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Application of Machine Learning at MPD — first look
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At present, the accelerator complex NICA is being built at JINR (Dubna). It is intended for performing

experiments to study interactions of relativistic nuclei and polarized particles (protons and deuterons)

One of the experimental facilities MPD (MultiPurpose Detector) was designed to investigate nucleus- +
nucleus, proton-nucleus and proton-proton interactions.

Duwring the preparation of the physics research program, the production of a large volume of simulated

data is required, including high-multiplicity events of heavy-ion interactions with high energy.

Realistic modelling of the detector response for such events can be significantly accelerated with a use

.
of generative models.
A selection of rare physics processes traditionally uses machine learning based approaches. u 1

For the high luminosity accelerator operation for the proton-proton interaction research program it will

be necessary to develop high-level trigger algorithms and methods, based on machine learning

technigques. o . . . o

During the data taking, the tasks of the fast and efficient processing and storage of large amounts of

experimental data will become more and more important, requiring invelvement of distributed Partlcle ldentlflcatlon
computing resources.

In this work these problems are considered in connection to the MPD/NICA experimental program

preparation.
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TPC fast digitizer
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Abstract  High energy physics experiments rely heavily
on the detailed detector simulation models in many tasks.
Running these detailed models typically requires a notable
amount of the computing time a ble to the experiments.
In this work, we demonstrate a new approach to speed up

the simulation of the Time Projection Chamber tracker of
the MPD experiment at the NICA accelerator complex. Our
method is based on a Generative Adversarial Network - a
deep learning technique allowing for implicit estimation of
the population distribution for a given set of objects. This
approach lets us learn and then sample from the distribution

of raw detector responses, conditioned on the parimelers of
the charged particle racks. Toevaluate the quality of the pro-
posed model, we integrate a prototype into the MPD software
stack and demonstrate that it produces high-quality events
similar o the detailed simulator, with a speed-up of at least an
order of magnitude. The prototype is trained on the responses
from the inner part of the detector and, once expanded to the
full del

ctor, should be ready for use in physics tasks.

1 Introduction

Computer simulations of high-energy physics experiments
play a crucial role in a variety of relevant tasks, including
detector geometry optimization [ 1,2], selecting best analysis
strategies [3.4], and testing the Standard Model (SM) pre-
dictions and searching for new phenomena beyond the SM
[5.6]. For a typical experimental data analysis, the number of
simulated events usually translates directly 1o the uncertainty
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of the final physics result. The amount of computational
resources spent on the simulations usually takes o notable
es of an experiment
and is comparable with that spent on the real data processing
[7.8]. Therefore, faster approaches o event generation and

fraction of the total computing capabil;

simulation are in great demand for the existing and future
high energy physics experiments.
The MPD detector is one of the two experiments at the

NICA accelerator complex — a new heavy ion accelerator
facility being constructed at the Joint Institute for Nuclear
Research and located in Dubna, Russia [9, 10]. The complex
is designed to study the properties of dense haryonic matter
For the racking, MPD utilizes a time projection chamber
(TPC) inthe central barrel [ 11]. TPC simulation is very CPU-
intensive [12], and hence a fust simulation approach for TPC
is highly desirable.

A typical approach to constructing models for fast sim-
ulation of particle physics detectors is to use a simplified
detector geometry and a simplified model of the interaction
of particles with matter [13]. This approach is justified for
subsystems witha flat se
ers, that measure the two-dimensional coordinate of a passing
stems with a large volume, such as calorime-
ed trackers, this approach makes it difficult
eve o reasonable compromise between racy und

¢ volume, such assilicon rack-

simulation speed.

Another fast simulation approachis an analytical parume-
terization of the detector responses, as can be seen in shower
shape parameterizations for calorimeters [ 14]. This approach
can significantly speed up the caloimeter simulation, but
it makes it difficult to achieve high quality simulated data.

A common solution for calonmeters is also to use the so-
called “frozen showers™ [13] when detailed simulated sys
tem responses are stored us a response library for subsequent

reuse,
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Generative Adversarial Networks for the fast
simulation of the Time Projection Chamber
responses at the MPD detector
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Abstract. The detailed detector simulation models are vital for the successful operation
of modern high-energy physics experiments. In most cases, such detailed models require a
significant amount of computing resources to run. Often this may not be afforded and less
resource-intensive approaches are desired. In this work, we demonstrate the applicability of
Generative Adversarial Networks (GAN) as the basis for such fast-simulation models for the
case of the Time Projection Chamber (TPC) at the MPD detector at the NICA accelerator
camplex. Our prototype GAN-based model of TPC works more than an order of magnitude
faster compared to the detailed simulation without any noticeable drop in the quality of the
high-level reconstruction characteristics for the generated data. Approaches with direct and
indirect quality metrics optimization are compared.

