

Theory status of quarkonium production in proton-nucleus collisions

J.P. Lansberg IPN Orsay – Paris-Sud U. –CNRS/IN2P3

July 6-11, 2015 – Dubna, Russia

thanks to F. Arléo, E.G. Ferreiro

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

July 8, 2015 1 / 31

Part I

Introduction and motivations

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

July 8, 2015 2 / 31

A 1

Quarkonium production in proton-nucleus collisions: Motivations I

Such reactions involve many physics effects of specific interest such as

- Parton distributions in nuclei
- Saturation & low x physics
- Time-evolution of a $Q\overline{Q}$ pair, dynamics of hadronisation
- Parton propagation in a dense medium, energy loss processes, Cronin effect
- Test of the quarkonium production mechanisms: octet vs. singlet
- Intrinsic charm in the proton
- Test of QCD factorisation in media
- Quarkonium-hadron interaction
- Mechanisms underlying single-spin asymmetries

• . . .

Most are also obviously relevant if one wishes to use quarkonia as probes of the QGP.

PRL 109, 222301 (2012)

Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS

week ending 30 NOVEMBER 2012

Observation of Sequential Y Suppression in PbPb Collisions

S. Chatrchyan *et al.** (CMS Collaboration)

イロト イポト イヨト イヨト

CMS PRL 109 222301 (2012), JHEP04(2014)103

$\frac{[Y(nS)/Y(1S)]_{ij}}{[Y(nS)/Y(1S)]_{pp}}$	28	3 <i>S</i>
PbPb	$0.21 \pm 0.07 ({ m stat.}) \pm 0.02 ({ m syst.})$	$0.06 \pm 0.06 (\text{stat.}) \pm 0.06 (\text{syst.})$

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

July 8, 2015 4 / 31

イロト イロト イヨト イヨト

In addition to QGP formation, differences between quarkonium production yields in PbPb and pp collisions can also arise from cold-nuclear-matter effects [21]. However, such effects should have a small impact on the double ratios reported here. Initial-state nuclear effects are expected to affect similarly each of the three Y states, thereby canceling out in the ratio. Final-state "nuclear absorption" becomes weaker with increasing energy [22] and is expected to be negligible at the LHC [23].

$\frac{[Y(nS)/Y(1S)]_{ij}}{[Y(nS)/Y(1S)]_{pp}}$	2 <i>S</i>	3 <i>S</i>
PbPb	$0.21 \pm 0.07 (\text{stat.}) \pm 0.02 (\text{syst.})$	$0.06 \pm 0.06 (\text{stat.}) \pm 0.06 (\text{syst.})$

(日) (周) (日) (日)

In addition to QGP formation, differences between quarkonium production yields in PbPb and pp collisions can also arise from cold-nuclear-matter effects [21]. However, such effects should have a small impact on the double ratios reported here. Initial-state nuclear effects are expected to affect similarly each of the three Y states, thereby canceling out in the ratio. Final-state "nuclear absorption" becomes weaker with increasing energy [22] and is expected to be negligible at the LHC [23].

$\frac{[Y(nS)/Y(1S)]_{ij}}{[Y(nS)/Y(1S)]_{pp}}$	28	3 <i>S</i>
PbPb	$0.21 \pm 0.07 (\text{stat.}) \pm 0.02 (\text{syst.})$	$0.06 \pm 0.06 (\text{stat.}) \pm 0.06 (\text{syst.})$
<i>p</i> Pb	$0.83 \pm 0.05 (\text{stat.}) \pm 0.05 (\text{syst.})$	$0.71 \pm 0.08 (\text{stat.}) \pm 0.09 (\text{syst.})$

(日) (周) (日) (日)

In addition to QGP formation, differences between quarkonium production yields in PbPb and pp collisions can also arise from cold-nuclear-matter effects [21]. However, such effects should have a small impact on the double ratios reported here. Initial-state nuclear effects are expected to affect similarly each of the three Y states, thereby canceling out in the ratio. Final-state "nuclear absorption" becomes weaker with increasing energy [22] and is expected to be negligible at the LHC [23].

$\frac{[Y(nS)/Y(1S)]_{ij}}{[Y(nS)/Y(1S)]_{\rho\rho}}$	2 <i>S</i>	3 <i>S</i>
PbPb	$0.21 \pm 0.07 (\text{stat.}) \pm 0.02 (\text{syst.})$	$0.06 \pm 0.06 (\text{stat.}) \pm 0.06 (\text{syst.})$
<i>p</i> Pb	$0.83 \pm 0.05 (\text{stat.}) \pm 0.05 (\text{syst.})$	$0.71 \pm 0.08 (\text{stat.}) \pm 0.09 (\text{syst.})$

If the effects responsible for the relative nS/1S suppression in *p*Pb collisions factorise, they could be responsible for half of the PbPb relative suppression !!!

Nuclear modification of the parton densities, nPDF: initial-state effect

- Nuclear modification of the parton densities, nPDF: initial-state effect
- Energy loss (w.r.t to pp collisions): initial-state or final-state effect

- Nuclear modification of the parton densities, nPDF: initial-state effect
- Energy loss (w.r.t to pp collisions): initial-state or final-state effect
- Break up of the meson in the nuclear matter: final-state effect

- Nuclear modification of the parton densities, nPDF: initial-state effect
- Energy loss (w.r.t to pp collisions): initial-state or final-state effect
- Break up of the meson in the nuclear matter: final-state effect
- Break up by comoving particles: final-state effect

オポト イモト イモト

- Nuclear modification of the parton densities, nPDF: initial-state effect
- Energy loss (w.r.t to pp collisions): initial-state or final-state effect
- Break up of the meson in the nuclear matter: final-state effect
- Break up by comoving particles: final-state effect
- Colour filtering of intrinsic QQ pairs: initial-state effect

・ 同 ト ・ ヨ ト ・ ヨ ト

- Nuclear modification of the parton densities, nPDF: initial-state effect
- Energy loss (w.r.t to pp collisions): initial-state or final-state effect
- Break up of the meson in the nuclear matter: final-state effect
- Break up by comoving particles: final-state effect
- Colour filtering of intrinsic QQ pairs: initial-state effect
- . . .

(日) (周) (日) (日)

- Nuclear modification of the parton densities, nPDF: initial-state effect
- Energy loss (w.r.t to pp collisions): initial-state or final-state effect
- Break up of the meson in the nuclear matter: final-state effect
- Break up by comoving particles: final-state effect
- Colour filtering of intrinsic QQ pairs: initial-state effect

• . . .

