadrons are pointlike, color is con�ned inside hadrons.
For SM QCD this picture indicates that at the hadronic
scale we have e�ective SQCD, which contains scalar quarks.
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A Solvable Model of Renormdynamics

In the Standard Model of Particle Physics (SM), the values
of the coupling constants and masses of particles depends
on the scale according to the Renormdynamic motion
equations. One charge a, one mass m RD equations are

α̇ = β(α),
ṁ = γ(α)m (406)

For the electron and nucleon masses, electrodynamic and
pion-nucleon �ne structure constants we have an empirical
relation:

me/α ' mN/απN (407)

We take the relation m/α = const as an integral of
renormdynamic motion equations for m and α, �nd exact
form of the β function in the minimal mass parametrization

γ(α) = γ1α + γ2α
2 + ... = γ1A,

A = f −1(α) = α + γ2/γ1α
2 + γ3/γ1α

3 + ...,

α = f (A) = A + f2A2 + f3A3 + ... (408)
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A Solvable Model of Renormdynamics

From the integral of motion, in the minimal mass
parametrization: γ(α) = γ1α, we obtain

(lnα). = (ln m). ⇒ β(α)/α = γ(α)
= γ1α⇒ β(α) = β2α

2, β2 = γ1 (409)

so, we have the following algebraic-diofant equations for
the �avor and color content of the theory

βn = 0, n ≥ 3,
β2 = γ1 (410)

and prediction for the dimension of space-time: D = 4.
Solution of the motion equations are

α(t) =
α0

1− α0β2t
,

m(t) = m0|α−10 − β2t|−γ1/β2 =
m0

α0
α(t) (411)
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Multidimensional Renormdynamics

In the multidimentional renormdynamics, when we have
several (N) coupling constants and masses, we assume that
there are maximal number (N − 1) integrals of motion Hn.
If the number of integrals is N , we not have dynamics, we
have only statics - �nite �eld theory,
αn = const, n = 1, ...,N .
The idea of reduction to the one dimensional
renormdynamics is simple:

dαn

dt
= βn(α1, ..., α(N−1), αN)⇒ dαn

dα
= Bn(α1, ..., α(N−1), α), α = αN ,

Bn(α1, ..., α(N−1), α) = βn(α1, ..., α(N−1), α)/βN(α1, ..., α(N−1), α),

αn =
∑
k≥1

fnkα
k , n = 1, 2, ...,N − 1 (412)
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Solitons are particlelike states, solutions of motion
equations and they quantum extensions. Examples are
solitons of SinGordon motion equation or barions-skirmions
of Skyrme model. In particle theory, the skyrmion was
described by Tony Skyrme in 1962 and consists of a
quantum superposition of baryons and resonance states.
Skyrmions as topological objects are important in solid
state physics. Researchers could read and write skyrmions
using scanning tunneling microscopy. The topological
charge, representing the existence and non-existence of
skyrmions, can represent the bit states "1" and "0".
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

QCD consists of quarks and gluons. Quarks possess both
color (r , g , b) and �avor (u, d , s,etc.), while gluons possess
color (r , g , b) and anti-color (r̄ , ḡ , b̄), but not �avor. An
open string (a string with two endpoints) is ideally suited
to account for such quantum numbers at its two ends. For
quarks, one end represents color and the other end �avor.
For gluons, one end represents color and the other
anti-color. In string theory, there are branes (higher
dimensional extended objects that are generalized
membranes) to which the endpoints of an open string are
con�ned. Applying this idea to QCD, we introduce Nc

colored branes and Nf �avored branes at which open strings
corresponding to quarks and gluons terminate. The energy
of a string is given by the sum of the classical energy stored
inside the string and the excitation energies of vibration
and rotation. Because the classical energy of a string is
proportional to its length and because gluons are massless,
Nc colored branes should lie on top of one another. On the
other hand, quarks possess intrinsic masses, and therefore
the endpoints of a quark string, namely, a �avored brane
and a colored brane should be separated from each other by
a nonvanishing distance U . Then, the intrinsic quark mass
mq can be represented as mq = U×(string tension), where
the string tension is the energy stored inside a unit length
of string and is represented: string tension=1/(2πα′) in
terms of α′ , historically called the Regge slope.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

