

TRANSPORT MODELS AND STRANGENESS PRODUCTION

Marcus Bleicher (and Jan Steinheimer) Frankfurt Institute for Advanced Studies Institut für Theoretische Physik Goethe Universität Frankfurt Germany

FIAS Frankfurt Institute for Advanced Studies

Elliptic flow in p+Pb

Werner, Bleicher, Pierog, Karpenko, Phys.Rev.Lett. 112 (2014) 23, 232301

FIAS Frankfurt Institute for Advanced Studies

 pHSD: Resonances from the QGP at RHIC

Resonances from the QGP

Illner, Cabrera, Bratkovskaya, EPJ Web Conf. 97 (2015) 00016

FIAS Frankfurt Institute for Advanced Studies

- pHSD: Resonances from the QGP at RHIC
- UrQMD: Hypermatter

Hypermatter production

Botvina, Bratkovskaya, Steinheimer, Bleicher, Pochodzalla, Phys.Lett. B742 (2015) 7-14

FIAS Frankfurt Institute

- pHSD: Resonances from the QGP at RHIC
- UrQMD: Hypermatter
- Hydro+JAM: Strangeness production at RHIC
- \rightarrow Hybrid models

Multi-strange particles at RHIC

Takeuchi, Murase, Hirano, Huovinen, Nara, arXiv:1505.05961

Multi-strange hadrons

Pro's

- Infer matter properties/ potentials/equilibration times
- Provides hints for novel processes (ropes?)

FIAS Frankfurt Institute for Advanced Studies

- Explore subthreshold multi-step processes
- Explore canonical effects

Con's

- Experimentally not well explored
- Difficult to measure (dileptons, multi-particle correlation)
- Theoretically not well understood

J.Randrup and C.M.Ko, Nucl. Phys. A 343, 519 (1980), P.Koch, B.Müller and J.Rafelski, Phys. Rept. 142, 167 (1986), W.Cassing, E.L.Bratkovskaya, U.Mosel, S.Teis and A.Sibirtsev, Nucl. Phys. A 614, 415 (1997), S.Bass, M. Belkacem, M.Bleicher, et al, Phys. Rev. Lett. 81 (1998) 4092, C.Hartnack, H.Oeschler, Y.Leifels, E.L.Bratkovskaya and J.Aichelin, Phys. Rept. 510, 119(2012) and many more

Multi-strange particle production: "Old" problem in transport simulations

yields from	Ni + Ni (1.93 GeV)	Ru + Ru (1.69 GeV)
B + B	$3.5\cdot10^{-4}$	$3.1 \cdot 10^{-4}$
$\pi + B$	$2.9\cdot 10^{-4}$	$3.2\cdot10^{-4}$
$\rho + B$	$8.9\cdot10^{-4}$	$11.8 \cdot 10^{-4}$
$\pi + \rho$	$1.6\cdot 10^{-4}$	$1.5\cdot10^{-4}$
$\pi + N(1520)$	$0.5\cdot 10^{-4}$	$0.6\cdot10^{-4}$
total yield	$1.7 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$
experiment [1]	$(8.7 \pm 3.6) \cdot 10^{-3}$	$(6.4 \pm 2.5) \cdot 10^{-3}$

H. Sorge, Phys.Rev.

C52 (1995) 3291-3314

H. Barz, M. Zetenyi, G. Wolf, B. Kämpfer, Nucl. Phys. A705 (2002) 223 Data: FOPI

Motivation

FIAS Frankfurt Institute

for Advanced Studies

 HADES reported unusually high yield of Ξ-baryons (Ξ/Λ=5.6 10⁻³)

HADES, Phys.Rev.Lett. 103 (2009) 132301

HADES, Phys.Rev. C80 (2009) 025209

 HADES reported unusually large contribution from φ to K⁻ yield (18%)

Recent HADES measurements near and below threshold

 ϕ production

- Threshold for p+p→p+p+¢ ≈ 2.895 GeV
- Measured in Ar+KCI and Au+Au

M. Lorenz [HADES Collaboration], Nucl. Phys. A 931, 785 (2014).

Recent HADES measurements near and below threshold

 Ξ production

- Threshold for p+p→p+p+\$\overline\$ 2.895 GeV
- Measured in Ar+KCl and Au+Au
- Threshold for p+p→N+Ξ+K+K≈3.24GeV
- Measured in p+Nb and Au+Au

HADES data on Ξ production

G.Agakishiev et al. [HADES Collaboration], Phys. Rev. Lett. 103, 132301 (2009)

Recent HADES measurements near and below threshold

 $\Xi, \varphi \text{ production}$

- Threshold for p+p→p+p+φ ≈ 2.895 GeV
- Measured in Ar+KCl and Au+Au
- Threshold for p+p→N+Ξ+K+K≈3.24GeV
- Measured in p+Nb and Au+Au
- Both particles are not well described by models

HADES data on Ξ production

G.Agakishiev et al. [HADES Collaboration], arXiv:1501.03894

Subthreshold production: Two paradigms

Multi-step processes

FIAS Frankfurt Institute

or Advanced Studies

- Increase the available energy above threshold by creation of heavy resonances
- NN→NN*, N*N*→NN**,
 a) N**N**→ string→X
 b) N**→Nφ
 c) N**→ΞKK

In-medium modifications

 Decrease the needed energy by in-medium modifications

Particle production goes via

• Resonance excitation: $N+N \rightarrow X$ $N+M \rightarrow X$ $M+M \rightarrow X$