Disclaimer: I will not speak about any QGP-like effect

(日) (周) (日) (日)

Part II

A baseline to understand the basics

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

July 8, 2015 6 / 31

A 1

See e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50

< 61 b

See e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50 Parton densities in nuclei are modified (EMC effect);

- See e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50 Parton densities in nuclei are modified (EMC effect);
- Mesons may scatter inelastically with nucleons in the nuclear matter;

- See e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50 Parton densities in nuclei are modified (EMC effect);
- Mesons may scatter inelastically with nucleons in the nuclear matter;
- If the meson is formed, this should be described by $\sigma_{\text{break-up}} \propto r_{\text{meson}}^2$

イロト イヨト イヨト イヨト

- See e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50 Parton densities in nuclei are modified (EMC effect);
- Mesons may scatter inelastically with nucleons in the nuclear matter;
- If the meson is formed, this should be described by $\sigma_{\text{break}-\text{up}} \propto r_{\text{meson}}^2$
- Any differential cross section can then be obtained from the partonic one:

$$\frac{d\sigma_{pA\to QX}}{dy \, dP_T \, d\vec{b}} = \int dx_1 \, dx_2 g(x_1, \mu_f) \int dz_A \mathcal{F}_g^A(x_2, \vec{b}, z_B, \mu_f) \mathcal{J} \frac{d\sigma_{gg\to Q+g}}{d\hat{t}} S_A(\vec{b}, z_A)$$

• $\frac{d\sigma_{gg \rightarrow Q+g}}{dt}$ from any model (Colour Singlet, Colour Octet, Colour Evaporation Model)

イロト イポト イモト イモト

- See e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50 Parton densities in nuclei are modified (EMC effect);
- Mesons may scatter inelastically with nucleons in the nuclear matter;
- If the meson is formed, this should be described by $\sigma_{\text{break}-\text{up}} \propto r_{\text{meson}}^2$
- Any differential cross section can then be obtained from the partonic one:

$$\frac{d\sigma_{pA\to QX}}{dy\,dP_T\,d\vec{b}} = \int dx_1 dx_2 g(x_1,\mu_f) \int dz_A \mathcal{F}_g^A(x_2,\vec{b},z_B,\mu_f) \mathcal{J} \frac{d\sigma_{gg\to Q+g}}{d\hat{t}} \mathcal{S}_A(\vec{b},z_A)$$

- $\frac{d\sigma_{gg \rightarrow Q+g}}{dt}$ from any model (Colour Singlet, Colour Octet, Colour Evaporation Model)
- the survival probability for a QQ produced at the point (r
 _A, z_A) to pass through the 'target' unscathed can parametrised as

$$S_{A}(\vec{r}_{A}, z_{A}) = \exp\left(-A\sigma_{break-up}\int_{z_{A}}^{\infty} d\tilde{z} \rho_{A}(\vec{r}_{A}, \tilde{z})
ight)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- See e.g. E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680 (2009) 50 Parton densities in nuclei are modified (EMC effect);
- Mesons may scatter inelastically with nucleons in the nuclear matter;
- If the meson is formed, this should be described by $\sigma_{\text{break}-\text{up}} \propto r_{\text{meson}}^2$
- Any differential cross section can then be obtained from the partonic one:

$$\frac{d\sigma_{pA\to QX}}{dy\,dP_T\,d\vec{b}} = \int dx_1 dx_2 g(x_1,\mu_f) \int dz_A \mathcal{F}_g^A(x_2,\vec{b},z_B,\mu_f) \mathcal{J} \frac{d\sigma_{gg\to Q+g}}{d\hat{t}} \mathcal{S}_A(\vec{b},z_A)$$

- $\frac{d\sigma_{gg \rightarrow Q+g}}{dt}$ from any model (Colour Singlet, Colour Octet, Colour Evaporation Model)
- the survival probability for a QQ produced at the point (r
 _A, z_A) to pass through the 'target' unscathed can parametrised as

$$\mathcal{S}_{\mathcal{A}}(ec{r}_{\mathcal{A}}, \, z_{\mathcal{A}}) = \exp\left(-\mathcal{A}_{o_{break}-up} \int_{z_{\mathcal{A}}}^{\infty} d\tilde{z} \;
ho_{\mathcal{A}}(ec{r}_{\mathcal{A}}, ilde{z})
ight)$$

• the nuclear PDF (+ *b* dependence), $\mathcal{F}_{g}^{A}(x_{1}, \vec{r}_{A}, z_{A}, \mu_{f})$, assumed to be factorisable in terms of the nucleon PDFs : S.R. Klein, R. Vogt, PRL 91 (2003) 142301.

$$\mathcal{F}_{g}^{A}(x_{1},\vec{r}_{A},z_{A};\mu_{f}) = \rho_{A}(\vec{r}_{A},z_{A}) \times \frac{g(x_{1};\mu_{f})}{g(x_{1};\mu_{f})} \times \left(1 + \left[\frac{R_{g}^{A}(x,\mu_{f})}{1} - 1\right]N_{\rho_{A}}\frac{\int dz \,\rho_{A}(\vec{r}_{A},z)}{\int dz \,\rho_{A}(0,z)}\right)$$

$$J_{P}(x_{1},\vec{r}_{A},z_{A};\mu_{f}) = \rho_{A}(\vec{r}_{A},z_{A}) \times \frac{g(x_{1};\mu_{f})}{g(x_{1};\mu_{f})} \times \left(1 + \left[\frac{R_{g}^{A}(x,\mu_{f})}{1} - 1\right]N_{\rho_{A}}\frac{\int dz \,\rho_{A}(\vec{r}_{A},z)}{\int dz \,\rho_{A}(0,z)}\right)$$

$$J_{P}(x_{1},x_{2},\mu_{f}) = \rho_{A}(\vec{r}_{A},z_{A}) \times \frac{g(x_{1};\mu_{f})}{g(x_{1};\mu_{f})} \times \left(1 + \left[\frac{R_{g}^{A}(x,\mu_{f})}{1} - 1\right]N_{\rho_{A}}\frac{\int dz \,\rho_{A}(\vec{r}_{A},z)}{\int dz \,\rho_{A}(0,z)}\right)$$

$$J_{P}(x_{1},\mu_{f}) = \rho_{A}(\vec{r}_{A},z_{A}) \times \frac{g(x_{1};\mu_{f})}{g(x_{1};\mu_{f})} \times \left(1 + \left[\frac{R_{g}^{A}(x,\mu_{f})}{1} - 1\right]N_{\rho_{A}}\frac{\int dz \,\rho_{A}(\vec{r}_{A},z)}{\int dz \,\rho_{A}(0,z)}\right)$$

$$J_{P}(x_{1},\mu_{f}) = \rho_{A}(\vec{r}_{A},z_{A}) \times \frac{g(x_{1};\mu_{f})}{g(x_{1};\mu_{f})} \times \left(1 + \left[\frac{R_{g}^{A}(x,\mu_{f})}{1} - 1\right]N_{\rho_{A}}\frac{\int dz \,\rho_{A}(0,z)}{\int dz \,\rho_{A}(0,z)}\right)$$

イロト イポト イヨト イヨト

4 regions: (i) Fermi-motion (x > 0.7), (ii) EMC (0.3 < x < 0.7), (iii) Anti-shadowing (0.05 < x < 0.3), (iv) Shadowing (x < 0.05)

A D N A (P) N A B N A B N

4 regions: (i) Fermi-motion (x > 0.7), (ii) EMC (0.3 < x < 0.7), (iii) Anti-shadowing (0.05 < x < 0.3), (iv) Shadowing (x < 0.05)

 For the gluons, only the shadowing depletion is established although its magnitude is still discussed

(日) (周) (日) (日)

- 4 regions: (i) Fermi-motion (x > 0.7), (ii) EMC (0.3 < x < 0.7), (iii) Anti-shadowing (0.05 < x < 0.3), (iv) Shadowing (x < 0.05)
- For the gluons, only the shadowing depletion is established although its magnitude is still discussed
- The gluon antishadowing not yet observed although used in many studies; absent in some nPDF fit

(日) (周) (日) (日)

