JUNO Neutrino Mass Ordering Sensitivity with Subdetectors

Jiangmen Underground Neutrino Observatory (JUNO)

JUNO is multi-purpose liquid scintillator detector under constraction in China [1]:

- Target mass of 20 kt of Liquid Scintillator (LS)
- Diameter of 35 m
- Energy resolution <3%/E(MeV)</p>
- Energy scale uncertainty <1%</p>
- Baseline optimized for Neutrino Mass Ordering (NMO) determination
- ► 3σ sensitivity to NMO with ~6 yrs. × 26.6 GW_{th} exposure using reactor \bar{v}_e

Motivation

- 1. Sensitivity to NMO depends on the Fiducial Volume (FV) cut
- 2. Bigger cut leads to more statistics, but worse energy resolution and higher accidental background
- **3.** Instead of choosing a specific FV, the entire detector volume may be divided into a few virtual subdetectors

Requirements

To perform subdetector analysis one needs:

- Fractions of Inverse Beta Decay (IBD) and backgrounds events in every subdetector and their correlations
- Energy scale for the subdetectors. By now all subdetectors use the same energy resolution and liquid scintillator non-linearity curve (LSNL)

Subdetector edges choice

1. $R \in [0 \text{ m}, 15 \text{ m}]$: lowest number of accidental events, the best energy resolution, 66.3% of FV [2]

2. $R \in [15 \text{ m}, 16.2 \text{ m}]$: low number of accidental events, slightly worse energy resolution, 17.2% of FV

3. $R \in [16.2 \text{ m}, 17.2 \text{ m}]$: biggest number of accidental events, worst energy resolution, 16.5% of FV

JUNO spatial resolution

of about 15 cm leads to

subdetector events (i.e.

interchange between

correlations between

subdetectors)

Fractions of events

	Event type	Rate [/day]
	Reactor \bar{v}_e	47
	Geo-v's	1.2
	Fast- <i>n</i>	0.1
	⁹ Li/ ⁸ He	0.8
	$^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{O}$	0.05
	Accidentals	0.8
	Non-Uniform	

LSNL

LSNL curve shows dependence of the amount of scintillation light on the energy deposited [3]:

 $f_{\rm LSNL} = E_{\rm vis}/E_{\rm dep},$

where E_{dep} is the e^+ deposited energy, E_{vis} is the expected visible energy

Energy resolution

Relative energy resolution can be parameterized as:

$$\frac{\sigma}{E_{\rm vis}} = \sqrt{(a/\sqrt{E_{\rm vis}})^2 + b^2 + (c/E_{\rm vis})^2},$$

where a – statistical term, b – depends on detector uniformity, and c – represents dark noise

Two sets of event fractions and their correlations were obtained:

- 1. For uniform events
- 2. For accidental background
- Uncertainties of fractions are within $10^{-3} 10^{-4}$

Current results and future plans

Subdetector NMO sensitivity analysis was performed:

- $\sim 0.53\%$ sensitivity increase for Normal Ordering case
- $\sim 0.60\%$ sensitivity increase for Inverted Ordering case

Next step:

Estimate both LSNL and energy resolution for every subdetector that may lead to better results

References

- [1] Angel Abusleme et al. "JUNO physics and detector". In: *Prog. Part. Nucl. Phys.* 123 (2022), p. 103927. DOI: 10.1016/j.ppnp.2021.103927. arXiv: 2104.02565 [hep-ex].
- [2] Arsenii Gavrikov, Yury Malyshkin, and Fedor Ratnikov. "Energy reconstruction for large liquid scintillator detectors with machine learning techniques: aggregated features approach". In: *Eur. Phys. J. C* 82.11 (2022), p. 1021. DOI: 10.1140/epjc/s10052-022-11004-6. arXiv: 2206.09040 [physics.ins-det].
- [3] Angel Abusleme et al. "Calibration Strategy of the JUNO Experiment". In: JHEP 03 (2021), p. 004. DOI: 10.1007/JHEP03(2021)004. arXiv: 2011.06405 [physics.ins-det].

Dmitry Dolzhikov

ddolzhikov@jinr.ru

Joint Institute for Nuclear Research, DLNP