To describe QCD, we have to prepare Dp-branes and
Dq-branes with p, q≥3 for colored branes and �avored
branes, respectively, and these branes should be located in
the space of more than �ve dimensions. To evaluate the
amplitude for a certain process to occur in the above
picture, we have to sum up all the possible two-dimensional
world sheets with the weight exp(iS), where the action S is
given by S=(energy)×(time)=(area of the string's world
sheet)/2πα′, following the Feymann path integral
formulation.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Cumulative E�ect: Production of particles from nuclei
in a region, kinematically forbidden for reactions with free
nucleons is connected to the existence of Fluctons -
droplets of dense cold nuclear matter.
Classical �elds have canonical, rational for integer D,
(mass)dimensions e.g. in electrodynamics

L =

∫
dDx(ψ̄(γ(∂ − eA)−m)ψ − 1

4
F 2),

dψ = [ψ] = (D − 1)/2, dA = (D − 2)/2, de = (4− D)/2(413)

Quantum corrections introduce (anomaly) corrections to
the canonical dimensions, so the �elds and coupling
constants become fractals. At �xed points of RD, the
fractals are self similar and their compositions present at
low energies unparticles.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Qualitative picture of the (un)particle(like) objects we will
illustrate with the simplest model of scalar �eld given by
the following lagrangian

L = L(Φ,M , λ, n) =
1

2
(∂µΦ)− 1

2
M2Φ2 − V (Φ), µ = 0, 1, 2, ...,D(414)

where self interaction usually we take in the form

V (Φ) = λΦn, n = −2, 1, 2, 3, 4, 6 (415)

In renormalisible case,

n =
2D

D − 2
= 2 + ε(D), ε(D) =

4

D − 2
,

D =
2n

n − 2
= 2 + ε(n), ε(n) =

4

n − 2
, (416)

sometimes we consider also intermediate values of n and D
and other forms of V .
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

In the free (self non interacting) �eld (particle)
approximation: λ = 0, but in external gravitational �eld we
have

L(g ,Φ,M) =
√
−gL(Φ,M , 0), g = detgµν(x) (417)

Now we will see a nice composite particle mechanism :) Let
us take a substitute: Φ = ϕk , than we �nd

L(g ,Φ,M) = L((kϕk−1)4g , ϕ,M/k), gµν(x)⇒ (kϕk−1)4/Dgµν(x)(418)

Indeed

L(g ,Φ,M) =
√
−g(k2ϕ2(k−1)1

2
(∂µϕ)2 − 1

2
M2ϕ2k)

=
√
−g(kϕk−1)4(

1

2
(∂µϕ)2)− 1

2
(

M

k
)2ϕ2) (419)
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Now, having an experience with constituent - composite
particle relation, we turn attention on the self-interaction
therm,

L =
√
−g(kϕk−1)4(...− λ

k2
ϕN), N = kn − 2(k − 1)(420)

Most natural value of n for stable systems
(1 + 1→ 1 + 1, 2→ 2) is n = 4. In this case, N = 2k + 2
and only natural value of constituents for which we have a
renormalizable interaction is k = 2⇒ N = 6 with
corresponding spacetime dimension D = 3. The most
natural value for �ssion-fusion interaction (1↔ 2) is
n = 3⇒ N = k + 2, for which we have realistic values
k = 2 and N = 4, D = 4 :) Other interesting values of
naturally interpretable monomial (polynomial) interactions
generally corresponds to the non-integer, fractional-fractal
dimensions of space(time) D, with fractal-�ucton-unparticle
interpretations of the corresponding states of matter.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

The size of particle-like states (solutions of the motion
equations) are de�ned as l ∼ M−1, because at the
boundary region, the linear part of the motion equations
dominates and the Yukawa-like asymptotic Φ(r) ∼ e−Mr

acts. In a pion-nucleon model for nucleon size we have
lN ∼ m−1π ' 1.43 fm. The amplitude of the state (at
maximum) A ∼ λ−α, α = 1/(n − 2). Indeed, the motion
equation do not contains the coupling constant after a
scaling substitution Φ = λ−αφ, so a particle-like solution φ
dos not contains λ and corresponding solution
Φ = λ−αφ ∼ λ−α,

4Φ + M2Φ + λnΦn−1 = λ−α(4φ + M2φ + λ1−(n−2)αnφn−1) = 0.(421)
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