FIAS Frankfurt Institute for Advanced Studies

Relevant channels at HADES

 $NN \rightarrow N\Delta_{1232}$ $NN \rightarrow NN^{*}$ $NN \rightarrow N\Delta^{*}$ $NN \rightarrow \Delta_{1232}\Delta_{1232}$ $NN \rightarrow N^{*}\Delta_{1232}$ $NN \rightarrow \Delta^{*}\Delta_{1232}$ $NN \rightarrow R^{*}R^{*}$

Strangeness production in UrQMD

Particle production goes via

- Resonance excitation:
 N+N → X
 N+M → X
 M+M → X
- Annihilation: B+anti-B \rightarrow X

Relevant channels at HADES

Not relevant at this energy

Strangeness production in UrQMD

Particle production goes via

- Resonance excitation: $N+N \rightarrow X$ $N+M \rightarrow X$ $M+M \rightarrow X$
- Annihilation: B+anti-B \rightarrow X
- String excitation
 N+N → X (s^{1/2}>3.5 GeV)
 N+M → X (s^{1/2}>2.2 GeV)
 M+M → X (s^{1/2}>2.2 GeV)

Relevant channels at HADES

Could be relevant

How does it work?

FIAS Frankfurt Institute

- Fermi momenta can lift the collision energy above threshold
- Secondary interactions accumulate energy
- Ar+KCI at E_{lab}=1.76 AGeV Is there enough energy for φ and Ξ production?

Resonance mass distribution

Yes! But for Ξ , only in the tails.

→ Introduce branching ratio for decay into N ϕ

Introduce a branching ratio to φ for heavy N* states

In UrQMD these are the states: N* (1990), N*(2080), N*(2190), N*(2220), N*(2250)

Assumption: Branching ratio to ϕ is equal for all resonances (typical branching ratio into ω is 5-20%)

Fixing the branching ratio

- ϕ production yields from ANKE can be consistently described with $\Gamma^{N^* \rightarrow N\phi}/\Gamma^{\text{total}} = 0.2\%$
- Branching ratio is consistent with extracted OZI suppression (ω/φ)

Y. Maeda et al. [ANKE Collaboration], Phys. Rev. C 77, 015204 (2008)

opposition in nuclear collisions

Conclusions for $\boldsymbol{\varphi}$

- Qualitative behaviour nicely reproduced
- Peak predicted at E_{lab}=1.25 AGeV

FIAS Frankfurt Institute

or Advanced St

- Underestimation at higher energies, due to string fragmentation
- Preliminary HADES data is still higher...

When applied to nuclear collisions

J. Steinheimer, M. Bleicher, arXiv:1503.07305

Model performance

FIAS Frankfurt Institute

or Advanced Studies

- The cross section for smaller targets is better reproduced.
- Very good description of the shape of the momentum dependent cross section
- Slightly too much absorption in nuclear matter, without any in-medium modification of the phi.

UrQMD vs ANKE data: Differential cross section

Beam energy is 2.83 GeV, results are in ANKE acceptance

Model 1: The eikonal approximation of the Valencia group.

Model 2: Paryev developed the spectral function approach for φ production in both the primary proton- nucleon and secondary pionnucleon channels.

Model 3: BUU transport calculation of the Rossendorf group. Accounts for baryonbaryon and mesonbaryon φ production processes.

FIAS Frankfurt Institute

Model performance

- Slightly too much absorption in nuclear matter, without any in-medium modification of the φ.
- Not 'absorption' of the φ, but of the mother resonance
- Reactions of the type N*+N→N'*+N'* N*+N→N'*+N where the mass of N'* is smaller than of N* so that no φ can be produced.

UrQMD vs ANKE data: Transparency ratios

Beam energy is 2.83 GeV, results are in ANKE acceptance

Subthreshold Ξ production

• Can we employ the same idea to describe the Ξ data at HADES?

- First fix the 'standard' channels for X production
 → Hyperon-hyperon reactions
- Then use p+Nb data to fix branching ratio for N*→Ξ+K+K

Hyperon-hyperon interactions

Cross sections

Strong contribution to X yield

Results from Li and Ko

C.H. Li, C.M. Ko, Nucl.Phys. A712 (2002) 110-130 F. Li, L.W. Chen, C.M. Ko, S.H. Lee, Phys.Rev. C85 (2012) 064902

UrQMD results

FIAS Frankfurt Institute

for Advanced Studie

Effect of $YY \rightarrow \Xi + N$ channel

Nearly a factor 100 improvement for Ξ/Λ and Ξ/π , but not good enough!

Tests

Results differ from Li and Ko, due to test-particles and delayed Λ production due to resonance life times

Fixing the $N^* \rightarrow \Xi + K + K$ branching ratio

Use HADES p+Nb data at 3.5 GeV

FIAS Frankfurt Institute for Advanced Studies

- Branching ratio needed in the tails of the heavy resonances!
- Ξ production in p+Nb can be consistently described with an integrated branching ratio Γ^{N*→ΞKK}/Γ^{total} < 1%

(i.e 10% where kinematically allowed)

Comparison to the HADES yields

Ξ production below threshold

Conclusions

FIAS Frankfurt Institute

or Advanced Sti

- Ξ yield nicely reproduced in Ar+KCI
- Results consistent with p+Nb data
- All other strange particles are also in line with data

Data vs. model

Steinheimer, Bleicher, arXiv:1503.07305

Predictions for Au+Au

Au+Au at 1.23 AGeV

FIAS Frankfurt Institute

for Advanced Studies

Not much change in the Ξ/Λ ratio Data suggests even higher ϕ/K ratio!

Ar+KCI at 1.76 AGeV

Steinheimer, Bleicher, arXiv:1503.07305

FIAS Frankfurt Institute for Advanced Studies

Summary

- We introduced a new mechanism for φ and Ξ production (resonance decay)
- This allows to describe the φ and Ξ production in elementary and nuclear collisions
- The used branching ratios are small and consistent with OZI