1. Introduction

Simulation of particle detectors is inevitable in the High Energy Physics (HEP) experiments.
For a typical HEP data analysis, the limited size of simulated data samples often contributes
directly to the uncertainty in the final result. Since the number of simulated events that one can
afford to produce is constrained by the computational efficiency of the simulation algorithms,
faster algorithms are always desired [I].

Computational efficiency of the detailed simulation is often limited by the fine granularity
of the phy simulation steps being performed. Therefore, a speed-up may be achieved by
aggregating a sequence of such steps with a single estimate of the probability distribution for the
last step output parameters, conditioned by the fi ep inputs. An important requirement for
such a probability distribution estimate is that it should allow for efficient sampling. Generative
Adversarial Networks (GANs) [2] are a good candidate for such a parametric estimate since they
only require a forward pass through a neural network to generate new samples. In this work, we
demonstrate an application of GANs for building a fast-simulation model of the Time Projection
Chamber (TPC) detector at the MPD experiment at the NICA accelerator complex [3].
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Abstract

Simulation of High Energy Physics experiments is widely used, necessary for
hoth detector and physies studies. Detailed Monte-Carlo simulation algorithms
are often limited due to the computational complexity of such methods, and
therefore faster approaches are desived. Generative Adversarial Networks (GANs)
are well suited for aggregating a number of detailed sinmlation steps into a sur-
rogate probability density estimator readily available for fast sampling. In this

work, we demonstrate the power of the GAN-based fast simulation model on the

use case of simulating the response for the Time Projection Chamber (TPC) in
the MPD experiment at the NICA accelerator complex. We show that our model

mula-

can generate high-fidelity TPC responses, while accelerating the TPC
tion by at least an order of magnitude. We describe alternative representation
approaches for this problem and also ontline the roadmap for the deployment
of our method into the software stack of the experiment.

Kegwords: fast simulation, time projection chamber, generative adversarial

network
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Future steps:
J  Add the 7th input track parameter;

J  Generate signals for 3 (2) neighbor padrows (to account for correlations)
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TPC cluster finder

Tasks: Two-track separation (for femtoscopy)
and cluster charge determination (for dE/dx
identification)

Fresh ideas are welcome (Machine Learning?) -
simple use case: selection of one-track
clusters (currently is based on the number of

local maxima in the cluster)
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Track reconstruction: Vector Finder toolkit for ITS
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Required some changes of the Kalman filter main engine.

Some additional modifications might be necessary for realistic clusters.
Contingent on TPC response simulation for large crossing angles.
Not clear if it is possible on a short time scale.
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Machine learning for particle identification
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current MPD solution
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O Input data: MPDROOT simulation of PHQMD min. bias BiBi collisions at 9.2 GeV
U TMVA method: Neural Networks with Multilayer Perceptrons (MLP)
Q' Track classification variables: Q, momentum, dE/dx, TOF, N of hits, pseudorapidity and DCA

Q' Currently, muons and pions are considered as a same classification case

Plans: find out the reason of low-momentum miss-classification; separate muon and pion sclassification cases; choose
optimal set of variables for classification (include azimuthal angle)
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Open charm reconstruction and selection 1n I'TS

WP1 - Simulations

MPD - ITS

(1/N) dN/ dx

D* and D9 reconstruction using KF

TC: dca(n), dca[K), dca(nK]), A[D), 6(D) cuts

M(rnK): signal+background(100M)
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Using the topological cuts allows to reconstruct D° and D+
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reconstruct D° and D+ with an efficiency of 0.85% and 1.0% respectively.
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A. I. Zinchenko, S. N. Igolkin, V. P. Kondratiev & Yu. A. Murin" NICA-MPD Vertex Tracking Detector Identification Capability for Reconstructing Strange and Charmed Particle Decays'.
Physics of Particles and Nuclei Letters , volume 17, pages 856—-870 (2020)

Vl1I-th Collaboration Meeting of the MPD Experiment at the NICA Facility - 2021.04.22 | Cesar Ceballos Sanchez

decays with an efficiency of 0.8% and 0.5% respectively. Using the optimal BDT cut allows to
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TMVA package: network performance

TMVA overtraining check for classi
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U There are several areas at MPD where machine learning approaches can be applied;
4 They can help to improve some results and / or optimize some reconstruction and
analysis procedures;

' The task of training of ML models for real data is an issue to keep in mind.
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