At not so low energies from string theory we may extract
the following scalar �eld theory

L =
√
−g(

1

2
(∂µΦ)2 − 1

2
M2Φ2 − λΦ3), µ = 0, 1, ...,D − 1, D = 6 + ε(422)

where ε ∈ [0, 20]. The one loop β−function is

β(a) = (D − 6)a − β2a2, a ∼ λ2 (423)

and it has stable UV �xed point at a = (D − 6)/β2 and IR
�xed point a = 0. Beyond this point we have an unparticle
Φ = φ2 with lagrangian

L =
√
−g ′(

1

2
(∂µφ)2 − 1

2
(

M

2
)2φ2 − λ

4
φ4), µ = 0, 1, ...,D − 1,

d = 4− ε, ε ∈ [0, 1]. (424)
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

The one loop β−function is

β(λ) = (d − 4)λ + bλ2 (425)

and it has stable IR �xed point at λ = (4− d)/b. The UV
�xed point is λ = 0. At this point we have reduction from
higher dimentional Φ3 to lower dimentional φ4.
Another possibilities is an unparticle Φ = ϕ4 with
lagrangian

L =
√
−g ′′(

1

2
(∂µϕ)2 − 1

2
(

M

4
)2ϕ2 − λ

16
ϕ6), µ = 0, 1, ..., d − 1.(426)

The one loop β−function is

β(λ) = (d − 3)λ + cλ2, d = 3− ε, ε ∈ [0, 2]. (427)

The IR �xed point is λ = ε/c . UV �xed point is λ = 0.
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Similar consideration gives reduction from higher energy φ4

model to lower energy ϕ6 one. Some technical questions
remain. One of them concern to the substitution Φ = φ2.
It restricts Φ as Φ ≥ 0. OK, we already have a constraint,
that the �elds are real valued, we have a restriction

φ∗(x) = φ(x) =
1

(2π)D

∫
dDp exp(ipx)φ̂(p)⇒ φ̂∗(p) = φ̂(−p)(428)

To formulate positivity condition is not so easy. We will
take another path, we de�ne the interaction as
Φ3 = (Φ2)3/2 ≥ 0. Then the substitution Φ2 = φ4 will
works. Bytheway by this de�nition we made also another
improvement: the potential become bounded from below.
For the reduction the substitution Φ2 = φ4 also works,

L =
√
−g(

1

8Φ2
)(∂µΦ2)2 − 1

2
M2Φ2 − λ(Φ2)n/2, n = 3, 4.(429)
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Solitons, Strings, Fractals, Fluctons,..., Unparticles

Note that by substitution

(
Φ

Φ0
)2 = φ2k , φ2 = exp(ln(Φ2/Φ2

0)/k)

= 1 +
1

k
ln(

Φ

Φ0
)2 + O(K−2), φ = ±1 + O(k−1)(430)

we reduce the �eld theory to a discrete theory, to a system
of bits. Also, changing dimension of space D and
nonlinearity n restricted by condition

n =
2D

D − 2
, D =

2n

n − 2
,
1

n
+

1

D
=

1

2
(431)

we assume that they are functions of scale or coupling
constant, due to monotonic property of the coupling
constant. We have the following relation

βn = − 4

(D − 2)2
βD ,

βn = µ
dn

dµ
=

dn

dλ
βλ, βD = µ

dD

dµ
=

dD

dλ
βλ. (432)
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Discrete dynamical systems and Quanputers

Computers are physical devices and their behavior is
determined by physical laws. The Quantum Computations
[Benenti, Casati, Strini, 2004 , Nielsen, Chuang, 2000 ],
Quantum Computing, Quanputing [Makhaldiani, 2007.2], is
a new interdisciplinary �eld of research, which bene�ts from
the contributions of physicists, computer scientists,
mathematicians, chemists and engineers.
Contemporary digital computer and its logical elements can
be considered as a spatial type of discrete dynamical
systems [Makhaldiani, 2001]

Sn(k + 1) = Φn(S(k)), (433)

where

Sn(k), 1 ≤ n ≤ N(k), (434)

is the state vector of the system at the discrete time step
k . Vector S may describe the state and Φ transition rule of
some Cellular Automata [To�oli, Margolus, 1987].The
systems of the type (433) appears in applied mathematics
as an explicit �nite di�erence scheme approximation of the
equations of the physics [Samarskii, Gulin, 1989 ].
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Discrete dynamical systems and Quanputers

