

Hydrodynamics and flow:

theory perspective

Gabriel S. Denicol

McGill University

JOINT INSTITUTE FOR NUCLEAR RESEARCH Strangeness in Quark Matter 06 July - 11 July 2015

Main Motivation

• Relativistic **fluid dynamics** has played a key role in our current understanding of the novel "**near perfect**" fluid behavior displayed by the Quark-Gluon Plasma

- Created matter behaves as a fluid
- → "thermalization" at very early times $\tau \sim 0.5$ fm
- → "Small", but important, shear viscosity

Hydrodynamic modeling of heavy ion collisions

Initial state and pre-equilibrium dynamics description of early time-dynamics and thermalization "initial condition" for hydrodynamic evolution

(approach) thermalization

Fluid-dynamical expansion of QGP and Hadron Gas

 $\partial_{\mu}T^{\mu\nu} = 0 \qquad \partial_{\mu}N^{\mu} = 0$

+ EoM for dissipative currents

EoS, viscosities, diffusion coefficients...

fluid elements converted to particles

Transport description of Hadron Gas Matter described by cross sections and decay probabilities UrQMD, JAM, ...

Event-by-event fluctuations changed the game

Hydrodynamic models should describe, not only event-averaged observables, but also distributions/correlations of observables

Centrality dependence of \boldsymbol{v}_n

v₂ distributions (measured by ATLAS)

PhD thesis of C. Shen

Renk&Niemi, PRC 89 (2014) 6, 064907

IP-Glasma: IPsat model + Yang-Mills evolution

Very good description of flow harmonic coefficients

Prediction of v_n distribution

Gale *et al*, PRL 110 (2013) 1, 012302

EKRT model: NLO-improved pQCD + saturation

Niemi et al, arXiv:1505.02677

Also able to describe event-by-event distributions of flow

Central

Hydrodynamics in small systems

The same signals usually associated to flow in AA collisions are now also seen in pA

Nucl.Phys. A931 (2014) 1045-1050

Large v_2 signal is also observed in p-N collisions Hydrodynamic simulations seem to be able to describe it!

But how? What is a large volume for the QGP?

2.5

Schenke and Venugopalan, arXiv:1407.7557

Good agreement of hydro calc. with PHENIX data

Apparent strong response to initial shape: typical signature of hydrodynamic behavior

What is small?	Finite viscosity defines a length scale (mean free-path for dilute gases)
	Relaxation time: $\tau_{\pi} = 5 \frac{\eta}{\varepsilon + P}$

Right now, very small values of shear viscosity are being used: η/s=0.08

Unlike in AA collisions, not much room to increase the viscosity (hydro becomes not applicable)

Niemi&GSD, arXiv:1404.7327

Ultracentral Heavy ion collisions

• Nonhydrodynamic(?) behaviour in ultracentral PbPb collisions

 $\mathbf{v}_2 \sim \mathbf{v}_3$

where is viscous damping?

Hydrodynamic models always over-predict the elliptic flow

CMS coll., CMS-PAS-HIN-12-011 Calculations by Luzum, arXiv:1210.6010

So far, all hydro models cannot get this right

Transport coefficients

Sources of viscosity and dissipation

Shear viscosity

Bulk viscosity

Resistance to expansion

$$\Pi = -\zeta \nabla_{\mu} u^{\mu}$$

Charge/particle diffusion

 $= \kappa \nabla^{\mu} \frac{\mu_B}{T}$

 q^{μ}

Resistance to deformation

$$\pi^{\mu\nu} = 2\eta \nabla^{\langle \mu} u^{\nu \rangle}$$

very studied

little studied

Not yet ... but coming¹⁵

EKRT model + second order viscous hydro

EKRT model + second order viscous hydro

Niemi et al, arXiv:1505.02677

IP-Glasma + MUSIC + UrQMD

$\zeta/s(T)$ $\eta/s=0.095$

Ryu et al, arXiv:1502.01675

UrQMD + Hydro + UrQMD

 η /s vs collision energy

Karpenko et al, Phys.Rev. C91 (2015) 6, 064901

Modeling of heavy ion collisions at lower energies

Finite baryon number, isospin, and electric charge must be includedEffective EoS is employedSteinheimer&Schramm&Stocker, J. Phys. G 38, 035001 (2011).

Hydrodynamics with diffusion

C. Shen et al, Preliminary

Modeling of heavy ion collisions at lower energies

$$\Delta^{\mu\alpha}\Delta^{\nu\beta}D\pi_{\alpha\beta} = -\frac{1}{\tau_{\pi}}(\pi^{\mu\nu} - 2\eta\sigma^{\mu\nu}) - \frac{4}{3}\pi^{\mu\nu}\theta$$

$$\frac{1}{\tau_{\pi}}(\pi^{\mu\nu} - 2\eta\sigma^{\mu\nu}) - \frac{4}{3}\pi^{\mu\nu}\theta$$

$$\Delta^{\mu\nu} Dq_{\nu} = -\frac{1}{\tau_q} \left(q^{\mu} - \kappa \nabla^{\mu} \frac{\mu D}{T} \right) - q^{\mu} \theta - \frac{1}{5} \sigma^{\mu\nu} q_{\nu}$$

Effect on multiplicity can be large

Can we use RHIC and SPS data to understand this transport coefficient?

> Maybe we will know the answer soon

Summary

Hydrodynamic models are being applied with success to describe small systems and subfermionic fluctuations in AA

Will this hold? Too soon to say ...

But ultracentral AA collisions still cannot be described ...

Some progress in understanding transport coefficients:

1) possibility to extract $\eta/s(T)$ also using event-plane correlations

2) IP-Glasma IC suggests a finite bulk viscosity around Tc

3) First estimation of η /s at lower energies

shown by Steinheimer&Aichelin&Bleicher arXiv:1203.5302

And is still able to describe protons and multi-strange hadrons ... arXiv:1505.05961

Why? Is hadronic transport under control?

23

Event-by-event fluctuations changed the game

BEFORE: different initial state models could fit the same data by changing the shear viscosity

Luzum&Romatschke PRC 78, 034915 (2008)

Initial state enters as an uncertainty in the extraction of shear viscosity

Song et al, PRL 106, 192301 (2011)

What is small?

Finite viscosity defines a length scale (mean free-path for dilute gases)

Relaxation time:
$$\tau_{\pi} = 5 \frac{\eta}{\varepsilon + P}$$

Validity of fluid dynamics defined by Knudsen number:

$$\mathrm{Kn}_i = \tau_\pi / L^i_{\mathrm{macro}}$$

 $L_{macro} \sim expansion rate$

Snapshot of a collision: Kn in τ,x=y plane

Noncentral collision, LHC $\tau_0=0.6$ fm, $\eta/s=0.08$ in QGP

Ultracentral pA collision, LHC $\tau_0=0.2$ fm, $\eta/s=0.08$ in QGP

pA: hydro applies at early times, but breaks down quickly Viscosity has to be small 26

Niemi&GSD, arXiv:1404.7327