- 4 regions: (i) Fermi-motion (x > 0.7), (ii) EMC (0.3 < x < 0.7), (iii) Anti-shadowing (0.05 < x < 0.3), (iv) Shadowing (x < 0.05)
- For the gluons, only the shadowing depletion is established although its magnitude is still discussed
- The gluon antishadowing not yet observed although used in many studies; absent in some nPDF fit
- The gluon EMC effect is even less known, hence the uncertainty there

• • • • • • • • • • • • •

- 4 regions: (i) Fermi-motion (x > 0.7), (ii) EMC (0.3 < x < 0.7), (iii) Anti-shadowing (0.05 < x < 0.3), (iv) Shadowing (x < 0.05)
- For the gluons, only the shadowing depletion is established although its magnitude is still discussed
- The gluon antishadowing not yet observed although used in many studies; absent in some nPDF fit
- The gluon EMC effect is even less known, hence the uncertainty there
- See R. Vogt's talk at HP2015 for more details

• As aforementionned: $\sigma_{\text{break}-\text{up}} \propto r_{\text{meson}}^2$

- As aforementionned: $\sigma_{\text{break}-\text{up}} \propto r_{\text{meson}}^2$
- 2S (and 3S states for Y) should be more suppressed

- As aforementionned: $\sigma_{\text{break}-\text{up}} \propto r_{\text{meson}}^2$
- 2*S* (and 3*S* states for Y) should be more suppressed
- ... provided that what propagates in the nucleus is already formed: $|\tau_f \lesssim L$

- As aforementionned: $\sigma_{\text{break}-\text{up}} \propto r_{\text{meson}}^2$
- 2*S* (and 3*S* states for Y) should be more suppressed
- ... provided that what propagates in the nucleus is already formed: $|\tau_f \lesssim L$
- Heisenberg inequalities tell us: $\tau_f^{\text{onia}} \simeq 0.3 \div 0.4 \text{ fm/c}$

[in the meson rest frame obviously]

4 **A b b b b b**

- As aforementionned: $\sigma_{\text{break}-\text{up}} \propto r_{\text{meson}}^2$
- 2*S* (and 3*S* states for Y) should be more suppressed
- ... provided that what propagates in the nucleus is already formed: $| au_f \lesssim L|$
- Heisenberg inequalities tell us: $\tau_f^{\text{onia}} \simeq 0.3 \div 0.4 \text{ fm/c}$

[in the meson rest frame obviously]

イロト 不得 トイヨト イヨト 二日

- At RHIC (200 GeV), for a particle with y = 0,
 - $\gamma = E_{\text{beam,cms}} / m_N \simeq 107 !$

 $[= \cosh(y_{\text{beam}}) = 5.36]$

 It takes 30 fm/c for a quarkonium to form and to become distinguishable from its excited states

- As aforementionned: $\sigma_{\text{break}-\text{up}} \propto r_{\text{meson}}^2$
- 2*S* (and 3*S* states for Y) should be more suppressed
- ... provided that what propagates in the nucleus is already formed: $| au_f \lesssim L|$
- Heisenberg inequalities tell us: $\tau_f^{\text{onia}} \simeq 0.3 \div 0.4$ fm/c
 - [in the meson rest frame obviously]

イロト 不得 トイヨト イヨト 二日

- At RHIC (200 GeV), for a particle with y = 0,
 - $\gamma = E_{\text{beam,cms}} / m_N \simeq 107$!

 $[=\cosh(y_{beam})=5.36]$

- It takes 30 fm/c for a quarkonium to form and to become distinguishable from its excited states
- At the LHC (5 TeV), still for a particle with y = 0,
 - $\gamma = E_{\text{beam,cms}} / m_N \simeq 2660 !$ [= cosh(y_{beam}) = 8.58]
 - It takes 800-1000 fm/c for a quarkonium to form and to become distinguishable from its excited states

- As aforementionned: $\sigma_{\text{break}-\text{up}} \propto r_{\text{meson}}^2$
- 2*S* (and 3*S* states for Y) should be more suppressed
- ... provided that what propagates in the nucleus is already formed: $\left| \tau_{f} \lesssim L \right|$
- Heisenberg inequalities tell us: $\tau_f^{\text{onia}} \simeq 0.3 \div 0.4 \text{ fm/c}$
 - [in the meson rest frame obviously]

- At RHIC (200 GeV), for a particle with y = 0,
 - $\gamma = E_{\text{beam,cms}} / m_N \simeq 107$!

 $[= \cosh(y_{beam}) = 5.36]$

- It takes 30 fm/c for a quarkonium to form and to become distinguishable from its excited states
- At the LHC (5 TeV), still for a particle with y = 0,
 - $\gamma = E_{\text{beam,cms}} / m_N \simeq 2660 !$ [= cosh(y_{beam}) = 8.58]
 - It takes 800-1000 fm/c for a quarkonium to form and to become distinguishable from its excited states
- Naive high energy limit: $\sigma_{\rm break-up} \simeq \pi/m_Q^2$? \simeq 0.5 mb for charmonia ?
Various attempts to compute σ_{ψ-N} in different contexts (mostly for hot nuclear matter studies)

4 A 1

- Various attempts to compute σ_{ψ-N} in different contexts (mostly for hot nuclear matter studies)
 - Short-distance (perturbative) QCD
 - Quark exchange model
 - D-meson exchange model
 - QCD sum rules

- G. Bhanot, M. Peskin, NPB 156 (1979) 391
- K. Martins, D. Blaschke, E.Quack, PRC 51 (1995) 2723
 - S. Matinyan, B. Mueller PRC 58 (1998) 2994
- F. Navarra, M. Nielsen, G. M. de Carvalho Krein PLB 529 (2002) 87

- Various attempts to compute σ_{ψ-N} in different contexts (mostly for hot nuclear matter studies)
 - Short-distance (perturbative) QCD G. Bhano
 - Quark exchange model
 - D-meson exchange model
 - QCD sum rules

...

- G. Bhanot, M. Peskin, NPB 156 (1979) 391
- K. Martins, D. Blaschke, E.Quack, PRC 51 (1995) 2723

・ロト ・ 同ト ・ ヨト ・ ヨト

- S. Matinyan, B. Mueller PRC 58 (1998) 2994
- F. Navarra, M. Nielsen, G. M. de Carvalho Krein PLB 529 (2002) 87
- Increases starting from the threshold then should decrease as function of $\sqrt{s_{\psi-N}}$? formation time effects ?

- Various attempts to compute \(\sigma_{\nu-N}\) in different contexts (mostly for hot nuclear matter studies)
 - Short-distance (perturbative) QCD
 - Quark exchange model
 - D-meson exchange model
 - OCD sum rules

...

- G. Bhanot, M. Peskin, NPB 156 (1979) 391
- K. Martins, D. Blaschke, E.Quack, PRC 51 (1995) 2723
 - S. Matinvan, B. Mueller PRC 58 (1998) 2994
- F. Navarra.M. Nielsen.G. M. de Carvalho Krein PLB 529 (2002) 87
- Increases starting from the threshold then should decrease as function of $\sqrt{s_{\psi-N}}$? formation time effects?
- Difficult to disentangle from the nPDF effect: next slide

[not -vet- speaking of others]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Various attempts to compute $\sigma_{\psi-N}$ in different contexts (mostly for hot nuclear matter studies)
 - Short-distance (perturbative) QCD
 - Quark exchange model
 - D-meson exchange model
 - OCD sum rules

...