De�nition: We assume that the system (433) is
time-reversible if we can de�ne the reverse dynamical
system

Sn(k) = Φ−1n (S(k + 1)). (435)

In this case the following matrix

Mnm =
∂Φn(S(k))

∂Sm(k)
, (436)

is regular, i.e. has an inverse. If the matrix is not regular,
this is the case, for example, when N(k + 1) 6= N(k), we
have an irreversible dynamical system (usual digital
computers and/or corresponding irreversible gates).
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Discrete dynamical systems and Quanputers

Let us consider an extension of the dynamical system (433)
given by the following action function

A =
∑
kn

ln(k)(Sn(k + 1)− Φn(S(k))) (437)

and corresponding motion equations

Sn(k + 1) = Φn(S(k)) =
∂H

∂ln(k)
,

ln(k − 1) = lm(k)
∂Φm(S(k))

∂Sn(k)
= lm(k)Mmn(S(k)) =

∂H

∂Sn(k)
,(438)

where

H =
∑
kn

ln(k)Φn(S(k)), (439)

is discrete Hamiltonian. In the regular case, we put the
system (438) in an explicit form

Sn(k + 1) = Φn(S(k)),
ln(k + 1) = lm(k)M−1

mn(S(k + 1)). (440)
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Discrete dynamical systems and Quanputers

From this system it is obvious that, when the initial value
ln(k0) is given, the evolution of the vector l(k) is de�ned by
evolution of the state vector S(k). The equation of motion
for ln(k) - Elenka is linear and has an important property
that a linear superpositions of the solutions are also
solutions.
Statement: Any time-reversible dynamical system (e.g. a
time-reversible computer) can be extended by
corresponding linear dynamical system (quantum - like
processor) which is controlled by the dynamical system and
has a huge computational power,
[Makhaldiani, 2001, Makhaldiani, 2002,
Makhaldiani, 2007.2, Makhaldiani, 2011.2].
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(de)Coherence criterion

For motion equations (438) in the continual approximation,
we have

Sn(k + 1) = xn(tk + τ) = xn(tk) + ẋn(tk)τ + O(τ 2),
ẋn(tk) = vn(x(tk)) + O(τ), tk = kτ,
vn(x(tk)) = (Φn(x(tk))− xn(tk))/τ ;

Mmn(x(tk)) = δmn + τ
∂vm(x(tk))

∂xn(tk)
. (441)

(de)Coherence criterion: the system is reversible, the
linear (quantum, coherent, soul) subsystem exists, when
the matrix M is regular,

detM = 1 + τ
∑
n

∂vn
∂xn

+ O(τ 2) 6= 0. (442)

For the Nambu - Poisson dynamical systems (see e.g.
[Makhaldiani 2007])

vn(x) = εnm1m2...mp

∂H1

∂xm1

∂H2

∂xm2

...
∂Hp

∂xmp

, p = 1, 2, 3, ...,N − 1,∑
n

∂vn
∂xn
≡ divv = 0. (443)
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Construction of the reversible discrete dynamical systems

Let me motivate an idea of construction of the reversible
dynamical systems by simple example from �eld theory.
There are renormalizable models of scalar �eld theory of
the form (see, e.g. [Makhaldiani, 1980])

L =
1

2
(∂µϕ∂

µϕ−m2ϕ2)− gϕn, (444)

with the constraint

n =
2d

d − 2
, (445)

where d is dimension of the space-time and n is degree of
nonlinearity. It is interesting that if we de�ne d as a
function of n, we �nd

d =
2n

n − 2
(446)

the same function !
Thing is that, the constraint can be put in the symmetric
implicit form [Makhaldiani, 1980]

1

n
+

1

d
=

1

2
(447)

Makhaldiani N.V. (mnv) 28 November 386 / 405



Generalization of the idea

Now it is natural to consider the following symmetric
function

f (y) + f (x) = c (448)

and de�ne its solution

y = f −1(c − f (x)). (449)

This is the general method, that we will use in the
following construction of the reversible dynamical systems.
In the simplest case,

f (x) = x , (450)

we take

y = S(k + 1), x = S(k − 1), c = Φ̃(S(k)) (451)

and de�ne our reversible dynamical system from the
following symmetric, implicit form (see also
[To�oli, Margolus, 1987])

