

PHENIX: Strangeness production

Dmitry Kotov for PHENIX collaboration (NRC KI PNPI & SPbPU, Russia)

Outline

- Motivation
- ✤ Overview of RHIC and PHENIX detector
- Strangeness production in p+p, d+Au, Cu+Cu, Au+Au at 200 GeV:
 - ✓ Spectra, nuclear modification factors, particle ratios
 ✓ Discussion on recombination and radial flow
- Energy scan, strangeness production at 62.4 GeV
- Summary

Motivation

- Strongly coupled quark gluon plasma (QGP) was discovered in heavy ion collisions at Relativistic Heavy Ion Collider (RHIC):
 - ✓ Unlike u and d quarks, strange quarks are not present in colliding nuclei and are formed in collisions between constituents of the QGP.
- Measurements of particles that contain strange quarks is an effective way to compare with hadrons that contain only light quarks:
 - ✓ Study the properties of the hot and dense matter formed in heavy ion collisions.
- Particles with strangeness content cover a wide range of masses and include mesons and baryons:
 - ✓ Perfect tool to study such features of hadron production as recombination and radial flow at intermediate p_T and energy loss flavor dependence at high p_T .

RHIC at Brookhaven National Lab

and the second to see the second seco	System	√s _{NN} , GeV	
	p+p	22.4, 62.4, 200, 500, 510	
PH ENIX RHIC	p+Al	200	
EBIS	p+Au	200	
Booster AtR	d+Au	200	
AGS	He ³ +Au	200	
Contart	Cu+Cu	22, 62, 200	
	Cu+Au	200	
	Au+Au	7, 15, 9, 19, 39, 62, 130, 200	
Tandem	U+U	193	

- RHIC is a flexible and reliable accelerator complex with an extensive experimental program;
- A lot of operational time is devoted to beam energy scan and switching between colliding nuclei;
- Beam luminosity is being permanently increased;
- During 15 Runs, RHIC provided 11 energies and 9 combination of nuclei. 4

PHENIX detector

1. Track reconstruction

Drift Chambers (DC): $\delta p/p = 0.7\% + 1.1\% \cdot p$

Pad Chambers (PC): $\sigma = \pm 1.7$ mm in z direction

<u>2. Energy and coordinates of electrons and \gamma</u>

- ✓ EMCal PbSc: $\delta E/E = 2.1\% + 8.1\%/\sqrt{E}$
- ✓ EMCal PbGl: $\delta E/E = 0.8\% + 5.9\%/\sqrt{E}$

3. Particle identification

Time of flight in both arms (TOF.E, TOF.W):

• $\sigma_{\tau} \sim 100 \text{ ps};$

✓ π/K up to 2.5 GeV/c, K/p up to 4.0 GeV/c

EMCal timing: $\sigma_{\tau} \sim 300 \text{ ps}$

Forward Arms:

- ✓ $1.2 < |\eta| < 2.2$
- ✓ Muon Tracker / Muon ID

5

Particles with s-quarks in this talk

Particle	Quark content	System	$\sqrt{s_{NN}}$, GeV	Decay modes	Branching ratio
K [±]	us	p+p, d+Au, Au+Au	62.4, 200		
K ⁰ _s	$\frac{(d\bar{s} - s\bar{d})}{\sqrt{2}}$	p+p, d+Au, Cu+Cu	200	$\pi^0 + \pi^0$	~30%
K*	$d\bar{s}$	p+p, d+Au, Cu+Cu	200	$K^{\pm}\!\!+\!\pi^{\pm}$	~67%
φ	ss	p+p, d+Au, Cu+Cu, Au+Au	62.4, 200	$K^+ + K^-$	~49%
Λ^0	uds	Au+Au	200		~64%

PHENIX experiment has measured different strange hadrons in p+p, d+Au, Cu+Cu and Au+Au collisions at 62.4 & 200 GeV:

- ✓ Invariant production spectra in wide p_T ranges using different analyses approaches
- $\checkmark\,$ Nuclear modification factors for 62.4 and 200 GeV

p+p @ 200 GeV: part 1

- ★ Invariant spectra of K_s, K^{*} & ϕ mesons are measured in a wide p_T range with hadronic decay modes (K_s→ $\pi^0\pi^0$, K^{*} → π K, ϕ →K⁺K⁻)
- These spectra are used as a baseline to compare with more complex and heavy colliding systems such as d+A and A+A
- Moreover these spectra are needed for event generators tuning, pQCD calculations checks and available parameterizations of fragmentation functions
- Different tunes of Pythia and Phojet are not able to fully describe measured spectra

p+p @ 200 GeV: part 2

- ♦ PHENIX measured $\phi \rightarrow \mu^+ \mu^-$ production in p+p @ 200 GeV at forward rapidity
- Event generators, pQCD calculations checks:
 - $\checkmark\,$ Different tunes of Pythia and Phojet are not able to fully describe measured spectra
- Spectra are used to study rapidity dependence of nuclear modification factors

Hard processes, R_{AA}

 \clubsuit Hard processes scale with N_{coll}

- ✓ Small cross section
- \checkmark Non-correlated superposition

Nuclear modification factors

$$R_{\rm AB}(p_T) = dN_{\rm AB}/(\langle N_{\rm coll} \rangle \times dN_{pp})$$

Particle spectra in d+A & A+A @ 200 GeV

Invariant differential production spectra in wide p_T ranges at different centralities using analyses approaches with confident overlap

d+Au @ 200 GeV: part 1

- d+Au collisions are used as a control experiment where QGP is not formed:
 - ✓ Study cold nuclear matter effects
- ♦ $R_{dAu} \sim 1$ in peripheral collisions:
 - Sequential non correlated nucleon interactions
- ♦ $R_{dAu} \neq 1$ in central collisions:
 - ✓ Non-zero enhancement at intermediate $p_T (2 < p_T (GeV/c) < 5)$
 - Significant difference in baryon and meson behavior
 - ✓ Hint of hadron suppression at high p_T > 6 - 8 GeV/c
- Behavior of strange mesons is the same as for other mesons

d+Au @ 200 GeV: part 2

arXiv:1506.08181

- Au-going direction: -2.2 < |y| < -1.2
 - ✓ Cronin-like enhancement
- d-going direction: 1.2 < |y| < 2.2
 - ✓ Suppression may suggest influence of shadowing
- Effect was also observed by PHOBOS in charged hadron density
- Enhancement (suppression) decreases gradually from central to peripheral collisions

- Rapidity
 dependence for
 φ and HF is
 similar:
 - ✓ Similar CNM effects?

Cu+Cu @ 200 GeV: part 1

* In peripheral Cu+Cu collisions the production of K_s^{0} and K^{*0} mesons follows the binary scaling

✤ R_{CuCu} factors become smaller from peripheral to central collisions. For the most central collisions, R_{CuCu} reaches a value of 0.5 at p_T > 5 GeV/c
13

Cu+Cu @ 200 GeV: part 2

- $R_{CuCu} \sim 1$ in peripheral collisions:
 - ✓ Sequential non correlated nucleon interactions
- $R_{CuCu} \neq 1$ in central collisions:
 - ✓ All particle yields are suppressed by a factor of 2 at high $p_T > 6 \text{ GeV/c}$
 - In the intermediate p_T range suppression of particles containing s-quarks (K_s⁰, K^{*0}, φ) is significantly smaller than of neutral pions
 - ✓ Despite mass difference all mesons with squarks (K⁰_s, K^{*0}, φ) have the same suppression pattern

Cu+Cu & Au+Au @ 200 GeV

- Cu+Cu & Au+Au results are shown for similar number of participants (nucleons participating in heavy nuclei interaction) N_{part}
- $R_{AA} \sim 1$ in peripheral collisions:
 - \checkmark Non correlated nucleon interactions
 - \checkmark Non zero proton enhancement
- In central collisions suppression hierarchy can be easily seen:

✓
$$R_{AA}(\pi) < R_{AA}(K_s^0, K^{*0}, \phi) < R_{AA}(p)$$

Intermediate p_T: recombination

✤ Hadron production is described by recombination: thermal (T) & shower (S) partons

- Difference in $R_{AA}(p_T)$ between ϕ , K^{*0} and π -mesons:
 - TT recombination for particles with s-quarks dominates over hard processes in a wider p_T range (up to 5-6 GeV/c) than for lighter hadrons (up to 2-3 GeV/c)
- Difference in $R_{AA}(p_T)$ between ϕ , K^{*0} and protons: 2 quarks vs 3 quarks

Recombination models assume that QGP is the source of thermal partons

Λ baryon in Au+Au @ 200 GeV

- A production for p_T range: 2-6.5 GeV/c
 - ✓ Confident overlap in p_T with protons
- $\Lambda R_{CP} \approx \text{proton } R_{CP}$:
 - ✓ Enhancement at intermediate p_T looks consistent with quark content (2 vs 3)

Intermediate p_T: radial flow

- High multiplicity of particles produced in central A+A collisions leads to intense interactions between hadrons. Evolution of A+A collision suggests a phase of fast expansion of the strongly interacting system
 - ✓ Each hadron gets increase in velocity equal to velocity of the wave front \rightarrow radial flow
- \clubsuit The heavier the particle, the more momentum it gets with the same velocity increase
 - ✓ R_{AA} difference between (u, d) mesons and baryons at intermediate p_T (M(p)>>M(π))
- ♦ p/K* and p/ ϕ ratios show a hint of flattening up to $p_T \sim 2.5 \text{ GeV/c}$
 - \checkmark Spectral shapes are determined by mass of the particle in this p_T region

Energy scan: 62.4 GeV

- ✤ Hadron suppression at 130 and 200 GeV
- ✤ No suppression at 17 GeV
- Parton energy loss depend on:
 - ✓ system size
 - \checkmark gluon density
- Changing \sqrt{s} :
 - ✓ Different gluon density
 - ✓ Different energy loss
 - Particle production: fragmentation, recombination

p+p, Cu+Cu, Au+Au @ 62.4 GeV: part 1

- ✤ A lot of 62.4 GeV results:
- π^0 up to 7 GeV/c
- ✓ Other hadrons up to 4 GeV/c
- \oint -mesons measured both in Cu+Cu and Au+Au in 3 centrality bins \rightarrow R_{AA} comparison with baryons (protons) is possible!

p+p, Cu+Cu, Au+Au @ 62.4 GeV: part 2

✤ Hadron yields at 62.4 GeV are less suppressed than at 130 and 200 GeV

Suppression pattern is similar to the one observed at 200 GeV:

 $\checkmark \quad R_{AA}(\pi^0) < R_{AA}(\phi) < R_{AA}(p)$

✤ Recombination models can be used to describe hadron production at 62.4 GeV:

✓ Source of thermal partons \rightarrow QGP

Conclusions

- Particles with strangeness content are a perfect tool to study hadron production mechanisms and properties of dense and hot matter formed in central heavy ion collisions
- ✤ Strangeness production @ 200 GeV:
 - \checkmark in peripheral d+Au and Cu+Cu collisions follows the binary scaling
 - \checkmark in central d+Au collisions non-zero CNM effects can be seen:
 - non-zero Cronin effect at intermediate p_T (2-5 GeV/c)
 - hint of hadron suppression at high $p_T > 6 \text{ GeV/c}$
 - rapidity dependence of nuclear modification factors
 - ✓ in central heavy ion collisions significant collective effects can be seen:
 - at high p_T all mesons are equally suppressed
 - at intermediate p_T suppression of strange mesons lie between baryons and light quark mesons
- ✤ Strangeness production @ 62.4 GeV:
 - Similar hadron suppression pattern to the one observed at 200 GeV
- Recombination and radial flow are 2 alternative explanations of experimental results