- G. Bhanot, M. Peskin, NPB 156 (1979) 391
- K. Martins, D. Blaschke, E.Quack, PRC 51 (1995) 2723
 - S. Matinvan, B. Mueller PRC 58 (1998) 2994
- F. Navarra.M. Nielsen.G. M. de Carvalho Krein PLB 529 (2002) 87
- Increases starting from the threshold then should decrease as function of $\sqrt{s_{\psi-N}}$? formation time effects?
- Difficult to disentangle from the nPDF effect: next slide

[not -yet- speaking of others]

イロト 不得 トイヨト イヨト

• Nearly no data on Y and on $\psi(2S)$

Global fit

F. Arleo, V.N. Tram, Eur.Phys.J. C55 (2008); 449, 61 (2009) 847

	Proton	nDS	nDSg	EKS98	EPS08	HKM
$\sigma_{l/\psi N}^{nPDF}$ (mb)	3.4 ± 0.2	3.5 ± 0.2	4.0 ± 0.2	5.2 ± 0.2	6.0 ± 0.2	3.6 ± 0.2
χ^2/ndf	1.4	1.4	1.5	1.5	1.7	1.4

イロト イポト イヨト イヨト

Global fit

F. Arleo, V.N. Tram, Eur.Phys.J. C55 (2008); 449, 61 (2009) 847

	Proton	nDS	nDSg	EKS98	EPS08	HKM
$\sigma_{l/\psi N}^{nPDF}$ (mb)	3.4 ± 0.2	3.5 ± 0.2	4.0 ± 0.2	5.2 ± 0.2	6.0 ± 0.2	3.6 ± 0.2
χ^2/ndf	1.4	1.4	1.5	1.5	1.7	1.4

• Energy-dependence study at $y \simeq 0$ as an attempt to avoid other effects:

C. Lourenço, R. Vogt, H.K. Whoeri, JHEP 0902 (2009) 014

• • • • • • • • • • • • •

July 8, 2015 11 / 31

э.

Global fit

F. Arleo, V.N. Tram, Eur.Phys.J. C55 (2008); 449, 61 (2009) 847

	Proton	nDS	nDSg	EKS98	EPS08	HKM
$\sigma_{l/\psi N}^{nPDF}$ (mb)	3.4 ± 0.2	3.5 ± 0.2	4.0 ± 0.2	5.2 ± 0.2	6.0 ± 0.2	3.6 ± 0.2
χ^2/ndf	1.4	1.4	1.5	1.5	1.7	1.4

• Energy-dependence study at $y \simeq 0$ as an attempt to avoid other effects:

(日)

• no scaling in $\sqrt{s_{\psi-N}}$ w/o (anti)shadowing,

Global fit

F. Arleo, V.N. Tram, Eur.Phys.J. C55 (2008); 449, 61 (2009) 847

	Proton	nDS	nDSg	EKS98	EPS08	HKM
$\sigma_{l/\psi N}^{nPDF}$ (mb)	3.4 ± 0.2	3.5 ± 0.2	4.0 ± 0.2	5.2 ± 0.2	6.0 ± 0.2	3.6 ± 0.2
χ^2/ndf	1.4	1.4	1.5	1.5	1.7	1.4

• Energy-dependence study at $y \simeq 0$ as an attempt to avoid other effects:

C. Lourenço, R. Vogt, H.K. Whoeri, JHEP 0902 (2009) 014

(日)

• no scaling in $\sqrt{s_{\psi-N}}$ w/o (anti)shadowing, not so clear with strong (anti)shadowing (as in EPS08)

July 8, 2015 11 / 31

Global fit

F. Arleo, V.N. Tram, Eur.Phys.J. C55 (2008); 449, 61 (2009) 847

	Proton	nDS	nDSg	EKS98	EPS08	HKM
$\sigma_{l/\psi N}^{nPDF}$ (mb)	3.4 ± 0.2	3.5 ± 0.2	4.0 ± 0.2	5.2 ± 0.2	6.0 ± 0.2	3.6 ± 0.2
χ^2/ndf	1.4	1.4	1.5	1.5	1.7	1.4

• Energy-dependence study at $y \simeq 0$ as an attempt to avoid other effects:

C. Lourenço, R. Vogt, H.K. Whoeri, JHEP 0902 (2009) 014

• no scaling in $\sqrt{s_{\psi-N}}$ w/o (anti)shadowing, not so clear with strong (anti)shadowing (as in EPS08)

• Consensus: $\sigma_{\text{break}-\text{up}}$ is getting small at high energies (via s_{NN} or $s_{\psi=N}$)

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

Part III

RHIC & LHC

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

▶ ▲ 클 ▶ 클 ∽ Q () July 8, 2015 12/31

イロト イポト イヨト イヨト

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680:50,2009, PRC 81:064911, 2010; PHENIX PRC 77: 024912, 2008

• The shadowing impact also depend on the kinematics:

< A > < 3

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680:50,2009, PRC 81:064911, 2010; PHENIX PRC 77: 024912, 2008

• The shadowing impact also depend on the kinematics: $2 \rightarrow 1$ vs $2 \rightarrow 2$ intrinsic extrinsic

• • • • • • • • • • • •

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680:50,2009, PRC 81:064911, 2010; PHENIX PRC 77: 024912, 2008

- The shadowing impact also depend on the kinematics: $2 \rightarrow 1$ vs $2 \rightarrow 2$
- Shift of the rapidity distribution (see the vertical blue line)

extrinsic

intrinsic

• • • • • • • • • • • • •

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PLB 680:50,2009, PRC 81:064911, 2010; PHENIX PRC 77: 024912, 2008

• The shadowing impact also depend on the kinematics: $2 \rightarrow 1$ vs $2 \rightarrow 2$

- Shift of the rapidity distribution (see the vertical blue line)
- Different resulting $\sigma_{\rm break-up}$ fitted as a constant with a good $\chi^2_{\rm min}$

extrinsic

intrinsic

Comparison with more recent PHENIX data

E.G. Ferreiro. F. Fleuret. J.P.L.. N. Mataone A. Rakotozafindrabe. FBS 53: 27. 2012: PHENIX PRL 107: 142301, 2011

• EKS98 with $\sigma_{abs} \simeq$ 3mb (red curve) seems to do a good job

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

July 8, 2015 14 / 31

Comparison with more recent PHENIX data

E.G. Ferreiro. F. Fleuret. J.P.L.. N. Mataane A. Rakotozafindrabe. FBS 53: 27. 2012: PHENIX PRL 107: 142301, 2011

• EKS98 with $\sigma_{abs} \simeq$ 3mb (red curve) seems to do a good job

• Less true when one looks at R_{CP} (EPS08 (i.e. strong shadowing) better)

・ロト ・ 同ト ・ ヨト ・ ヨト

Comparison with more recent PHENIX data

E.G. Ferreiro. F. Fleuret. J.P.L.. N. Mataane A. Rakotozafindrabe. FBS 53: 27. 2012: PHENIX PRL 107: 142301, 2011

• EKS98 with $\sigma_{abs} \simeq$ 3mb (red curve) seems to do a good job

- Less true when one looks at R_{CP} (EPS08 (i.e. strong shadowing) better)
- R_{CP} can be quite instructive, even when one has R_p

J.P. Lansberg (IPNO)

July 8, 2015 14 / 31

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 81, 064911 (2010)+ A. D. Frawley (2009)

