

SPD Technical Design Report

A. Guskov, <u>avg@jinr.int</u>

23.1.2023

- SPD CDR was presented at PAC in Jan 2021 and approved by PAC in Jan, 2022

Important remarks:

Cost estimate is based on the cost of materials and equipment as well as the currency exchange rates at the beginning of Feb. 2022.

The technical solutions used in the Project are based on the availability of materials and equipment at the beginning of Feb. 2022.

The detectors of the Phase-II are developed on the level of well-advanced concept and we still keep some different options for them.

SPD Technical Design Report

Superconducting magnet

Range system

Goals:

- Muon identification
- Rough hadron calorimetry
- Yoke of the magnetic system

Requirements:

• should have at least $4\lambda_I$

Electromagnetic calorimeter

Time-of-Flight system and Aerogel counters

Wavelength shifter

MRPC-based TOF

- π/K separation up to ~ 1.5 GeV
- K/p separation
- t₀ determination

Requirements:

• *Time resolution <60 ps*

Aerogel counter in End-Caps

Straw Tracker

Goals:

- Track reconstruction and momentum measurement
- Participation in PID via dE/dx measurement

Requirements:

- Spatial resolution $\sim 150 \ \mu m$
- Low material budget
- Operation in magnetic field of about 1 T

2360

Barrel

9

Silicon Vertex Detector

MAPS option: 4 layers

Goals:

- Reconstruction of secondary vertices for D-mesons decay
- Participation in track reconstruction and momentum measurement

Requirements:

- Spatial resolution <100 μm
- Low material budget
- Has to be installed as close as possible to the IP

DSSD option: 3 layers

Carbon supports

$D0 \rightarrow \pi^+ + K^-$: secondary vertex x-resolution

Micromegas-based Central Tracker

Beam-Beam Counters

Plastic scintillator-based outer part

Goals:

- Local polarimetry
- Luminosity control
- Timing

Requirements:

- Operation close to the beam pipe (inner part)
- Time resolution ~1 ns (inner) and ~400 ps (outer part)

MCP-based inner part

Zero Degree Calorimeters

Goals:

- Luminosity monitor
- n/y detection

Requirements:

- $13X_0$ for EM-part and $2.9\lambda_I$ for hadron part
- Energy resolution $50 \% / \sqrt{E} \oplus 30 \%$ for hadrons and $20 \% / \sqrt{E} \oplus 9 \%$ for γ
- Time resolution $\sim 150 \text{ ps}$

Detector assembly

Readout chain

Cost estimate

Subsystem	Option	Stage	Cost, M\$
SPD setup	Vertex detector:		
	– DSSD	п	7.3
	– MAPS	п	13.5
	Micromegas Central Tracker	I	0.9
	Straw tracker	I+II	3.0
	PID system:		
	– TOF	п	2.0
	 Aerogel PID system 	п	2.4
	ECal		
	– mock-up	I	0.4
	-	I+II	9.4
	Range system	I+II	16.1
	ZDC	I+II	0.6
	BBC (inner+outer)	I+II	0.6
	Magnetic system		
	Novosibirsk option	I+II	8.3
	JINR option	I+II	7.3
	& cryogenic infrastructure		
	Novosibirsk option	I+II	6.4
	JINR option	I+II	6.1
	Beam pipe		
	– A1	I	0.1
	– Be	п	0.4
General infrastructure			
		I	1.2
		I+II	1.7
Detector Control System			
•		I	1.0
		I+II	1.8
Data Acquisition System			
		I	0.8
		I+II	1.3
Computing			
		I	5
		I+II	15*
TOTAL COST	stage I		44.4
	stage I+II		83.4
	U U		

Possible working plan

	2022	2023	2024	2025	2026	2027	2028	
	SPD Technical Design Report							
		Magnet						
Technical project								
Production								
Commissioning at JINR								
	1-stage detectors*							
R&D								
Production								
Commissioning								
Installation							Operation	
	2-stage detectors**							
R&D								
Production								
	Data taking							
	Development of NICA polarized infrastructure							

* - Micromegas, Straw, Range System, BBC, ZDC ** - ECAL, ToF(?), Silicon Vertex, Aerogel

SUMMARY

• We have presented the first version of the Technical Design of the Spin Physics Detector at NICA, a sophisticated experimental apparatus for the study of the spin structure of the proton and deuteron, as well as fundamental properties of the strong interaction.