S(k + 1) + S(k − 1) = Φ̃(S(k)), (452)

explicit form of which is

S(k + 1) = Φ(S(k), S(k − 1))
= Φ̃(S(k))− S(k − 1). (453)
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Generalization of the idea

This dynamical system de�nes given state vector by
previous two state vectors. We have reversible dynamical
system on the time lattice with time steps of two units,

S(k + 2, 2) = Φ(S(k , 2)),
S(k + 2, 2) ≡ (S(k + 2), S(k + 1)),
S(k , 2) ≡ (S(k), S(k − 1))). (454)
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Internal, spin, degrees of freedom

Starting from a general discrete dynamical system, we
obtained reversible dynamical system with internal(spin,bit)
degrees of freedom

Sns(k + 2) ≡
(

Sn(k + 2)
Sn(k + 1)

)
=

(
Φn(Φ(S(k))− S(k − 1))− S(k))

Φn(S(k))− Sn(k − 1)

)
≡ Φns(S(k)), s = 1, 2 (455)

where

S(k) ≡ (Sns(k)), Sn1(k) ≡ Sn(k), Sn2(k) ≡ Sn(k − 1)(456)

For the extended system we have the following action

A =
∑
kns

lns(k)(Sns(k + 2)− Φns(S(k))) (457)
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Internal, spin, degrees of freedom

and corresponding motion equations

Sns(k + 2) = Φns(S(k)) =
∂H

∂lns(k)
,

lns(k − 2) = lmt(k)
∂Φmt(S(k))

∂Sns(k)

= lmt(k)Mmtns(S(k)) =
∂H

∂Sns(k)
, (458)

By construction, we have the following reversible dynamical
system

Sns(k + 2) = Φns(S(k)),
lns(k + 2) = lmt(k)M−1

mtns(S(k + 2)), (459)

with classical Sns and quantum lns(in the external,
background S) string bit dynamics.Makhaldiani N.V. (mnv) 28 November 390 / 405



p-point cluster and higher spin states reversible dynamics, or
pit string dynamics

We can also consider p-point generalization of the previous
structure,

fp(S(k + p)) + fp−1(S(k + p − 1)) + ... + f1(S(k + 1))
+f1(S(k − 1)) + ... + fp(S(k − p)) = Φ̃(S(k)),
S(k + p) = Φ(S(k), S(k + p − 1), ..., S(k − p))
≡ f −1p (Φ̃(S(k))− fp−1(S(k + p − 1))− ...− fp(S(k − p)))(460)

and corresponding reversible p-oint cluster dynamical
system

S(k + p, p) ≡ Φ(S(k , p)),
S(k + p, p) ≡ (S(k + p), S(k + p − 1), ..., S(k + 1)),
S(k , p) ≡ (S(k), S(k − 1), ..., S(k − p + 1)), S(k , 1) = S(k).(461)

So we have general method of construction of the reversible
dynamical systems on the time (tame) scale p. The
method of linear extension of the reversible dynamical
systems (see [Makhaldiani, 2001] and previous section)
de�nes corresponding Quanputers,

Sns(k + p) = Φns(S(k)),
lns(k + p) = lmt(k)M−1

mtns(S(k + p)), (462)
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p-point cluster and higher spin states reversible dynamics, or
pit string dynamics

This case the quantum state function lns , s = 1, 2, ...p will
describes the state with spin (p − 1)/2.
Note that, in this formalism for reversible dynamics minimal
value of the spin is 1/2. There is not a place for a scalar
dynamics, or the scalar dynamics is not reversible. In the
Standard model (SM) of particle physics,
[Beringer et al, 2012], all of the fundamental particles,
leptons, quarks and gauge bosons have spin. Only scalar
particles of the SM are the Higgs bosons. Perhaps the
scalar particles are composed systems or quasiparticles like
phonon, or Higgs dynamics is not reversible (a mechanism
for 'time arrow').
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A way to the Solution of the Traveling salesman problem
(TSP) with Quanputing