• • • • • • • • • • • •

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 81, 064911 (2010)+ A. D. Frawley (2009)

In addition to tensions with the centrality dependence,

D.C. McGlinchey, A.D. Frawley, R. Vogt PRC87 (2013) 5, 054910

A (10) A (10)

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 81, 064911 (2010)+ A. D. Frawley (2009)

In addition to tensions with the centrality dependence,

D.C. McGlinchey, A.D. Frawley, R. Vogt PRC87 (2013) 5, 054910 the forward data – at $\sqrt{s_{\psi-N}}$ up to 70 GeV – point at an increasing break-up

July 8, 2015 15 / 31

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 81, 064911 (2010)+ A. D. Frawley (2009)

In addition to tensions with the centrality dependence,

D.C. McGlinchey, A.D. Frawley, R. Vogt PRC87 (2013) 5, 054910 the forward data – at $\sqrt{s_{\psi-N}}$ up to 70 GeV – point at an increasing break-up

This counter-intuitive behaviour is less marked with a strong gluon depletion at small x (shadowing, saturation,...) under a 2 → 2 kinematics

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 81, 064911 (2010)+ A. D. Frawley (2009)

In addition to tensions with the centrality dependence,

D.C. McGlinchey, A.D. Frawley, R. Vogt PRC87 (2013) 5, 054910 • the forward data – at $\sqrt{s_{\psi-N}}$ up to 70 GeV – point at an increasing break-up

 This counter-intuitive behaviour is less marked with a strong gluon depletion at small *x* (shadowing, saturation,...) under a 2 → 2 kinematics

 This may hint at some overlooked mechanisms in the forward region: Energy loss, coherent/CGC multiple scattering

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 88, 047901 (2013)

イロト イポト イヨト イヨ

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 88, 047901 (2013)

• Agreement with ALICE and LHCb data, \rightarrow strong shadowing (\simeq EPS08) ALICE JHEP 1402 (2014) 073; LHCb JHEP 1402 (2014) 072

July 8, 2015 16 / 31

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 88, 047901 (2013)

- Agreement with ALICE and LHCb data, \rightarrow strong shadowing (\simeq EPS08) ALICE JHEP 1402 (2014) 073; LHCb JHEP 1402 (2014) 072
- Agreement less good using EPS09 at NLO

by R. Vogt in J.L. Albacete et al. Int.J.Mod.Phys. E22 (2013) 1330007

• • • • • • • • • • • • •

July 8, 2015 16 / 31

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 88, 047901 (2013)

- Agreement with ALICE and LHCb data, \rightarrow strong shadowing (\simeq EPS08) ALICE JHEP 1402 (2014) 073; LHCb JHEP 1402 (2014) 072
- Agreement less good using EPS09 at NLO

by R. Vogt in J.L. Albacete et al. Int.J.Mod.Phys. E22 (2013) 1330007

• but could be really bad if there is a weak shadowing

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 88, 047901 (2013)

• Agreement with ALICE and LHCb data, \rightarrow strong shadowing (\simeq EPS08)

ALICE JHEP 1402 (2014) 073; LHCb JHEP 1402 (2014) 072

Agreement less good using EPS09 at NLO

by R. Vogt in J.L. Albacete et al. Int.J.Mod.Phys. E22 (2013) 1330007

- but could be really bad if there is a weak shadowing ...
- Large uncertainty on the scale at which to evaluate the nPDF [not shown]
- The uncertainty band of a given set may not encompass other nPDFs

E.G. Ferreiro, F. Fleuret, J.P.L., A. Rakotozafindrabe, PRC 88, 047901 (2013)

• Agreement with ALICE and LHCb data, \rightarrow strong shadowing (\simeq EPS08)

ALICE JHEP 1402 (2014) 073; LHCb JHEP 1402 (2014) 072

Agreement less good using EPS09 at NLO

by R. Vogt in J.L. Albacete et al. Int.J.Mod.Phys. E22 (2013) 1330007

- but could be really bad if there is a weak shadowing ...
- Large uncertainty on the scale at which to evaluate the nPDF [not shown]
- The uncertainty band of a given set may not encompass other nPDFs
- If this was the only effect, data would really constraint nPDFs

J.P. Lansberg (IPNO)

Part IV

Back to theory

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

イロト イポト イヨト イヨト

Revisiting energy loss scaling properties

F. Arleo, S. Peigne PRL 109 (2012) 122301, JHEP 1410 (2014) 73; F. Arleo et al. JHEP 1305 (2013) 155

Coherent radiation (interference) in the initial/final state crucial for $t_f \gg L$

- IS and FS radiation cancels out in the induced spectrum
- Interference terms do not cancel in the induced spectrum !

Revisiting energy loss scaling properties

F. Arleo, S. Peigne PRL 109 (2012) 122301, JHEP 1410 (2014) 73; F. Arleo et al. JHEP 1305 (2013) 155

Coherent radiation (interference) in the initial/final state crucial for $t_f \gg L$

- IS and FS radiation cancels out in the induced spectrum
- Interference terms do not cancel in the induced spectrum !
- Induced gluon spectrum dominated by large formation times, a priori not subject to the "Brodsky-Hoyer" bound
 s.J. Brodsky, P.Hoyer PLB 298 (1993) 165

$$\Delta E = \int d\omega \, \omega \, \frac{dI}{d\omega} \bigg|_{\text{ind}} = N_c \alpha_s \frac{\sqrt{\Delta q_{\perp}^2}}{m_T} E$$

Revisiting energy loss scaling properties

F. Arleo, S. Peigne PRL 109 (2012) 122301, JHEP 1410 (2014) 73; F. Arleo et al. JHEP 1305 (2013) 155

Coherent radiation (interference) in the initial/final state crucial for $t_f \gg L$

- IS and FS radiation cancels out in the induced spectrum
- Interference terms do not cancel in the induced spectrum !
- Induced gluon spectrum dominated by large formation times, a priori not subject to the "Brodsky-Hoyer" bound
 s.J. Brodsky, P.Hoyer PLB 298 (1993) 165

$$\Delta E = \int d\omega \, \omega \, \frac{dI}{d\omega} \bigg|_{\rm ind} = N_c \alpha_s \frac{\sqrt{\Delta q_{\perp}^2}}{m_T} E$$

• $\sqrt{\Delta q_{\perp}^2}$ related to $\hat{q}(x) = \hat{q}_0 (10^{-2}/x)^{0.3}$ where \hat{q}_0 is the only fitted parameter of this approach + the option to switch on/off the shadowing

Evaluation the impact of such a coherent energy loss

Energy shift computed according to :

$$\frac{1}{A}\frac{d\sigma_{\rm pA}^{Q}}{dE}\left(E,\sqrt{s}\right) = \int_{0}^{\varepsilon_{\rm max}} d\varepsilon \,\mathcal{P}(\varepsilon,E) \,\frac{d\sigma_{\rm pp}^{Q}}{dE}\left(E+\varepsilon,\sqrt{s}\right)$$

Evaluation the impact of such a coherent energy loss

Energy shift computed according to :

$$\frac{1}{A}\frac{d\sigma_{\rm pA}^{Q}}{dE}\left(E,\sqrt{s}\right) = \int_{0}^{\varepsilon_{\rm max}} d\varepsilon \,\mathcal{P}(\varepsilon,E) \,\frac{d\sigma_{\rm pp}^{Q}}{dE}\left(E+\varepsilon,\sqrt{s}\right)$$