- We propose to implement the project in two stages. **The first stage** of the SPD experiment will be devoted to the study of polarized and non-polarized phenomena at low energies and reduced luminosity. It implies construction of a minimum setup configuration. The main part of the SPD physics program of the experiment, the study of the polarized gluon content in proton and deuteron, is planned to be implemented during **the second stage** with the full setup.
- We estimated the cost of the fist stage and the full setup as 44.4 and 83.4 M\$, respectively. Cost estimate is based on the cost of materials and equipment as well as the currency exchange rates at the beginning of Feb. 2022.

BACKUP

• •

BRIEF HISTORY OF THE SPD PROJECT

General sketch of the detector

Infrastructure

Radiation environment

Main parameters of the SPD setup

	Stage I	Stage II
Maximum luminosity, 10^{32} cm ⁻² s ⁻²	up to 0.1	1
Interaction rate, MHz	up to 0.4	4
Magnetic field at IP, T	up to 1.0	1.0
Track momentum resolution $\frac{\delta p}{p}$ at 1 GeV/c, %	~1.7	~ 1.0
Photon energy resolution, %		$5/\sqrt{E}\oplus 1$
$D^0 \rightarrow K\pi$ vertex spatial resolution, μ m	440	60 for MAPS
		80 for DSSD
PID capabilities	dE/dx, RS	dE/dx, ECal, RS, TOF, Aerogel
Number of channels, 10^3	189	for MAPS)
	207	303 for DSSD
Raw data flow, GB/s	up to 1	20
Total weight, t	1236*	1240
Power consumption, kW	77	113 for MAPS
		90 for DSSD

*ECal mock-up of similar weight will be used for the first stage

Main parameters of the SPD subsystems

Subsystem	Stage	Main task	Active element	Weight, t	Power,	Channels,
					kW	10^{3}
Range System (RS)	I+II	μ-ID	mini drift tubes	927	47	130.2
			Ar:CO ₂ 70 : 30			
Electromagnetic	Π	γ detection	Pb/scintshashlyk	68	8	23
Calorimeter (ECal)						
Time-of-Flight	П	PID	RPC chambers	4	4	8.8
system (TOF)			$C_2H_2F_4:C_4H_{10}:SF_6$			
			90:5:5			
Aerogel	II	PID	aerogel	0.1	0.5	0.3
Straw Tracker (ST)	I+II	tracking, PID	straw tubes	0.2	4	30.5
			Ar:CO ₂ 70:30			
Silicon Vertex						
Detector (SVD)						
– MAPS	II	vertex, tracking	Si pixels	< 0.1	22	12
– DSSD	Π	vertex, tracking	Si strips	< 0.1	2	107.5
Micromegas-based	Ι	tracking	gas chambers	< 0.1	1	25.6
Central Tracker (MCT)			$Ar:C_4H_{10},$			
			90:10			
Beam-Beam						
Counter (BBC)						
– inner	I+II	polarimetry	MCP	≪0.1	≪1	0.1
– outer	I+II	polarimetry,	scint.	0.1	0.5	0.3
		timing				
Zero Degree	I+II	n,Y	W/scint.	0.3	2	2
Calorimeter (ZDC)		detection				
Magnet	I+II			20	23	
Support	I+II			80.3		
and transportation						
system						
Top platform (loaded)	I+II			40		
Side platform (loaded)	I+II			100		