The NP ?
− P problem will be solved if for some NP−

complete problem, e.g. TSP, a polynomial algorithm �nd;
or show that there is not such an algorithm; or show that it
is impossible to �nd de�nite answer to that question.
TSP means to �nd minimal length path between N �xed
points on a surface, which attends any point ones. We
consider a system where N points with quenched positions
x1, x2, ..., xN are independently distributed on a �nite
domain D with a probability density function p(x). In
general, the domain D is multidimensional and the points
xn are vectors in the corresponding Euclidean space. Inside
the domain D we consider a polymer chain composed of N
monomers whose positions are denoted by y1, y2, ..., yN .
Each monomer yn is attached to one of the quenched sites
xm and only one monomer can be attached to each site.
The state of the polymer is described by a permutation
σ ∈ ΣN where ΣN is the group of permutations of N
objecs.
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A way to the Solution of the Traveling salesman problem
(TSP) with Quanputing

The Hamiltonian for the system is given by

H =
N∑

n=1

V (|yn − yn−1|) (463)

Here V is the interaction between neighboring monomers
on the polymer chain. For convenience the chain is taken
to be closed, thus we take the periodic boundary condition
x0 = xN . A physical realization of this system is one where
the xn are impurities where the monomers of a polymer
loop are pinned. In combinatorial optimization, if one takes
V (x) to be the norm, or distance, of the vector x then
H(σ) is the total distance covered by a path which visits
each site xn exactly once. The problem of �nding σ0 which
minimizes H(σ) is known as the traveling salesman problem
(TSP) [Gutin, Pannen, 2002].
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A way to the Solution of the Traveling salesman problem
(TSP) with Quanputing

In �eld theory language to the TSP we correspond the
calculation of the following correlator

G2N(x1, x2, ..., xN) = Z−10

∫
dϕ(x)ϕ2(x1)ϕ2(x2)...ϕ2(xN)e−S(ϕ)

=
δ2NF (J)

δJ(x1)2...δJ(xN)2
, F (J) = ln Z (J),

Z (J) =

∫
dϕe−

1

2
ϕ·A·ϕ+J·ϕ = e

1

2
J·A−1·J , A−1(x , y ; m) = e−m|x−y |,

Lmin(x1, ..., xN) = − d

dm
ln G2Ns + O(e−am)

< A−1 >≡ 1

Γ(s)

∫ ∞
0

dmms−1A−1(x , y ; m) =
1

|x − y |s
= LsA

−1(x − y ; s)
k(d)∆dLsA

−1(x ; s) = δd(x)⇒ A(x ; s) = k(d)∆dLs ,
s = d − 2;ϕ = ϕ(x ,m). (464)
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A way to the Solution of the Traveling salesman problem
(TSP) with Quanputing

If we take relativistic massive scalar �eld, then
A = ∆d + m2,

A−1(x) ∼ |x |2−de−m|x |, (465)

and for d = 2, we also have the needed behaviour. Note
that G2N is symmetric with respect to its arguments and
contains any paths including minimal length one.
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Notes

Although many astronomical observations have con�rmed
the existence of dark matter, its nature has so far been
unknown. Among the many dark matter models, weakly
interacting massive particles (WIMPs) is the most
important one Other dark matter models, such as
primordial black holes (PBHs), have attracted extensive
attention again [4�13]. PBHs can be formed by the
collapse of large density perturbation existing in the early
Universe and their masses spread a wide range (see, e.g.,
Refs. [5, 20]).
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First order formalism for any spin dynamics

Equations of motion for a free �eld of arbitrary spin can be
written as a �rst-order di�erential equation (see e.g. S.
Okubo and Y. Tosa Phys. Rev. D 23, 1468 (1981) )

(Γµ∂µ −M)ψ = 0 (466)

where Γµ and M are constant matrices. The corresponding
Lagrangian may be given by

L = ψ̄(Γµ∂µ −M)ψ (467)

where ψ̄ is related to ψ by

ψ̄ = ψTC (468)

for another constant matrix C . The superscript T denotes
the transpose.Makhaldiani N.V. (mnv) 28 November 398 / 405



First order formalism for any spin dynamics

If we consider ψ̄ and ψ as independent complex �elds, we
may introduce interactions with gauge �elds as usual.
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Notes