Ingredients:

• pp cross section fitted from experimental data

$$E \frac{d\sigma_{\rm pp}^{\psi}}{dE} = \frac{d\sigma_{\rm pp}^{\psi}}{dy} \propto \left(1 - \frac{2m_T}{\sqrt{s}}\cosh y\right)^{n(\sqrt{s})}$$

- Length *L* given by a Glauber model for minimum bias and centrality dependence
- $\mathcal{P}(\epsilon)$: probability distribution (quenching weight)

CGC computations: not just gluon saturation

H. Fujii, K. Watanabe, NPA 915 (2013) 1

• • • • • • • • • • • • •
H. Fujii, K. Watanabe, NPA 915 (2013) 1

• $R_{pPb}^{J/\psi}$ slightly lower, although at slightly higher scales and *x* than *D*'s

- H. Fujii, K. Watanabe,NPA 915 (2013) 1
- $R_{\text{pPb}}^{J/\psi}$ slightly lower, although at slightly higher scales and x than D's

- J/ψ suppression predicted by Fujii and Watanabe within CEM significantly below the data
- Improved postdictions
 B. Ducloué, et al., PRD 91 114005, Y.Q Ma, et al.arXiv:1503.07772 [hep-ph]
 - (i) CEM with improved geometry : closer to data; grey band in the plot)
 - (ii) NRQCD : results depend on the dominant CO channel; not shown

< 🗇 🕨 < 🖃 🕨

H. Fujii, K. Watanabe,NPA 915 (2013) 1

• $R_{\text{pPb}}^{J/\psi}$ slightly lower, although at slightly higher scales and x than D's

- J/ψ suppression predicted by Fujii and Watanabe within CEM significantly below the data
- Improved postdictions
 B. Ducloué, et al., PRD 91 114005, Y.Q Ma, et al.arXiv:1503.07772 [hep-ph]
 - (i) CEM with improved geometry : closer to data; grey band in the plot)
 - (ii) NRQCD : results depend on the dominant CO channel; not shown
- Overall, CGC predictions very much widespread

A (1) > A (2) > A

H. Fujii, K. Watanabe,NPA 915 (2013) 1

• $R_{\text{pPb}}^{J/\psi}$ slightly lower, although at slightly higher scales and x than D's

• J/ψ suppression predicted by Fujii and Watanabe within CEM

significantly below the data

- Improved postdictions
 B. Ducloué, et al., PRD 91 114005, Y.Q Ma, et al.arXiv:1503.07772 [hep-ph]
 - (i) CEM with improved geometry : closer to data; grey band in the plot)
 - (ii) NRQCD : results depend on the dominant CO channel; not shown
- Overall, CGC predictions very much widespread
- The J/ψ suppression at forward rapidities in *pA* collisions at the LHC is not quite the expected CGC smoking gun signal before the LHC start-up

Part V

Back to the data

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

 ↓ ↓ ≣ ↓ ∑
 ∑
 √ へ ()

 July 8, 2015
 21 / 31

イロト イポト イヨト イヨト

J/ψ suppression

Plot from the Sapore Gravis Network review: arXiv:1506.03981

J/ψ suppression: energy independent ?

Plot from the Sapore Gravis Network review: arXiv:1506.03981

- Most models except maybe the Eloss without shadowing predicted an increase of the suppression
- Now ... although they were done with care the LHC results rely on a pp cross section interpolation
- KPS is an approach accounting for the suppression induced by coherent multiple scatterings
 B. Kopeliovich, I. Potashnikova, I. Schmidt, NPA 864 (2011) 203 See also J.W. Qiu *et al*. PRD 89 (2014) 3, 034007

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

July 8, 2015 22 / 31

Comparison of different states by LHCb

LHCb JHEP 07 (2014) 094 + theory references given here

Comparison of different states by LHCb

LHCb JHEP 07 (2014) 094 + theory references given here

P_T dependence: nothing unexpected

ATLAS arXiv:1505.08141 [hep-ex]; CMS (N. Filipovic, HP 2015)

A 1

Suppression decreases with P_T

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

July 8, 2015 24 / 31

Part VI

Back to the excited states

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

→ < ≣ > ≣ < ⊃ < ⊂ July 8, 2015 25/31

イロト イポト イヨト イヨ

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

ই ▶ ৰ ≣ ▶ ≣ ৩ ৭ ৫ July 8, 2015 26 / 31

• □ > • □ > • □ > •

 As discussed in the introduction, the relative suppression Y(2S, 3S) w.r.t. Y(1S) was completely unexpected at the LHC

4 T N 4 A N

 As discussed in the introduction, the relative suppression Y(2S, 3S) w.r.t. Y(1S) was completely unexpected at the LHC

On the other hand, the relative suppression pattern $\psi(2S)/J/\psi$ observed by E866 at 39 GeV could easily be explained by the formation time effect

E866 PRL 84 (2000) 3256

- As discussed in the introduction, the relative suppression Y(2S, 3S) w.r.t. Y(1S) was completely unexpected at the LHC
 - On the other hand, the relative suppression pattern $\psi(2S)/J/\psi$ observed by E866 at 39 GeV could easily be explained by the formation time effect E866 PRL 84 (2000) 3256

At high energies, except in the (far) backward re-

 gion, this is irrelevant: the quantum state should not matter !

- As discussed in the introduction, the relative suppression Y(2S, 3S) w.r.t. Y(1S) was completely unexpected at the LHC
 - On the other hand, the relative suppression pattern $\psi(2S)/J/\psi$ observed by E866 at 39 GeV could easily be explained by the formation time effect E866 PRL 84 (2000) 3256
 - At high energies, except in the (far) backward re-
- gion, this is irrelevant: the quantum state should not matter !

• Another hint came from PHENIX with a relative $\psi(2S)/J/\psi$ suppression at $y \simeq 0$ although with limited statistics PRL 111, 202301 (2013)

・ロト ・ 同ト ・ ヨト ・ ヨト

- As discussed in the introduction, the relative suppression Y(2S, 3S) w.r.t. Y(1S) was completely unexpected at the LHC
 - On the other hand, the relative suppression pattern $\psi(2S)/J/\psi$ observed by E866 at 39 GeV could easily be explained by the formation time effect E866 PRL 84 (2000) 3256
 - At high energies, except in the (far) backward re-
- gion, this is irrelevant: the quantum state should not matter !
- Another hint came from PHENIX with a relative $\psi(2S)/J/\psi$ suppression at $y \simeq 0$ although with limited statistics PRL 111, 202301 (2013)
- ALICE also found out a relative $\psi(2S)/J/\psi$ suppression alice JHEP 02 (2014) 072

・ロト ・ 同ト ・ ヨト ・ ヨト

- As discussed in the introduction, the relative suppression Y(2S, 3S) w.r.t. Y(1S) was completely unexpected at the LHC
 - On the other hand, the relative suppression pattern $\psi(2S)/J/\psi$ observed by E866 at 39 GeV could easily be explained by the formation time effect E866 PRL 84 (2000) 3256
 - At high energies, except in the (far) backward re-
- gion, this is irrelevant: the quantum state should not matter !

- ALICE also found out a relative $\psi(2S)/J/\psi$ suppression ALICE JHEP 02 (2014) 072
- The most natural explanation would be a final-state effect acting over sufficiently long time in order to impact different states with a different magnitude → comover interaction model ?

