Diagnostics of socially significant diseases using affine track-etched membranes modified with DNA aptamers

Zavyalova Elena

D.Sc. in Chemistry, Associate professor at Chemistry Department

of Lomonosov Moscow State University

Email: zlenka2006@gmail.com

Current approaches for specific diagnostics of socially significant diseases

Determination of the genetic component of the disease

Examples:

Cancer typing (sequencing) Prognosis of cancer (sequencing)

Virus identification (PCR) Bacterium identification (PCR) Antibiotic resistance (PCR)

Reading of nucleotide sequences

Detection of the concrete fragment of nucleic acid

Current approaches for specific diagnostics of socially significant diseases

Determination of the biomarker of the disease

Examples:

Cancer detection (ELISA) Immune system status (ELISA) Cardiac disorders (ELISA) Allergen determination (ELISA)

Virus identification (LFIA) Pregnancy detection (LFIA) etc.

LFIA (test-strips)

Demands in specific diagnostics of socially significant diseases

- Price reduction is necessary to increase the quantity of analyses per person including screening studies. Price reduction includes usage of cheap reagents and equipment
- The decrease of limit of detection can be achieved by development of concentrating techniques from biological fluids and replacement of antibodies an enzymes

Nucleic acid aptamers can replace antibodies

Thrombin (protein from blood clotting system)

- The aptamer are short synthetic fragments of nucleic acids. The size of several nanometers (2-6 nm) provides near-surface applications like SERS (surface-enhanced Raman spectroscopy), EGOFET (electrolytegateв organic field-effect transistors, etc.
- Depending on the task, aptamers can be designed to recognize only one biomarker or a family of related biomarkers
- Aptamers are synthesized chemically and can be accessorized with any functional group, e.g. fluorophore, thiol-anchor, biotin etc.

DNA aptamers are structured DNA fragments with specificity and affinity to a target

Examples of wide specificity: aptamers recognize highly variable hemagglutinin from different influenza strains

Hemagglutinins have conserved spatial structure but low conserved amino acid sequence (37-73% between influenza A strains and below 30% between influenza A and B)

	Influenza			
All and a second	subtype	Viral strain	RHA0385 K _D , nM	BV42 K _D , nM
	HI (IVA)	Puerto-Rico/8/1934 (H1N1)	13 ± 2	+
		New Caledonia/20/1999 (H1N1) 42 ± 14		+
	H3 (IVA)	Aichi/2/1968 (H3N2)	17 ± 5	+
		England/42/1972 (H3N2)	42/1972 (H3N2) 40 ± 5	
	H5 (IVA)	Vietnam/1203/2004(H5N1)-PR8/CDC-R	34 ± 8	40 ± 10
		tern/South Africa/1/1961 (H5N3)	200 ± 50	
	H7 (IVA)	mallard/Sweden/91/2002 (H7N9)	13± 4	I.6 ± 0.2
	H9 (IVA)	Primorie/3631/2002 (H9N2)	16 ± 3	
	HI2 (IVA)	duck/Primorie/3691/2002 (H12N2)	> 200	> 200
v	IVB	Victoria/2/1987	> 200	0.60 ± 0.05
	-	Newcastle disease virus	> 200	> 200

Examples of selectivity of aptamers toward different forms of the same protein: aptamer discriminates glycosylation state of RBD from S-protein from SARS-CoV-2

K_D decreased 7.3-times due to slow dissociation of unglycosylated RBD

Applications of aptamers for virus detection I. SERS-based island aptasensor for influenza A virus

LOD for H3N2: 5 10⁴ viral particles/mL

Strain	Subtype	Strain	Subtype
New Caledonia/20/1999	HINI	duck/Moscow/4182/2010	H5N3
A/England/42/1972	H3N2	A/South Africa/1/1961	H5N3
A/Mississippi/1/1985	H3N2	A/Primorie/3/1982	H9N2
A/Aichi/2/1968	H3N2	A/Primorie/3691/2002	HI2N2
A/Buryatia/652/1988	H3N8	Newcastle disease virus	-
A/Buryatia/2408/2001	H4N6		-
Vietnam/1203/2004-	H5NI	Influenza B:Victoria/2/1987	
PR8/CDC-R			

Applications of aptamers for virus detection II. SERS-based nanocolumn aptasensor for SARS-CoV-2 virus

0

Applications of aptamers for virus detection III. EGOFET-based aptasensor for influenza A virus

Electrolyte-Gated Organic Field-Effect Transistors

The limit of detection can be decreased due to the membrane filtration (concentrating + purification)

Track-etched membrane with nanoisland silver coating

Surface-enhanced fluorescence on the aptamerfunctionalized membrane

LOD for H7NI: 10 viral particles/mL

Promising directions for aptamer-functionalize membranes

Capturing analytes by the aptamermodified pores and measurement of the electric characteristics

Capturing cancer cells from blood samples for further identification

Circulating tumor cells (CTC) in contemporary specific diagnostics of cancer

5

The approaches for cell capturing

10.1021/acs.analchem.8b05432

10.1080/15384047.2016.1141839

THANKS TO MY COLLABORATORS

• Membranes:

Dr. Apel P. and Nechaev A. from Joint Institute for Nuclear Research

• SERS:

Dr. Kukushkin V. from Institute of Solid State Physics

• Viruses:

Prof. Gambaryan A. from Chumakov Institute of poliomyelitis and encephalitis Dr. Tkachuk A. from Gamaleya National Research Center for Epidemiology and Microbiology

• EGOFET:

Prof. Ponomarenko S., Dr. Agina E. and Dr. Poimanova E. from Enikolopov Institute of Synthetic Polymeric Materials

 Financial Support: RSF grant #18-74-10019

OUR SELECTED PUBLICATIONS

• Aptamers:

F. Grabovenko *et al.* Glycosylation of receptor binding domain of SARS-CoV-2 S-protein influences on binding to immobilized DNA aptamers. **Int. J. Mol. Sci. 2022**, 23, 1, 557.

A. Bizyaeva *et al.* The functional role of loops and flanking sequences of G-quadruplex aptamer to the hemagglutinin of influenza A virus. Int. J. Mol. Sci. 2021, 22, 5, 2409.

A. Novoseltseva *et al.* Structural and functional aspects of G-quadruplex aptamers which bind a broad range of influenza a viruses. **Biomolecules 2020**, 10, 1, 119.

SERS:

Kukushkin *et al.* Aptamer-coated track-etched membranes with a nanostructured silver layer for single virus detection in biological fluids. **Front. Bioeng. Biotech. 2023**, 10.

Kukushkin *et al.* Lithographic SERS aptasensor for ultrasensitive detection of SARS-CoV-2 in biological fluids. **Nanomaterials 2022**, 12, 21, 3854. Zhdanov *et al.* A combination of membrane filtration and Raman-active DNA ligand greatly enhances sensitivity of SERS-based aptasensors for influenza A virus. **Front. Chem. 2022**, 10, 937180.

V. Kukushkin et al. Highly sensitive detection of influenza virus with SERS aptasensor. PLoS ONE 2019, 14, 4, e0216247.

D. Gribanyov et al. SERS-based colloidal aptasensors for quantitative determination of influenza virus. Int. J. Mol. Sci. 2021, 22, 4, 1842.

EGOFET:

E. Poimanova *et al.* Biorecognition Layer Based On Biotin-Containing [1]Benzothieno[3,2-b][1]benzothiophene Derivative for Biosensing by Electrolyte-Gated Organic Field-Effect Transistors. **ACS Appl. Mater. Interfaces 2022**, 14, 14, 16462–16476.