All known string theory models may be obtained from the
bosonic string theory. Spacetime, gravity, geometry and
topology are all emergent macroscopic concepts, arising
from microscopic quantum interactions.
Highly supersymmetric three dimensional conformal �eld
theories are interesting for construction of the theory
describing the worldvolume of membranes in M-theory
(M2-branes) at low energies. Another motivation to study
three dimensional conformal �eld theories is that they could
describe interesting conformal �xed points in condensed
matter systems. Note that

292 = 202 + 212 → (15− 1/2)2 = (14 + 1/2)2 = 102 + (10 + 1/2)2,
(30− 1)2 = 900− 60 + 1 = 400 + 400 + 40 + 1 (469)
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Óðàâíåíèÿ Ìàêñâåëëà

Êëàññè÷åñêàÿ ýëåêòðîäèíàìèêà âîçíèêëà â 1862 ã.,
êîãäà Ìàêñâåëë ñôîðìóëèðîâàë óðàâíåíèÿ,
ñâÿçûâàþùèå ýëåêòðè÷åñêîå è ìàãíèòíîå ïîëÿ è ñ
ïëîòíîñòÿìè çàðÿäà è òîêà ρ è j :

rotB − 1

c
∂tE =

4π

c
j ,

rotE +
1

c
∂tB = 0,

divE = 4πρ,
divB = 0,⇓,
i∂0ψ = s · pψ + J ,
divψ = ρ, ψ = E + iB , x0 = ct (470)
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Óðàâíåíèÿ Ìàêñâåëëà

Ýòè óðàâíåíèÿ, äîïîëíåííûå âûðàæåíèåì äëÿ ñèëû
Ëîðåíöà, äåéñòâóþùåé íà ñèñòåìó ýëåêòðè÷åñêèõ
çàðÿäîâ è òîêîâ:

F =

∫
dx3(ρE +

1

c
jxB) (471)

ïðèâåëè ê ïðåäñòàâëåíèþ î ñâåòå êàê îá
ýëåêòðîìàãíèòíîé âîëíå, ê îïèñàíèþ èçëó÷åíèÿ
äâèæóùèõñÿ çàðÿäîâ è âîçäåéñòâèÿ èçëó÷åíèÿ íà
çàðÿæåííûå òåëà.
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Neytrino light theory

For a systematic study of neutrino-photon interaction it is
useful to work with e�ective Lagrangians. The simplest
example of the E�ective Lagrangian is the four-fermion
interactions of neutrinos ν with electrons e. For fermions
with momenta much smaller than intermediate bosons
mass one can integrate degrees of freedom associated with
W and Z and write the E�ective Lagrangian only for
fermionic degrees of freedom:

L = g ν̄γανēΓαe, g = GF/
√
2,

Γα = gVγα + gAγαγ5, gV = 3/2− 2 sin2 θW , gA = 3/2(472)
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SM as YM in six dreams

Despite its success, the Standard Model (SM) still leaves us
with some unanswered questions. One example is the
well-stablished muon g-2 anomaly from Brookhaven E821
[1], which has been recently con�rmed by E989 [2].
Another one is the latest measurement of the W boson
mass at Tevatron CDFII [3], which deviates with high
signi�cance from the SM prediction [4].
On top of this, we have puzzling questions regarding Dark
Matter(DM). Although we have a large amount of indirect
evidence for DM, such as galaxy rotation curves and the
CMB, we still don't understand its nature neither its origin.
The Weinberg-Salam model can be interpreted as a solution
of a pure YangMills theory in six dimensions. rom potencial

V (ρ) = −m2ρ +
3

2
ρ2, ρ = φ+φ (473)

we �nd, ρc = m2/3. For composed �eld we have

V (ρ + χ)− V (ρ) = 3/2χ2, V (ρc) = −m2/6 (474)
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Quantum groups and algebras

R�matrix satisfying the Hecke relation,

R2 + λR − 1 = 0, λ = q−1 − q,⇓

q2 + λq − 1 = 0⇒ q =
−λ±

√
λ2 + 4

2
(475)

When λ = 1, the positive root is

q =

√
5− 1

2
= 0.6180 (476)

is the golden raitio.
The Fibonacci numbers may be de�ned by the recurrence
relation

Fn+1 = Fn + Fn−1 ⇒ xn+1 = 1 + 1/xn,

xn = Fn/Fn−1 → x =

√
5− 1

2
= 0.6180 (477)Makhaldiani N.V. (mnv) 28 November 405 / 405
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