(日)

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

• □ > • □ > • □ > •

 In a comover model, suppression from scatterings of the nascent ψ with comoving particles
 S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella *et al.*PLB 393 (1997) 431

(日) (周) (日) (日)

- In a comover model, suppression from scatterings of the nascent ψ with comoving particles
 S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella *et al.* PLB 393 (1997) 431
- Stronger comover suppression where the comover densities are larger. For asymmetric collisions as proton-nucleus, stronger in the nucleus-going direction

(日) (周) (日) (日)

- In a comover model, suppression from scatterings of the nascent ψ with comoving particles
 S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella *et al.*PLB 393 (1997) 431
- Stronger comover suppression where the comover densities are larger. For asymmetric collisions as proton-nucleus, stronger in the nucleus-going direction
- Rate equation governing the charmonium density at a given transverse coordinate s, impact parameter b and rapidity y,

$$\tau \frac{\mathrm{d}\rho^{\psi}}{\mathrm{d}\tau} (b, s, y) = -\sigma^{co-\psi} \rho^{co}(b, s, y) \rho^{\psi}(b, s, y)$$

where $\sigma^{co-\psi}$ is the cross section of charmonium dissociation due to interactions with the comoving medium of transverse density $\rho^{co}(b, s, y)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- In a comover model, suppression from scatterings of the nascent ψ with comoving particles
 S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella *et al.*PLB 393 (1997) 431
- Stronger comover suppression where the comover densities are larger. For asymmetric collisions as proton-nucleus, stronger in the nucleus-going direction
- Rate equation governing the charmonium density at a given transverse coordinate *s*, impact parameter *b* and rapidity *y*,

$$\tau \frac{\mathrm{d}\rho^{\psi}}{\mathrm{d}\tau} (b, s, y) = -\sigma^{co-\psi} \rho^{co}(b, s, y) \rho^{\psi}(b, s, y)$$

where $\sigma^{co-\psi}$ is the cross section of charmonium dissociation due to interactions with the comoving medium of transverse density $\rho^{co}(b, s, y)$.

• Survival probability from integration over time (with $\tau_f / \tau_0 = \rho^{co}(b, s, y) / \rho_{pp}(y)$)

$$S^{co}_{\psi}(b,s,y) \ = \ \exp\left\{-\sigma^{co-\psi}\,\rho^{co}(b,s,y)\,\ln\left[\frac{\rho^{co}(b,s,y)}{\rho_{\mathcal{PP}}(y)}\right]\right\}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- In a comover model, suppression from scatterings of the nascent ψ with comoving particles
 S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella *et al.* PLB 393 (1997) 431
- Stronger comover suppression where the comover densities are larger. For asymmetric collisions as proton-nucleus, stronger in the nucleus-going direction
- Rate equation governing the charmonium density at a given transverse coordinate s, impact parameter b and rapidity y,

$$\tau \frac{\mathrm{d}\rho^{\psi}}{\mathrm{d}\tau} (b, s, y) = -\sigma^{co-\psi} \rho^{co}(b, s, y) \rho^{\psi}(b, s, y)$$

where $\sigma^{co-\psi}$ is the cross section of charmonium dissociation due to interactions with the comoving medium of transverse density $\rho^{co}(b, s, y)$.

• Survival probability from integration over time (with $\tau_f / \tau_0 = \rho^{co}(b, s, y) / \rho_{pp}(y)$)

$$S^{\rm co}_{\psi}(b,s,y) \ = \ \exp\left\{-\sigma^{\rm co-\psi}\,\rho^{\rm co}(b,s,y)\,\ln\left[\frac{\rho^{\rm co}(b,s,y)}{\rho_{\rm pp}(y)}\right]\right\}$$

• $\rho^{co}(b, s, y)$ connected to the number of binary collisions and dN_{ch}^{pp}/dy

イロト 不得 トイヨト イヨト 二日

- In a comover model, suppression from scatterings of the nascent ψ with comoving particles
 S. Gavin, R. Vogt PRL 78 (1997) 1006; A. Capella *et al.* PLB 393 (1997) 431
- Stronger comover suppression where the comover densities are larger. For asymmetric collisions as proton-nucleus, stronger in the nucleus-going direction
- Rate equation governing the charmonium density at a given transverse coordinate s, impact parameter b and rapidity y,

$$\tau \frac{\mathrm{d}\rho^{\psi}}{\mathrm{d}\tau} (b, s, y) = -\sigma^{co-\psi} \rho^{co}(b, s, y) \rho^{\psi}(b, s, y)$$

where $\sigma^{co-\psi}$ is the cross section of charmonium dissociation due to interactions with the comoving medium of transverse density $\rho^{co}(b, s, y)$.

• Survival probability from integration over time (with $\tau_f / \tau_0 = \rho^{co}(b, s, y) / \rho_{pp}(y)$)

$$S^{co}_{\psi}(b, s, y) = \exp\left\{-\sigma^{co-\psi}\rho^{co}(b, s, y) \ln\left[\frac{\rho^{co}(b, s, y)}{\rho_{pp}(y)}\right]\right\}$$

• $\rho^{co}(b, s, y)$ connected to the number of binary collisions and dN_{ch}^{pp}/dy

• $\sigma^{co-\psi}$ fixed from fits to low-energy AA data [$\sigma^{co-J/\psi} = 0.65$ mb for the J/ψ and $\sigma^{co-\psi(2S)} = 6$ mb for the $\psi(2S)$] J.P. Lansberg (IPNO) Quarkonium production in *p*A collisions July 8, 2015 27/31

CIM result vs. data

Theory: E.G. Ferreiro arXiv:1411.0549; Plot from the SGNR review: arXiv:1506.03981; PHENIX PRL 111, 202301 (2013); ALICE JHEP 02 (2014) 072

July 8, 2015 28 / 31

Part VII

AFTER: before concluding

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

July 8, 2015 29 / 31

S.J Brodsky. F. Fleuret, C. Hadjidakis, J.P.L., Phys.Rept. 522 (2013) 239; FBS (2012) 53:11

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

S.J Brodsky. F. Fleuret, C. Hadjidakis, J.P.L., Phys.Rept. 522 (2013) 239; FBS (2012) 53:11

• A lot remains to be understood in particular as regards excited states

S.J Brodsky. F. Fleuret, C. Hadjidakis, J.P.L., Phys.Rept. 522 (2013) 239; FBS (2012) 53:11

- A lot remains to be understood in particular as regards excited states
- Very few data points about χ_c , none for χ_b in *pA* collisions

< ロ > < 同 > < 三 > < 三

S.J Brodsky. F. Fleuret, C. Hadjidakis, J.P.L., Phys.Rept. 522 (2013) 239; FBS (2012) 53:11

- A lot remains to be understood in particular as regards excited states
- Very few data points about χ_c , none for χ_b in *pA* collisions
- A fixed target experiment using the LHC p⁺ beam could collect with nuclear targets
 up to 0.5 fb⁻¹ yr⁻¹ at √s = 115 GeV

(日) (周) (日) (日)

S.J Brodsky. F. Fleuret, C. Hadjidakis, J.P.L., Phys.Rept. 522 (2013) 239; FBS (2012) 53:11

- A lot remains to be understood in particular as regards excited states
- Very few data points about χ_c , none for χ_b in *pA* collisions
- A fixed target experiment using the LHC p⁺ beam could collect with nuclear targets
 up to 0.5 fb⁻¹ yr⁻¹ at √s = 115 GeV
- A detector like LHCb would
 - cover half of the phase space
 - allow one to scan formation times from below 1 fm up to 30 fm
 - with unheard of statistical precision with such luminosities
 - with resolutions and γ detection to study $\psi(2S)$, $\chi_{c,b}$ and Y(nS)
- Example for the Y L. Massacrier *et al*.arXiv:1504.05145; R. Vogt to appear in Adv. High. En. Phys.

