Blast wave fits with resonances to p_t spectra from nuclear collisions at the LHC

Ivan Melo and Boris Tomášik

Žilinská univerzita, Žilina, Slovakia Univerzita Mateja Bela, Banská Bystrica, Slovakia Czech Technical University in Prague, FNSPE, Czech Republic

boris.tomasik@umb.sk

SQM, Dubna, 10.7.2015

Motivation

- characterize the freeze-out state (temperature and transverse expansion) of the fireball by fits to p_t spectra of various species
- analyse Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76 \, TeV$
- Data from ALICE collaboration
 - π, K, p:

B. Abelev *et al.* [ALICE collaboration], Phys. Rev. C **88**, 044910 (2013)

K₀, Λ:

B. Abelev *et al.* [ALICE collaboration], Phys. Rev. Lett. **111**, 222301 (2014)

Ξ, Ω:

B. Abelev et al. [ALICE collaboration], Phys. Lett. B 728, 216 (2014)

• K*, φ:

B. Abelev et al. [ALICE Collaboration], arXiv:1404.0495 [nucl-ex]

• Scenario with two freeze-outs, chemical and kinetic:

 $T_{critical} \ge T_{chemical} \ge T_{kinetic}$

- Analysis includes resonance decays, given by $T_{chemical}$
- Blast-wave model Monte Carlo implementation DRAGON

Ivan Melo and Boris Tomášik (UMB)

Blast wave fits at the LHC

DRAGON

Monte Carlo implementation of the emission function with 277 resonances

$$\frac{dN}{dy d^2 p_t} = \int d\Sigma_{\mu} p^{\mu} \frac{1}{\exp \frac{p_{\mu} u^{\mu}}{T} \pm 1} = \int d^4 x S(x, p)$$

$$\begin{split} S(x,p)d^4x &= \delta(\tau - \tau_{\rm fo}) \, m_t \, \cosh(\eta_s - y) \, \Theta(R - r) \\ &\times \frac{1}{\exp \frac{\rho_\mu u^\mu}{T} \pm 1} \tau \, d\tau \, d\eta_s \, r \, dr \, d\varphi \end{split}$$

transverse expansion (like ALICE, unlike Cracow)

$$v_t = \eta_f \left(\frac{r}{R}\right)^n$$

Freeze-out at constant proper time (like ALICE, unlike Cracow) Chemical composition determined by $T_{ch} = 152$ MeV and $\mu_B = 1$ MeV In the fits variation of: T, η_f (or $\langle v_t \rangle$), n.

Ivan Melo and Boris Tomášik (UMB)

Comparison of DRAGON fits with ALICE fits to π , K, p

ALICE: no resonances, but fits only in fiducial intervals

 $0.3 \,\mathrm{GeV} < p_t(protons) < 3 \,\mathrm{GeV}$

 $0.5 \,\mathrm{GeV} < p_t(pions) < 1 \,\mathrm{GeV}$

 $0.2\,\mathrm{GeV} < p_t(kaons) < 1.5\,\mathrm{GeV}$

DRAGON fits followed ALICE procedure (just to cross-check)

	ALICE			no resonances			with resonances		
centrality	T (MeV)	$\langle v_t \rangle$	n	T (MeV)	$\langle v_t \rangle$	n	<i>Т</i> (MeV)	$\langle v_t \rangle$	n
0–5%	95	0.651	0.71	98	0.645	0.73	82	0.662	0.69
5–10%	97	0.646	0.72	98	0.645	0.73	94	0.654	0.69
10–20%	99	0.639	0.74	102	0.637	0.73	90	0.649	0.71
20–30%	101	0.625	0.78	102	0.624	0.79	98	0.633	0.75
30–40%	106	0.604	0.84	110	0.605	0.81	102	0.616	0.79
40–50%	112	0.574	0.94	110	0.572	0.97	118	0.581	0.89
50–60%	118	0.535	1.10	122	0.527	1.15	126	0.541	1.03
60–70%	129	0.489	1.29	126	0.484	1.39	146	0.489	1.23
70–80%	139	0.438	1.58	142	0.439	1.51	170	0.423	1.55

shifts in temperature when resonances are included

Ivan Melo and Boris Tomášik (UMB)

Blast wave fits at the LHC

DRAGON: resonances contributions

Spectra anatomy for pions

Spectra anatomy for protons

Fit results summary

Fits limited to $0.9 < N_i^{exp}/N_i^{MC} < 1.1$, for pions $p_t >$ 400 MeV

Fits to pions, kaons and protons

Fits to K^0 and Λ

Comparisons with K^* and ϕ

Fits to Ξ and Ω

Conclusions

- *p_t* spectra ae seriously influenced by contributions from resonance decays (MC tool DRAGON was used to fit single hadron pt spectra)
- Resonances induce downward shifts \leq 10 MeV in T_{kin} for central collisions and upward shifts \leq 25 MeV for peripheral collisions
- Multistrange baryons show freeze-out at higher temperature and weaker transverse flow.
- To have the abundances at thermal freeze-out correct, chemical potentials inclusion currently under way