- ロ ト - (理 ト - (三 ト - (三 ト -)

S.J Brodsky. F. Fleuret, C. Hadjidakis, J.P.L., Phys.Rept. 522 (2013) 239; FBS (2012) 53:11

- A lot remains to be understood in particular as regards excited states
- Very few data points about χ_c , none for χ_b in *pA* collisions
- A fixed target experiment using the LHC p⁺ beam could collect with nuclear targets
 up to 0.5 fb⁻¹ yr⁻¹ at √s = 115 GeV
- A detector like LHCb would
 - cover half of the phase space
 - allow one to scan formation times from below 1 fm up to 30 fm
 - with unheard of statistical precision with such luminosities
 - with resolutions and γ detection to study $\psi(2S)$, $\chi_{c,b}$ and Y(nS)
- Example for the Y L. Massacrier *et al.*arXiv:1504.05145; R. Vogt to appear in Adv. High. En. Phys.

Conclusion

J.P. Lansberg (IPNO)

イロト イポト イヨト イヨト

Conclusion

• Many effects can modify the quarkonium yields in pA

```
w.r.t. pp collisions
```

- Predicting their magnitude often requires to fit data with one or more free parameters
- As concerns J/ψ and Y(1S), it is difficult to rule out one approach or the other only based on data-theory comparisons

• • • • • • • • • • • •
Conclusion

• Many effects can modify the quarkonium yields in pA

```
w.r.t. pp collisions
```

- Predicting their magnitude often requires to fit data with one or more free parameters
- As concerns J/ψ and Y(1S), it is difficult to rule out one approach or the other only based on data-theory comparisons
- However, a puzzling relative suppression of excited states has recently been observed, both for cc
 and bb
 states at high energies
- Most of the effects discussed act a priori the same way on excited states: nPDF, energy loss, saturation, ...
- A possible explanation is the rescattering by comovers, also used to explain the J/ψ anomalous suppression at the SPS

イロト 不得 トイヨト イヨト

Conclusion

• Many effects can modify the quarkonium yields in *pA*

```
w.r.t. pp collisions
```

- Predicting their magnitude often requires to fit data with one or more free parameters
- As concerns J/ψ and Y(1S), it is difficult to rule out one approach or the other only based on data-theory comparisons
- However, a puzzling relative suppression of excited states has recently been observed, both for cc
 and bb
 states at high energies
- Most of the effects discussed act a priori the same way on excited states: nPDF, energy loss, saturation, ...
- A possible explanation is the rescattering by comovers, also used to explain the J/ψ anomalous suppression at the SPS
- As usual in such cases, more data are needed and will come from RHIC, the LHC Run-II & perhaps new projects like AFTER@LHC

Part VIII

Backup

J.P. Lansberg (IPNO)

Quarkonium production in pA collisions

2 July 8, 2015 32/31

3

イロト イポト イヨト イ

$\psi(2S)$ absolute suppression

I. Lakomov, HP 2015

> < ≣ > ≣ < ⊃ < ○ July 8, 2015 33 / 31

A D N A (P) N A B N A B N

A bound on energy loss ?

Considering an asymptotic charge in a QED model

[Brodsky Hoyer 93]

- No contribution from large formation times $t_f \gg L$
- Induced gluon radiation needs to resolve the medium

$$t_f \sim rac{\omega}{k_\perp^2} \lesssim L \qquad \omega \lesssim k_\perp^2 \ L \sim \hat{q} \ L^2$$

- Bound independent of the parton energy
- Energy loss cannot be arbitrarily large in a finite medium
- Apparently rules out energy loss models as a possible explanation

However

- Not true in QED when the charge is deflected
- Not necessarily true in QCD due to color rotation

François Arleo (LLR & LAPTh)	Parton energy loss in pA & AA collisions	INT Seattle – Oct 2014	6 / 33
J.P. Lansberg (IPNO)	Quarkonium production in pA collisions	July 8, 2	015 34/31

Quenching weight

• Usually one assumes independent emission \rightarrow Poisson approximation

$$\mathcal{P}(\epsilon) \propto \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_{i} \frac{dI(\omega_{i})}{d\omega} \right] \delta\left(\epsilon - \sum_{i=1}^{n} \omega_{i}\right)$$

• However, radiating ω_i takes time $t_f(\omega_i)\sim \omega_i/\Delta q_\perp^2\gg L$

For $\omega_i \sim \omega_j \Rightarrow$ emissions *i* and *j* are not independent • For self-consistency, constrain $\omega_1 \ll \omega_2 \ll \ldots \ll \omega_n$

$$P(\epsilon) \simeq \frac{dI(\epsilon)}{d\omega} \exp\left\{-\int_{\epsilon}^{\infty} d\omega \frac{dI}{d\omega}\right\} \qquad \omega \frac{dI}{d\omega}\bigg|_{\rm ind} \simeq \frac{N_c \alpha_s}{\pi} \ln\left(1 + \frac{E^2 \hat{q}L}{\omega^2 M_{\perp}^2}\right)$$

• $\mathcal{P}(\epsilon)$ scaling function of $\hat{\omega} = \sqrt{\hat{q}L}/M_{\perp} \times E$

François Arleo (LLR & LAPTh)	Parton energy loss in pA & AA collisions		INT Seattle – O	ct 2014	11 / 3	33	~ ~ ~
				er se	-		540
J.P. Lansberg (IPNO)	Quarkonium production in pA collisions	S		July 8, 2	2015	3	5/31

p_{\perp} dependence

Most general case

$$\frac{1}{A} \frac{d\sigma_{\rm pA}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} = \int_{\varepsilon} \int_{\varphi} \mathcal{P}(\varepsilon, E) \ \frac{d\sigma_{\rm pp}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} \left(E + \varepsilon, \vec{p}_{\perp} - \Delta \vec{p}_{\perp} \right)$$

• pp cross section fitted from experimental data

$$\frac{d\sigma_{\rm pp}^\psi}{dy\,d^2\vec{p}_\perp}\propto \left(\frac{p_0^2}{p_0^2+p_\perp^2}\right)^m\times \left(1-\frac{2M_\perp}{\sqrt{s}}\cosh y\right)^n$$

- Overall depletion due to parton energy loss
- Possible Cronin peak due to momentum broadening

$$R^{\psi}_{\mathsf{p}\mathsf{A}}(y, \pmb{p}_{\perp}) \simeq R^{\mathrm{loss}}_{\mathsf{p}\mathsf{A}}(y, \pmb{p}_{\perp}) \cdot R^{\mathrm{broad}}_{\mathsf{p}\mathsf{A}}(\pmb{p}_{\perp})$$

François Arleo (LLR & LAPTh)	Parton energy loss in pA & AA collisions		T Seattle	Oct 201				
				 -	1 - 2		-	-*) 4 (*
J.P. Lansberg (IPNO)	Quarkonium production in pA collisions	;		Ju	ly 8,	2015	5	36 / 31